
Supporting Information
Pang and Maslov 10.1073/pnas.1217795110
SI Materials and Methods
Obtaining the Dependency Network and Occurrence Frequency Data
for Linux Packages. The package dependency network of Linux
distribution Ubuntu 11.04 Natty was obtained by first getting a
complete list of packages from http://packages.ubuntu.com/, and
then running the command apt-rdepends to find all of the direct
and indirect requirements for each package. The resulting net-
work contains 33,473 packages, and 57,667 direct and 2,439,011
total (direct + indirect) dependency relations.
The occurrence frequency data for 192,392 packages on

2,047,796 computers was downloaded from the package popu-
larity contest (popcon) project (http://popcon.ubuntu.com/by_inst)
(1). Participants of this project installed on their Linux computers
tracking software that automatically reports the installation and
subsequent use of different packages to the popcon server. We
used the first column reporting the number of computers where
this package was installed. A total of 189,711 packages were in-
stalled on at least one computer. Other columns not used in this
study report the number of computers where this package was or
was not used in the past month and the number of computers
where it was recently updated.
The popcon project obtained the package data from Ubuntu

Linux of a wide range of versions and CPU architectures, whose
package repertoire and dependencies are a little bit different from
each other. In the analysis we assumed that all participants are
using Ubuntu 11.04 with x86 architecture, and based on this
version of the Ubuntu Linux we calculated the direct and total
dependency degree (kdep and Kdep) of every package, and plotted
the f vs. Kdep in Fig. 2. The packages not included in the official
repositories of Ubuntu 11.04 or having zero installation fre-
quency were ignored. Packages that are not required by any
other packages (i.e., those with Kdep = 0) were also ignored.

Construction of Dependency Matrices for the Metabolic Network.
The Kyoto Encyclopedia of Genes and Genomes Database
(KEGG) (2) contains the data of metabolic reactions present in
different organisms, and the universal metabolic network used in
this study is the union of all of the reactions in KEGG consisting
of 5,759 reactions and 4,785 metabolites. The group of five
common metabolites present in the majority of organisms was
selected as the core: H2O, ATP, NAD+, oxygen, and CoA. The
final version of the dependency network used in our study con-
tains 1,832 reactions (or associated enzymes) connected to each
other by 3,118 direct and 49,168 direct + indirect dependencies.
The goal of the metabolic network is to either convert nutrients

taken up from the environment into core metabolites (catabolism),
or to convert core metabolites into the constituents of the biomass
and other essential ingredients (anabolism). The direction of the
dependency network connecting metabolic reactions would be
opposite in these two cases. For simplicity we will concentrate on
the case of anabolic pathways below. For catabolic pathways we
simply inverted the direction of reactions and then applied the
procedure used for anabolic pathways.
To determine the set of other enzymes an enzyme i in an anabolic

pathway depends on for its operation, we performed the following
computational analysis. We selected all metabolic substrates of the
enzyme i one by one, and for each of them we constructed the
minimal pathway necessary to synthesize this metabolite from our
predetermined set of 40 core metabolites. The union of all en-
zymes in these pathways constructed for each of the substrates of
the enzyme i is a good approximation to the minimal set of en-
zymes necessary to enable the reaction catalyzed by the enzyme i;

as such, we can plausibly assume that the enzymes in this union
form the total downstream dependency set for the enzyme i.
Furthermore, by analogy to software dependency networks, the

direct dependency neighbors of the enzyme i are made by the set of
enzymes added at the last layer of our breadth-first search algo-
rithm. Based on this definition, the direct dependency degree of
an anabolic enzyme is closely related to the number of metabolic
reactions using at least one of its products, which is one of the
standard topological definitions of degree in metabolic networks
(3). Therefore, the power-law distribution with the exponent −2
we measured for direct dependency degrees is closely related to
previously reported scale-free topology on metabolic networks (3).
The rules by which this minimal pathway was constructed were

previously described in ref. 4. For the sake of completeness, we
included them in the text below.
By repeating the above procedure for all anabolic (catabolic)

enzymes located downstream (upstream) fromour coremetabolites
and thus reachable from the core by the scope expansion algorithm
(5), we constructed our best approximation to the total depen-
dency network of metabolic enzymes in the KEGG database.

Rules of Addition of Anabolic Pathways in Dependency Network
Calculation.

i) At the beginning of the simulation, the model organism starts
with a “seed” metabolic network consisting of 5 metabolites
including H2O, ATP, NAD+, oxygen, and CoA. It is assumed
that our organism is able to generate all of these metabolites
by some unspecified catabolic pathways.

ii) At each step, a new metabolite that cannot yet be synthesized
by the organism is randomly selected from the scope (5) of
our seed metabolites. This scope consists of all metabolites
that in principle could be synthesized from the seed metab-
olites using all reactions listed in the KEGG database (5).

iii) To search for the minimal pathway that converts core metab-
olites to this target we first perform the scope expansion (5)
of the core until it first reaches the target. In the course of
this expansion, reactions and metabolites are added step by
step (or layer by layer). Each layer consists of all KEGG
reactions that have all their substrates among the metabolites
in the current metabolic core of the organism (light blue area
in figure 4 of ref. 5) and those generated by reactions in all of
the previous layers (see figure 4 of ref. 5 for an illustration).

Mathematical Derivation of the Total Dependency Degree Distribution
in the Random Model with D = 2. To mathematically derive the
distribution of dependency degree Kdep in the simple model pro-
posed in this study, we study its dependence on the time, t, a
package was added to the growing dependency network. Here, time
t is defined as the size of the network when a package was added
and may have a nonlinear but monotonic relation to the actual
time of addition (e.g., in exponentially expanding systems). Kdep(t)
can be calculated self-consistently from the following equation:

KdepðtÞ= 1+
ZN

t+1

Kdep
�
t′
�
D=t′: [S1]

Indeed, the total dependency degree of a package added at
time t is given by the sum of total dependency degrees of
packages added at later times, t′, that directly depend on it. Kdep
counts both direct and indirect dependencies, and thus indirect

Pang and Maslov www.pnas.org/cgi/content/short/1217795110 1 of 5

http://packages.ubuntu.com/
http://popcon.ubuntu.com/by_inst
www.pnas.org/cgi/content/short/1217795110


dependencies of upstream packages are transferred to their
downstream neighbors. In a random model, the likelihood of
a package added at time t′ to send a direct dependency link to
a package added at time t is simply D/t′. It is easy to check that

KdepðtÞ= ðt=NÞ−D [S2]

is a solution of this equation. Indeed,
1+

RN
t+1 Dðt′=NÞ−Ddt′=t′ ’ 1+ ðt=NÞ−D − ðN=NÞ−D = ðt=NÞ−D =

KdepðtÞ. Eq. S1 simply adds up the dependency degrees of multiple
upstream neighbors of a node and thus ignores the inevitable
overlap between these sets of nodes; this is a good approximation
as long as the resulting Kdep(t) � N, and thus the overlap is small.
It is clear, however, that if D > 1, Eq. S2 cannot hold forever
because it predicts Kdep(1) = (1/N)−D = ND � N. The total de-
pendency degree cannot be larger than N, and this value is ap-
proximately reached at t = Nc determined by

ðNc=NÞ−D =N   or  Nc =NðD−1Þ=D: [S3]

Nc is the number of nearly universal “core” components in the
system with total dependency degree Kdep ’ N.
Eq. S2 fully determines the power-law tail of the distribution

of dependency degrees. Indeed, P(Kdep ≥ K) = P((t/N)−D ≥ K) =
P((t ≤ NK−1/D) = NK−1/D/N = K−1/D. Hence, P(Kdep = K) = −dP
(Kdep ≥ K)/dK is given by

P
�
Kdep

�
∼K−ð1+1=DÞ

dep : [S4]

For D = 2, which is close to its empirical value in real-life
biological and technological systems used in this study, one re-
covers familiar scaling laws:

P
�
Kdep

�
∼K−1:5

dep [S5]

and

Nc =
ffiffiffiffi
N

p
: [S6]

Mathematical Derivation of the Total Dependency Degree Distribution
in a Tree Generated by a Galton–Watson Branching Process.A Galton–
Watson branching process is a Markov process in which every
node in generation l produces some random number of “child
nodes” in generation l + 1, according to a fixed probability dis-
tribution that does not vary from node to node. We denote as p0
the probability for the process to terminate at each node, and pd is
the probability for a node to have a branch with d child nodes. The
first node of the tree generated by a Galton–Watson branching
process is denoted as the root. In biological and technological
systems considered in this study, the root node represents the set
of core metabolites, or the basic Linux packages that serve many
high-level user applications. The scaling properties of the Galton–
Watson process are fully determined by a single parameter,
d=

Pdmax
d=0 d× pd, which is the average number of child nodes of

any given node has. For d< 1, referred to as an undercritical
branching process, the cascade will terminate very quickly and is
irrelevant to this study. Conversely, for d> 1, referred to as a su-
percritical branching process, the cascades will likely never ter-
minate. Moreover, for a given number of nodes N in a tree
generated by an overcritical branching process, the total number
of layers L is logarithmically small: L∼ logN=logd. Real-life
complex multicomponent systems such as metabolic networks and
large software projects are characterized by a large number of
hierarchical levels (4) incompatible by that in an overcritical
branching process. Thus, overcritical branching processes will be
also ignored in this study. In what follows, we limit our calcu-
lations to the third case in which d= 1 is denoted as a critical
branching process; this was previously demonstrated to be a good
approximation to universal metabolic network (4), and the present
study presents convincing evidence that it describes large software
projects as well.
The direct dependency degree kdep of a node in the Galton–

Watson process is given by its number of child nodes plus 1 (to
account for the dependency of a node on itself). The distribution
of kdep is then determined by pd as P(kdep = 1) = p0, P(kdep = 2) =
p1, . . . P(kdep = d) = pd−1; it can have any functional form as long
as its average is equal to 1+ d, that for a critical branching
process is equal to 2. It is important to emphasize that the
Galton–Watson branching process does not provide an expla-
nation for the power-law form of the distribution of direct de-
pendency degrees (Fig. 3). However, the total dependency
degree Kdep(i) corresponds to the size of the entire subtree ini-
tiated at the node i. The Galton–Watson branching process is
a Markov process and thus each node can be thought as starting
its own instance of a branching process that is independent of
the branching ratios of its predecessors. Hence, one would
naively expect that the total dependency degree of N nodes in
a tree generated by the critical branching process will have the
same power-law distribution PðKdepÞ∼K−1:5

dep as N independently
started branching processes. However, a quick calculation
convinces one otherwise. Indeed, the largest dependency de-
gree Dmax in this case will be determined by the equation
1=N =PðKdep >DmaxÞ=

P
Dmax

K−1:5
dep ∼D−0:5

max , or Dmax = N2. Thus,
the dependency degree cannot be larger than N—the total
number of nodes in the tree. The size of the universal network
with N nodes imposes a strict cutoff of N on sizes of its sub-
trees. Thus, the following process reproduces the distribution
of sizes of subtrees of a critical branching tree with N nodes. In
this process one simulates the critical branching process N
times and stops it when and if its size s reaches N nodes if it
does not terminate on its own before that. Therefore, among N
nodes of the critical branching tree, one expects to find
N ×Pðs≥NÞ=N ×N−0:5 =

ffiffiffiffi
N

p
nodes with the largest total de-

pendency degree Kdep = N. The rest of the nodes follow the
power-law distribution PðKdepÞ∼K−1:5

dep , and this is indeed what
we see in our numerical simulations on the universal network of
5,000 nodes generated by the critical branching process with
p0 = p2 = 1/2 (data not shown).

1. Pennarun A, Allombert B, Reinholdtsen P. Ubuntu Popularity Contest. Available at
http://popcon.ubuntu.com. Accessed September 5, 2011.

2. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic
Acids Res 28(1):27–30.

3. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási A-L (2000) The large-scale organization
of metabolic networks. Nature 407(6804):651–654.

4. Handorf T, Ebenhöh O, Heinrich R (2005) Expanding metabolic networks: Scopes of
compounds, robustness, and evolution. J Mol Evol 61(4):498–512.

5. Pang TY, Maslov S (2011) A toolbox model of evolution of metabolic pathways on
networks of arbitrary topology. PLOS Comput Biol 7(5):e1001137.

Pang and Maslov www.pnas.org/cgi/content/short/1217795110 2 of 5

http://popcon.ubuntu.com
www.pnas.org/cgi/content/short/1217795110


Fig. S1. Pathway diagram created with Cytoscape (1) showing 153 Linux packages directly or indirectly required for installation of the package Firefox (the
top node).

1. Shannon P, et al. (2003) Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504.

Pang and Maslov www.pnas.org/cgi/content/short/1217795110 3 of 5

www.pnas.org/cgi/content/short/1217795110


Fig. S2. Pathway diagram created with Cytoscape (1) showing 65 reactions (or equivalently, enzymes catalyzing these reactions) that the production of the
metabolite murideoxycholic acid (KEGG database compound C15515; the top node) directly or indirectly depends on. Reaction numbers are given in KEGG
notation.

1. Shannon P, et al. (2003) Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504.

Pang and Maslov www.pnas.org/cgi/content/short/1217795110 4 of 5

www.pnas.org/cgi/content/short/1217795110


Fig. S3. The frequency of occurrence f (y axis) vs. the total (direct + indirect) dependency degree of metabolites Kdep. The two quantities are positively
correlated (Spearman’s rs = 0.45). The black curve and symbols shows the average f in the logarithmic bins of Kdep.

Pang and Maslov www.pnas.org/cgi/content/short/1217795110 5 of 5

www.pnas.org/cgi/content/short/1217795110

