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Fig. S1. Plasmid map of pALM506-1 used to transform the Pyrococcus furiosus arginine decarboxylase deletion strain ΔpdaD to generate strain PF506.
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Fig. S2. Plasmid map of pGL007 vector targeting the region between the loci PF0574 and PF0575 in the P. furiosus genome.
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Fig. S3. Plasmid map of pGL010 used to transform P. furiosus strain COM1 to generate strain MW56.
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Fig. S4. Growth of P. furiosus strain PF506 at 98°C and subsequent temperature shift to 75°C. P. furiosus was grown in four 800-mL cultures at 98°C until the
cell density reached 5 × 108 cells/mL The temperature (shown as black line) was then shifted to 75°C, and individual bottles were removed and harvested after
0 h (blue diamond), 16 h (red square), 32 h (green triangle), and 48 h (purple circle). The enzyme activities in each cell type are summarized in Fig. 2B.
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Fig. S5. Stability of E2 and E3 using an E2 + E3 coupled assay at 75°C after incubation at 90°C for the indicated amount of time in cell-free extracts of P.
furiosus strain PF506 (blue circles) and of the endogenous P. furiosus glutamate dehydrogenase (red squares). The specific activity of E2+E3 in PF506 (grown at
72°C) is about twofold higher than that measured in M. sedula. Activity is expressed as percentage maximum activity.
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Fig. S6. Growth of P. furiosus COM1, MW56, and PF506 during the temperature shift from 98°C to 70°C. Cell densities of COM1 (blue diamonds), MW0056 (red
squares), and PF506 (green triangles) are indicated. The 400-mL cultures were grown at 95°C for 9 h and then allowed to cool at room temperature to 70°C
before being placed in a 70°C incubator.
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Fig. S7. Enzyme activities of E1 (blue) and coupled E2 + E3 (red) in cell-free extracts of the indicated P. furiosus strains after incubation at 70°C for 16 h
compared with that measured for the cell extract of autotrophically grown Metallosphaera sedula cells (labeled Msed).
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Fig. S8. Electrospray ionization mass spectrometry identification of 3-hydroxypropionic acid produced from acetyl coenzyme A (acetyl-CoA), CO2, and H2 (or
NADPH) by cell-free extracts of P. furiosus strains ΔpdaD (A) and PF506 (B). The MS peak corresponding to the 3-HP derivative (m/z 224, green circle) was
present above background only in the recombinant PF506 strain.
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Fig. S9. Maltose and pyruvate metabolism by P. furiosus and the key roles of pyruvate ferredoxin oxidoreductase (POR) in acetyl-CoA production and of the
membrane-bound hydrogenase in H2 production.
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Fig. S10. In vivo production of 3-hydroxypropionic acid (3-HP) from maltose by whole cells of P. furiosus strain MW56 (A) and PF506 (B) after 10 min (blue) and
60 min (red) compared with a 1-mM 3-HP standard (black). A black arrow indicates the position of the 3-HP peaks. A total of 135 μM and 199 μM 3-HP was
produced by cell suspensions of MW56 (5 × 1010 cells/mL) and PF506 (5 × 1010 cells/mL), respectively, after 60 min at 75°C.

Table S1. Strains used and constructed in this study

Strain Parent Genotype/description Source

COM1 DSM 3638 ΔpyrF (1)
ΔpdaD COM1 ΔpyrF ΔpdaD::PgdhpyrF (2)
PF506 ΔpdaD ΔpyrF ΔpdaD::pdaD Pslp

−E1αβγ-E2-E3 This work
MW56 COM1 ΔpyrF PgdhpyrF Pslp

−E1αβγ-E2-E3 This work

E1αβγ, acetyl/propionyl-CoA carboxylase; E2, malonyl/succinyl-CoA reduc-
tase; E3, malonate semialdehyde reductase; gdh, glutamate dehydrogenase;
pdaD, arginine decarboxylase; Pslp, P. furiosus S-layer gene promoter; pyrF,
orotidine-5′-phosphate decarboxylase.

1. Lipscomb GL, et al. (2011) Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: Construction of markerless deletions of genes
encoding the two cytoplasmic hydrogenases. Appl Environ Microbiol 77(7):2232–2238.

2. Hopkins RC, et al. (2011) Homologous expression of a subcomplex of Pyrococcus furiosus hydrogenase that interacts with pyruvate ferredoxin oxidoreductase. PLoS ONE 6(10):e26569.
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Table S2. Gas chromatography–mass spectrometry identification and quantitation of 3-hydroxypropionic acid produced from malonyl-
CoA and NADPH or H2 by cell-free extracts of P. furiosus strain PF506

Vial Added electron donor Substrate Theoretical 3-HP, mM 3-HP/inositol peak area
Estimated 3-

hydroxypropionic acid, mM

1 2 mM NADPH 2 mM malonyl-CoA 1 0.0288 0.2
2 2 mM NADPH, H2 2 mM malonyl-CoA 2 0.0467 0.3
3 1 mM NADP, H2 2 mM malonyl-CoA 2 0.0274 0.2
4 1 mM NADP, H2 None (control) 0 0.0064 0.05
5 1 mM NADP, H2 None (control) 2 0.2839 2.0

The assays were carried out in a total volume of 1 mL containing 0.25 mg cell-free extract under H2 in a shaking water bath. The amount of 3-hydrox-
ypropionic acid produced was determined after 2 h at 72°C.

Table S3. 3-Hydroxypropionic acid production by whole cells
using maltose or pyruvate as the source of acetyl-CoA

P. furiosus strain Pyruvate Maltose

MW56 155 nmol 100 nmol
PF506 70 nmol 145 nmol

The amount of 3-hydroxypropionic acid indicated was present in 1 mL of
the P. furiosus cell suspension.

Table S4. Primers used in the construction of the synthetic subpathway 1 operon

Primer target Direction 5′ to 3′ sequence

P. furiosus S-layer promoter Forward GAATCCCCGCGGCCCGGGCTGGCAGAATAGAA

Reverse GCAACCAAAACTCTACTAAAGGGTGGCATTTTTCTCCACCTCCCAATAATCTG

Msed_0147-0148 Forward ATGCCACCCTTTAGTAGAGTTTTGG

Reverse GTTGCAGTCATCTTCAAACCTCCTTACTTTATCACCACTAGGATATCTCC

Msed1375 Forward GTGATAAAGTAAGGAGGTTTGAAGATGACTGCAACTTTTGAAAAACCGGAT

Reverse CGTTCTCCTCATATGCTCCACCTCCCTTAGAGGGGTATATTTCCATGCTTC

Msed_0709 Forward GGCAATGTCATATGAGGAGAACGCTAAAGGCCGCAATTC

Reverse CCTTTTCAGTCATTGCATATCACCTCATCTCTTGTCTATGTAGCCCTTC

Msed_1993 Forward TAGACAAGAGATGAGGTGATATGCAATGACTGAAAAGGTATCTGTAGTTGGAG

Reverse CCAATGCATGCTTATTTTTCCCAAACTAGTTTGTATACCTTC
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