#### SUPPLEMENTARY INFORMATION

## Phase II Clinical Trial of Rapamycin-Resistant Donor CD4<sup>+</sup> Th2/Th1 (T-Rapa) Cells After Low-Intensity Allogeneic Hematopoietic Cell Transplantation

Daniel H. Fowler, M.D.<sup>1</sup>, Miriam E. Mossoba, Ph.D.<sup>1</sup>, Seth M. Steinberg, Ph.D.<sup>2</sup>, David C. Halverson, M.D.<sup>1</sup>, David Stroncek, M.D.<sup>3</sup>, Hahn M. Khuu, M.D.<sup>3</sup>, Frances T. Hakim, Ph.D.<sup>1</sup>, Luciano Castiello<sup>3</sup>, Marianna Sabatino, M.D.<sup>3</sup>, Susan F. Leitman, M.D.<sup>3</sup>, Jacopo Mariotti, M.D.<sup>1</sup>, Juan C. Gea-Banacloche, M.D.<sup>1</sup>, Claude Sportes, M.D.<sup>1</sup>, Nancy M. Hardy, M.D.<sup>1</sup>, Dennis D. Hickstein, M.D.<sup>1</sup>, Steven Z. Pavletic, M.D.<sup>1</sup>, Scott Rowley, M.D.<sup>4</sup>, Andre Goy, M.D.<sup>4</sup>, Michele Donato, M.D.<sup>4</sup>, Robert Korngold, Ph.D.<sup>4</sup>, Andrew Pecora, M.D.<sup>4</sup>, Bruce L. Levine, Ph.D.<sup>5</sup>, Carl H. June, M.D.<sup>5</sup>, Ronald E. Gress, M.D.<sup>1</sup>, and Michael R. Bishop, M.D.<sup>1</sup>

Affiliations: (#1) 10 Center Drive, CRC 3-3330; Experimental Transplantation and Immunology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892 USA; (#2) 6116 Executive Blvd, Suite 702; Biostatistics and Data Management, NCI, NIH, Bethesda, MD, 20892 USA; (#3) 10 Center Drive, CRC 3-3330; Department of Transfusion Medicine, NIH, Bethesda, MD, 20892 USA; (#4) The John Theurer Cancer Center, Hackensack University Medical Center, 92 Second Street, 2<sup>nd</sup> Floor Room 229, Hackensack, NJ 07601 USA; (#5) University of Pennsylvania, Abramson Family Cancer Research Center, 421 Curie Blvd., Room 554 BRB II/III, Philadelphia, PA 19104-6160, USA.

### **Supplementary Note**

**Determination of T Cell Naïve vs. Memory vs. Effector Differentiation Status.** T cell differentiation status was evaluated by flow cytometry, as previously described<sup>1</sup>. Thawed patient PBMCs that were collected post-HCT and donor T-Rapa cell products were stained with a cocktail of antibodies: CD8 FITC (BD), CCR7 PE (R&D), CD45RA ECD (Beckman Coulter), CD39 PerCP e710 (eBioscience), CD25 PE-Cy7 (eBioscience), CD127 APC (eBioscience), CD3 Alexa700 (BD), CD27 APC e780 (eBioscience), the viability marker NFL (OncoImmunin), and CD4 KromeOrange (Beckman Coulter). Stained samples were run on a Gallios flow cytometer (Beckman Coulter).

**Post-HCT T Cell Phenotype by Cytokine Capture Flow Cytometry.** Cytokine capture flow cytometry was performed at week 2 post-HCT (just prior to T-Rapa infusion) and after T-Rapa infusion (week 4 post-HCT). PBMC were isolated and stimulated for 24 hours using anti-CD3, anti-CD28 coated beads; the resultant T cells were then stained for surface markers (CD4, CD8; antibodies obtained from BD Biosciences) followed by cytokine capture flow cytometry according to the manufacturer's instructions (Miltenyi Biotec Inc., Auburn, CA). Data were acquired using a FACS Calibur flow cytometer (BD Biosciences) and data analysis was performed using FlowJo software (Tree Star, Inc, Ashland, OR).

**Detection of CMV-specific T Cells by Dextramer Staining.** Post-HCT PBMC from transplant recipients or PBMC from normal donors were thawed, washed in PBS/5% FCS, and stained with PE-conjugated HLA-A\*0201 NLVPMVATV hCMV pp65 or HLA-A\*0201 Negative Control Dextramers (generous gift from Immudex, Copenhagen Denmark) and FITC-conjugated anti-CD8 (BD Biosciences, San Diego, CA). Stained cells were washed twice in PBS containing 5% FCS, resuspended in PBS, and stained with 7-AAD (BD Biosciences) prior to data acquisition using a FACS Calibur flow cytometer (BD Biosciences). Analyses were performed using FlowJo software (Tree Star, Inc.).

**Characterization of CMV-specific Immunity by CMV Peptide Stimulation Assay.** Post-HCT PBMC from transplant recipients and donor T-Rapa cell products were thawed, washed in PBS, and plated in triplicate in 48-well flat-bottom plates at a final concentration of  $10^7$ /ml in X-vivo 20 media supplemented with 20 IU/ml of rhuIL-2. Plated cells were either left unstimulated for 48 hours or stimulated for 48 hours with a pool of reconstituted CMV-pp65 peptides or the provided positive control T cell stimulation (Cytostim), according to the manufacturer's instructions (Miltenyi Biotec Inc.). Supernatants were harvested and frozen at -20C° overnight until processed for cytokine level measurements by multiplex immunoassays, according to the manufacturer's protocol (Bio-Rad Laboratories, Hercules, CA).

**Determination of T Cell Receptor Repertoire by Spectratyping Method.** Normal donor and patient (post-HCT) PBMCs were sorted for CD4<sup>+</sup> cells using MS magnetic columns (Miltenyi

Biotec Inc.). Sorted normal donor or post-HCT  $CD4^+$  cells and donor  $CD4^+$  T-Rapa cell products were pelleted, resuspended in Trizol, and stored at -80 C°. Samples were processed for RNA isolation, cDNA synthesis, and V-beta specific PCR was performed and analyzed, as previously described<sup>2</sup>.

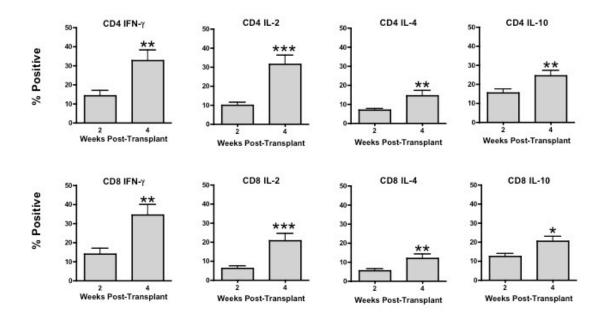
| GO Families                 | Gene<br>Symbol | Gene Name                                        | Fold-Change<br>(vs. input CD4) |
|-----------------------------|----------------|--------------------------------------------------|--------------------------------|
| Up-regulated<br>Cell Cycle  | DTL            | denticleless E3 uniquitin protein ligase homolog | 63-fold Increase               |
| DNA Metabolism              | ESCO2          | establishment of cohesion 1 homolog 2            | 49-fold Increase               |
| Stress Response             | TOP2A          | topoisomerase (DNA) II alpha 170kDa              | 23-fold Increase               |
| Glucose Catabolism          | OGDGL          | oxoglutarate dehydrogenase-like                  | 92-fold Increase               |
| Oxidative Reduction         | MAOA           | monoamine oxidase A                              | 35-fold Increase               |
| Down-regulated<br>Apoptosis | IL1B           | interleukin 1, beta                              | 134-fold Decrease              |
| Transcription               | EREG           | epiregulin                                       | 45-fold Decrease               |
| Inflammation                | S100A8         | S100 calcium binding protein A8                  | 341-fold Decrease              |
| Cytokine Production         | NLRP3          | NLR family, pyrin domain containing 3            | 173-fold Decrease              |
| Immune Response             | CXCL2          | Chemokine (C-X-C motif) ligand 2                 | 55-fold Decrease               |

# Supplemental Table I. Gene ontology (GO) families most significantly altered in T-Rapa cell products relative to culture input CD4<sup>+</sup> T cells

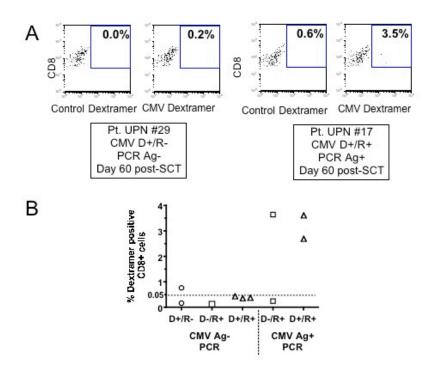
#### Supplemental Table II. Differentiation Status of T-Rapa Products and Post-HCT T Cells

Flow cytometry was used to characterize the differentiation status of T-Rapa cell products and post-HCT T cells (prior to T-Rapa infusion [day  $\pm$ 14 post-HCT] and after T-Rapa infusion [days  $\pm$ 60 and  $\pm$ 180 post-HCT]). As previously detailed<sup>1</sup>, differential expression of CD45RA and CCR7 was used to define naïve, central memory, effector memory, and effector subsets. Values are mean  $\pm$  standard error of the mean. Abbreviations: N/A, not applicable; PBMC, peripheral blood mononuclear cells.

| Sample Type                         | Time<br>Post-HCT | n= | %<br>Naive <sup>1</sup> | %<br>CM <sup>2</sup> | %<br>EM <sup>3</sup> | %<br>TEMRA <sup>4</sup> |
|-------------------------------------|------------------|----|-------------------------|----------------------|----------------------|-------------------------|
| CD4 <sup>+</sup> T-Rapa<br>Products | N/A              | 5  | $1.3 \pm 0.6$           | $66.4 \pm 2.8$       | 31.7 ± 3.2           | $0.6 \pm 0.2$           |
| CD4 <sup>+</sup> PBMC               | Day +14          | 5  | $24.7 \pm 2.5$          | 38.1 ± 6.2           | $32.3 \pm 4.9$       | $4.9 \pm 2.5$           |
|                                     | Day +60          | 5  | $38.5 \pm 3.5$          | $26.9 \pm 3.9$       | $27.8 \pm 1.0$       | $6.7 \pm 1.6$           |
|                                     | Day +180         | 5  | $38.1 \pm 6.2$          | $35.7 \pm 3.9$       | $24.3 \pm 3.2$       | $1.9 \pm 0.5$           |
| CD8 <sup>+</sup> PBMC               | Day +14          | 5  | $26.9 \pm 10.2$         | 18.7 ± 5.3           | $36.6 \pm 7.3$       | $17.8 \pm 5.8$          |
|                                     | Day +60          | 5  | $16.7 \pm 4.5$          | $4.0 \pm 1.4$        | $40.9 \pm 9.3$       | 38.4 ± 9.1              |
|                                     | Day +180         | 5  | $23.5 \pm 3.2$          | $5.7 \pm 1.2$        | $30.5 \pm 3.2$       | $40.4 \pm 5.2$          |


<sup>1</sup> Naïve subset definition: CD45RA<sup>+</sup> CCR7<sup>+</sup>

<sup>2</sup> Central Memory (CM) subset definition: CD45RA<sup>-</sup> CCR7<sup>+</sup>


<sup>3</sup> Effector Memory (EM) subset definition: CD45RA<sup>-</sup> CCR7<sup>-</sup>

<sup>4</sup> CD45RA<sup>+</sup> effector memory (TEMRA) subset definition: CD45RA<sup>+</sup> CCR7<sup>-</sup>

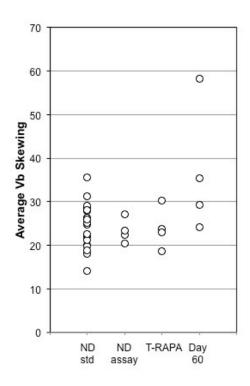
**Supplemental Figure 1.** T-Rapa cell recipients have mixed type I and type II cytokine secretion in both post-HCT CD4<sup>+</sup> and CD8<sup>+</sup> T cells. At week 2 and week 4 post-HCT, peripheral blood mononuclear cells were co-stimulated for 24 hours and evaluated for cytokine secretion by cytokine capture flow cytometry for determination of the percentage of CD4<sup>+</sup> and CD8<sup>+</sup> cells secreting type 2 (IL-4 and IL-10) or type 1 (IFN- $\gamma$  and IL-2) cytokines. Results shown are mean  $\pm$  SEM, with between n=26 to n=28 evaluated for each paired analysis (comparisons are week 4 vs. week 2; \*\*\*, p<0.001; \*\*, p<0.01; \*p<0.05).



Supplemental Figure 2. Detection of CMV-specific CD8<sup>+</sup> T cells in T-Rapa cell recipients. For transplant recipients who were HLA-A2<sup>+</sup>, cryopreserved post-HCT PBMC (from day 60 post-HCT) were thawed and evaluated by flow cytometry for the frequency of CD8<sup>+</sup> T cells that were CMV-specific by dextramer analysis. (A) The left two panels show results from patient UPN #29, who did not develop CMV viremia by DNA-PCR analysis; in this case, where the pre-HCT CMV status by antibody testing was negative for the recipient and positive for the donor ("R<sup>-</sup>/D<sup>+</sup>"), the day 60 post-HCT flow result showed a relatively low frequency of CMVspecific  $CD8^+$  T cells (0.2%). By comparison, the right two panels show results from patient UPN #17, who developed CMV viremia by DNA-PCR analysis; in this case, where the pre-HCT CMV status by antibody testing was positive for both recipient and donor ("R<sup>+</sup>/D<sup>+</sup>"), the day 60 post-HCT flow result showed a relatively high frequency of CMV-specific CD8<sup>+</sup> T cells (3.5%). (B) The summation of CMV dextramer results from n=10 T-Rapa cell recipients who were HLA-A2<sup>+</sup> are shown; all results were from day 60 post-HCT. In three out of the four cases where CMV viremia developed post-HCT, an increased frequency of CMV-specific CD8<sup>+</sup> T cells was detected (right side of Supplemental Figure 2B). By comparison, in the six recipients who did not develop CMV viremia post-HCT, the frequency of CMV-specific CD8<sup>+</sup> T cells was similar to background levels (dotted line indicates background level of assay).



| Sample<br>Type     | Donor/Recipient<br>Seropositive Status | n= | Stimulation<br>Type   | IFN-γ<br>(pg/ml) | IL-4<br>(pg/ml) |
|--------------------|----------------------------------------|----|-----------------------|------------------|-----------------|
| T-Rapa<br>Products | $D^{NEG}$                              | 2  | None                  | 93 ± 43          | 2 ± 2           |
|                    |                                        |    | CMV P.A. <sup>2</sup> | 89 ± 38          | 4 ± 1           |
|                    |                                        |    | TCR <sup>3</sup>      | 84 ± 35          | 4 ± 1           |
|                    | D <sup>POS</sup>                       | 3  | None                  | $104 \pm 35$     | $13 \pm 10$     |
|                    |                                        |    | CMV P.A.              | $85 \pm 36$      | $10 \pm 4$      |
|                    |                                        |    | TCR                   | 82 ± 34          | $7 \pm 4$       |
| PBMC <sup>1</sup>  | $D^{\rm NEG}\!/\!R^{\rm NEG}$          | 3  | None                  | 1 ± 1            | 11 ± 9          |
|                    |                                        |    | CMV P.A.              | 1 ± 1            | 6 ± 6           |
|                    |                                        |    | TCR                   | $1574 \pm 947$   | 3343 ± 1452     |
|                    | $D^{POS}/R^{NEG}$                      | 3  | None                  | 46 ± 1           | 1 ± 1           |
|                    |                                        |    | CMV P.A.              | $430 \pm 278$    | 53 ± 33         |
|                    |                                        |    | TCR                   | $1301 \pm 441$   | $2022 \pm 904$  |
|                    | $D^{NEG}/R^{POS}$                      | 3  | None                  | 16 ± 7           | 4 ± 3           |
|                    |                                        |    | CMV P.A.              | $70 \pm 29$      | 24 ± 13         |
|                    |                                        |    | TCR                   | 2818 ± 196       | 5414 ± 4371     |
|                    | D <sup>POS</sup> /R <sup>POS</sup>     | 7  | None                  | $59 \pm 27$      | 8 ± 5           |
|                    |                                        |    | CMV P.A.              | $446 \pm 151$ *  | 89 ± 27 **      |
|                    |                                        |    | TCR                   | $3706 \pm 2330$  | 2274 ± 1090     |


## Supplemental Table III. Post-HCT T Cells Secrete IFN-y and IL-4 in a CMV-specific Manner (CMV peptide stimulation assay)

<sup>1</sup> PBMC obtained from patients at day +60 post-HCT were evaluated.
<sup>2</sup> PBMC were stimulated for 48 hr with a pool of CMV peptides (P.A., PepTivator).
<sup>3</sup> PBMC were stimulated for 48 hr with Cytostim (superantigen-like TCR stimulation)

\* P<0.04, increased IFN- $\gamma$  secretion (CMV P.A. stimulation vs. No stimulation) \*\* P<0.03, increased IL-4 secretion (CMV P.A. stimulation vs. No stimulation)

# Supplemental Figure 3: T-Rapa Cell Products and Post-HCT T Cells from T-Rapa Cell Recipients Have a Diverse TCR Repertoire by V-β Spectratype Analysis

The following CD4<sup>+</sup> T cell populations were subjected to V- $\beta$  spectratype analysis, as indicated in the figure below: "ND std", normal donor CD4<sup>+</sup> T cell standard values obtained from previous experiments in our lab; "ND assay", normal donor CD4<sup>+</sup> T cells from the current experiment; "T-RAPA", manufactured T-Rapa cell clinical products; and "Day 60", purified CD4<sup>+</sup> T cells from T-Rapa cell recipients at day 60 post-HCT. A total of 17 V- $\beta$  families were evaluable for analysis. These results indicate that the T-Rapa cell products had a TCR repertoire diversity that was similar to normal donor CD4 cells; at day 60 post-HCT, there tended to be some skewing of the CD4 cell TCR repertoire.



### **References for Supplementary Information**

1. Sportes C, Hakim FT, Memon SA, et al. Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naïve T cell subsets. J Exp Med. 2008. Jul 7;205(7):1701-14.

2. Memon SA, Sportes C, Flomerfelt FA, et al. Quantitative analysis of T cell receptor diversity in clinical samples of human peripheral blood. J Immunol Methods. 2012. Jan 31; 375(1-2):84-92.