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1 Reducing the number of predictors in Bayesian
Best Subset Regression

For a given gene, the total number of potential predictors p in BBSR is determined
by the size of the union of the 10 highest scoring predictors based on tlCLR
and all those predictors that have previously been reported as regulators (see
Method section in main article). If p is large (> 10) it becomes infeasible to
compute all 2p possible regression models during the model selection step. To
further reduce the number of predictors, we look at a subset of of all possible
models, and employ an averaging method to discover the 10 most promising
predictors. We first build all models containing one or two predictors, and
compute the expected BIC for each one. For every predictor we compute the
average expected BIC of all models containing that particular predictor. These
averages allow us to rank the predictors, and to reduce the set to the 10 best
predictors as defined by the BIC in this small subspace of all models.

2 Datasets

For the performance tests of our methods described here, we use three datasets
(Table 2).

1. A synthetic dataset from the DREAM4 [2] competition, consisting of 100
genes, 100 TFs (any gene can be a regulator), and 176 known (gold-
standard) interactions. As this data is synthetic, normalization was taken
care of by the organizers.

2. A real dataset characterizing the transcriptional changes in E. coli . The
dataset comes from the DREAM5 challenge [5]. The majority of the data
comes from the Many Microbes Microarrays Database (M3D), with a few
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additional arrays provided by the Collins lab [5]. Normalization was done
using RMA [3]. The gold standard set of regulations contains 2066 inter-
actions (characterizing 100 genes and 120 TFs) comes from RegulonDB
followed by manual curation (removal of in-silico edges) manually by the
organizers of DREAM. [5]

3. The final dataset we use for testing comes from the [6], characterizing the
transcriptional dynamics of B. subtilis. This dataset consists of 269 tiling
arrays capturing the response of B. subtilis to a variety of conditions. The
gold standard comes from SubtiWiki [4, 1] which is repository of infor-
mation for B. subtilis, including a manually curated list of known regulon
information, which is what was used for the gold standard. Normalization
and compilation of overlapping probes into intensities was done by the
authors of the paper. We would also like to note to the reader that each
of these datasets possess of markedly different amount of signal. We define
signal as the time-lagged correlation between a TF and potential target
(see Methods). We assessed the time-lagged correlation for all TF-target
pairs, and only for those that were in the corresponding gold standard,
and see the differences between the dataset in Fig. 1 below.

Dataset Samples Genes TFs Edges in gold standard
Dream4 421 100 100 176
E.coli 487 4511 334 2066
B.subtilis 269 4218 246 2422

Table 1: Dataset description
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Figure 1: Signal in dataset Here we compute the signal present in each dataset.
We consider the time-lagged correlation between every TF-target pair, and show
the time-lagged correlations for interactions that are in the gold standard in
blue, and in red we show the time-lagged correlations that are not in the gold
standard.

3 Increasing the number of prior interactions
predictably increases the number of gold stan-
dard edges included in model

Frequently in biological systems of interest, the set of PKIs is incomplete, cov-
ering only a small fraction of GSIs. To examine the relationship between the
fraction of GSIs that were given as PKIs, and our performance, we increased
the number of the PKIs for fixed weight parameters. The weight parameters
were chosen as follows. High weights: θ for MEN is 0.01 for all datasets, and g
for BBSR is 2.8, 13, 10 for Dream4, E.coli, B.subtilis. Low weights: θ is 0.5 for
all datasets, and g is 1.26, 2.2, 1.6. We can observe that performance increases
linearly as the fraction of GSIs that is given as PKIs increases, see Fig. 2. Al-
though this analysis does not have bearing on our ability to predict new edges
not in our gold standard it serves as an important verification that our methods
for model selection do not exhibit strange behaviors as the number of known
edges is either very small (as in the case for non-model organisms systems) or
very large (as is the case for several model organisms, such as those used here,
Yeast, Fly and Worm). In both cases optimal performance can be achieved in
a relatively wide region of both θ and g suggesting that good values of these
parameters can be estimated here based on these test data-sets and applied to a
wide range of scenarios (differing amounts of noise, GS completeness, and data
quantity).

This trend is true for all three datasets and both methods.
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Figure 2: Performance vs number of interactions in the prior We sup-
plied both methods with varying fractions of the gold standard interactions
(GSIs) as prior known interactions, and evaluated performance (in terms of
AUPR) over all GSIs. Fractions of GSIs were drawn at random in five repe-
titions. Here we show the results for high prior weights (top) and low prior
weights (bottom).

3.1 Incorporation of prior interactions is data-driven

We investigated which of the known-edges were included in the resulting network
models. We used all GSIs as PKIs and the weight parameters were chosen as
follows. High weights: θ for MEN is 0.01 for all datasets, and g for BBSR is 2.8,
13, 10 for Dream4, E.coli, B.subtilis. Low weights: θ is 0.5 for all datasets, and
g is 1.26, 2.2, 1.6. We split the predicted interactions in two sets, high-ranked
(recall ≤ 0.5) and low-ranked (recall > 0.5 AND in set of PKIs), and compared
the two sets with regard to the signal in the data. Signal for an interaction (TF-
target pair) is defined as the time-lagged correlation for that pair. We chose
this metric since we use the time-lagged response and design matrices for model
building (see Methods section). For both methods and all datasets we can see
that high-ranked interactions have more signal (fewer near-zero correlations)
than low-ranked interactions (narrow densities peaked around zero), see Fig. 3.
However, for high weights this trend is more pronounced for BBSR, where almost
no high-ranked interactions show zero time-lagged correlation.

4



BBSR MEN
precision 0.7

precision 0.46

precision 0.61

precision 0.67

precision 0.49

precision 0.58

0.0

0.5

1.0

1.5

0

1

2

0.0

0.5

1.0

1.5

D
ream

4
E
.coli

B
.subtilis

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0
Time−lagged correlation

D
en
si
ty

Type of Interaction Lower Ranked Interactions Higher Ranked Interactions

BBSR MEN
precision 0.95

precision 0.96

precision 0.95

precision 0.89

precision 0.88

precision 0.87

0.0

0.5

1.0

1.5

2.0

0

1

2

0.0

0.5

1.0

1.5

D
ream

4
E
.coli

B
.subtilis

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0
Time−lagged correlation

D
en
si
ty

Type of Interaction Lower Ranked Interactions Higher Ranked Interactions

Figure 3: Incorporation of prior interactions is data driven For all three
datasets we used all gold standard interactions (GSIs) as prior known interac-
tions. Here we display the distribution of time-lagged correlation of predicted
TF-target pairs at a recall level of ≤ 0.5 (higher ranked, blue), and low ranked
interactions that are in the gold standard (lower ranked, red). Left panel: low
weight parameters, right panel: high weight parameters. Note that high ranked
interactions are less likely to have low absolute time-lagged correlation (less
pronounced in MEN with high weight parameter), and the low ranked GSIs are
centered around 0.

4 Performance on the leave-out set when using
high weights

We define the leave-out set as the set of GSIs that are not input as PKIs into
our methods. For this experiment we sampled PKI sets randomly resulting
in subsets that consisted of 20%, 40%, 60%, and 80% of the GSIs for each of
the three datasets (we carried out five repetitions of this random sampling).
AUPR of the leave-out set was computed when using PKIs and compared to
the performance when no PKIs were used, and the following weights were used:
θ for MEN is 0.01 for all datasets, and g for BBSR is 2.8, 13, 10 for Dream4,
E.coli, B.subtilis (Fig. 4). We observe that the performance on the leave-out
set of BBSR degrades when high weights are used. This seems to be a small but
consistent effect which cannot be seen for MEN. When compared to the results
when using low weights (see main aricle), we can see that the performance of
MEN on the leave-out set is independent of the choice of the weight parameter
θ, whereas high values for g lead to a reduced performance on the leave-out set
for BBSR.
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Figure 4: Performance change on the leave-out set when using high
weights. Prior known interactions (PKIs) were sampled randomly from 20%,
40%, 60%, and 80% of the gold standard interactions (GSIs) in five repetitions.
We define the leave-out set as the set of GSIs that are not PKIs. Here we
compare the AUPR of the leave-out set when using PKIs (y-axis) to the AUPR
when not using PKIs (x-axis). Points above the line indicate a performance
increase when PKIs are used.

5 Running times

Dataset MEN BBSR

Dream4 01:02 00:35
E.coli 75:53 63:18
B.subtilis 60:14 44:04

Table 2: Averaged running times for one bootstrap in minutes CPU time (3GHz
Intel Xeon).
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