CHEMBIOCHEM

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2011

Abyssomicin Biosynthesis: Formation of an Unusual Polyketide, Antibiotic-Feeding Studies and Genetic Analysis

Elvira M. Gottardi, [a] Joanna M. Krawczyk, [a] Hanna von Suchodoletz, [a] Simone Schadt, [a] Agnes Mühlenweg, [a] Gabriel C. Uguru, [b] Stefan Pelzer, [c] Hans-Peter Fiedler, [d] Mervyn J. Bibb, [e] James E. M. Stach, [b] and Roderich D. Süssmuth*[a]

cbic_201100172_sm_miscellaneous_information.pdf

Supplementary Information

Abyssomicin Biosynthesis: Formation of an Unusual Polyketide Antibiotic - Feeding **Studies and Genetic Analysis**

Elvira M. Gottardi, a Joanna M. Krawczyka, Hanna von Suchodoletza, Simone Schadt^a, Agnes Mühlenweg^a, Gabriel C. Uguru^b, Stefan Pelzer^c, Hans-Peter Fiedler^d, Mervyn J. Bibb^e, James E. M. Stach^b, Roderich D. Süssmuth^a

Content:

Content:		1
1	Analytical Data from ¹³ C-labeled substrate feeding experiments	2
1.1	¹³ C-NMR spectra after feeding acetate	2
1.2	¹³ C-NMR spectra after feeding propionate	3
1.3	¹³ C-NMR spectra after feeding glucose	3
2	The abyssomicin biosynthetic gene cluster - Function assignment	5
3	Inactivation studies: Primers and constructs used	7
3.1	Single Crossover Homologous Recombination	7
3.1.1	Primers used for Single Crossover Inactivation	9
3.2	Double Crossover Homologous Recombination by PCR Targeting	³ 9
3.2.1	Procedure	10
3.2.2	Primers used for double crossover inactivation	11
3.3	Double Crossover Homologous Recombination using pK18mob2	12
3.3.1	Procedure	12
3.3.2	Primers	13
3.4	Complementation Experiments	13
3.4.1	Procedure	13
3.4.2	Primers	14
4	Phylogenetic analysis of Aby, Chl, Kij, Tca and Tmn	14
5	References	14

^e Prof. Dr. Mervyn Bibb, Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom

^a Prof. Roderich D. Süssmuth, Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623 Berlin, Germany, suessmuth@chem.tu-berlin.de, Tel. 0049(0)30-314-24205

Dr. Jem Stach, School of Biology, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK

PD Dr. Stefan Pelzer, B.R.A.I.N. Aktiengesellschaft, Zwingenberg, Germany

Prof. Dr. Hans-Peter Fiedler, Universität Tübingen, Tübingen, Germany

1 Analytical Data from ¹³C-labeled substrate feeding experiments

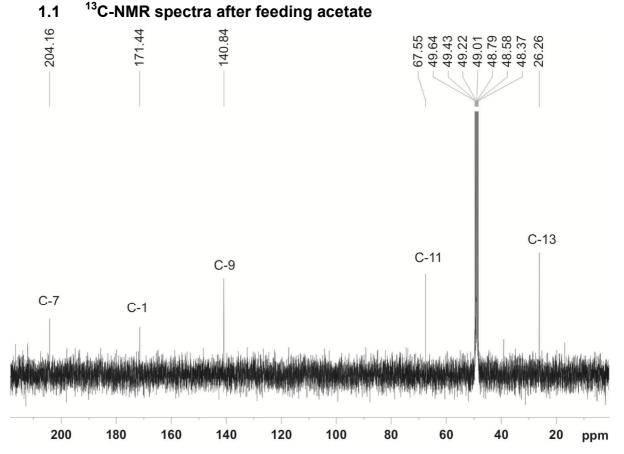


Figure S1: ¹³C-NMR-spectrum of atrop-abyssomicin C after feeding of 1-¹³C-acetate and structural assignment of carbon-atoms.

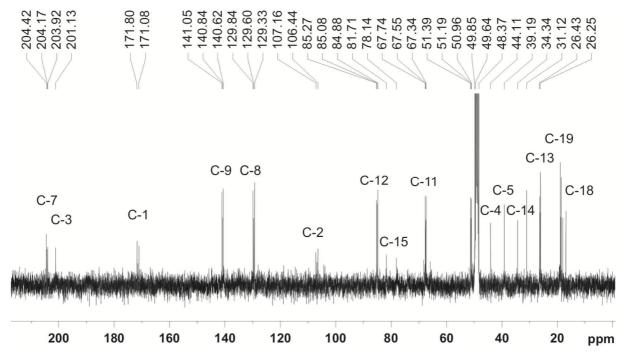


Figure S2: ¹³C-NMR-spectrum of atrop-abyssomicin C after feeding of 1,2-¹³C-acetate and structural assignment of carbon-atoms.

1.2 ¹³C-NMR spectra after feeding propionate

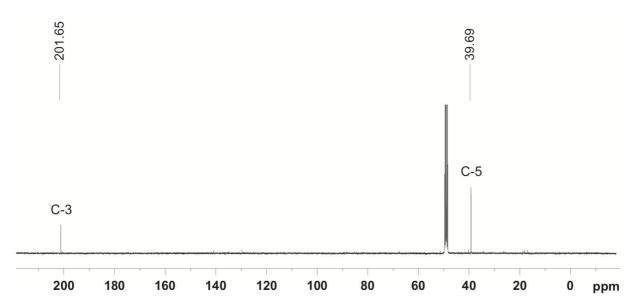


Figure S3: ¹³C-NMR-spectrum of atrop-abyssomicin C after feeding of 1-¹³C-propionate and structural assignment of carbon-atoms.

1.3 ¹³C-NMR spectra after feeding glucose

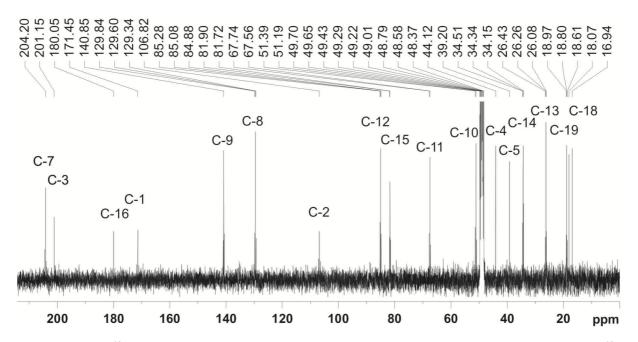


Figure S4: ¹³C-NMR-spectrum of atrop-abyssomicin C after feeding of 1,2-¹³C-glucose and structural assignment of carbon-atoms.

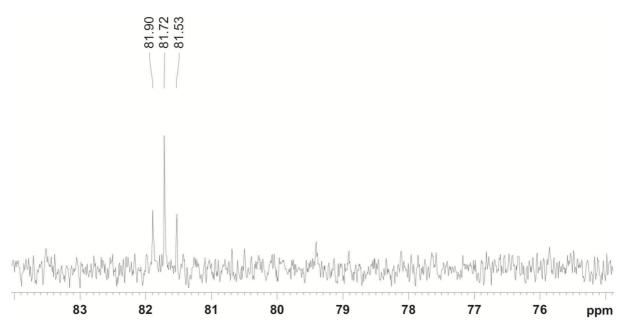


Figure S5: ¹³C-NMR-spectrum of atrop-abyssomicin C after feeding of 1,2-¹³C-glucose: Zoom of signal C-15 of Fig. S4 between 83 ppm and 76 ppm.

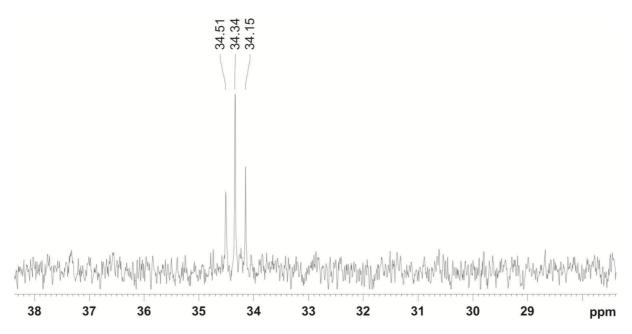


Figure S6: ¹³C-NMR-spectrum of atrop-abyssomicin C after feeding of 1,2-¹³C-glucose: Zoom of signal C-14 of Fig. 4 between 38 ppm and 29 ppm.

Tab.	S1: ¹³ C NMR d	ata of atrop-a	abyssomicin	C ([D ₄]metha	anol, 298 K)				
		[1,2-13C2]g	lucose	[1,2-13C2]a	cetate	[1- ¹³ C]aceta	ate	[1- ¹³ C]propi	onate
No.	δ(13C) [ppm]	Multiplicity	JC-C [Hz]	Multiplicity	JC-C [Hz]	Multiplicity	JC-C [Hz]	Multiplicity	JC-C [Hz]
1	171.5	d	72.3	d	72.2	S			
2	106.9	d	72.3	d	72.2				
3	201.2	s		s				s	
4	44.7	s		s					
5	39.2	s		s				s	
6	50.0								
7	204.2	d	50.6	d	50.6	s			
8	129.8	d	50.6	d	50.6				
9	140.3	d	43.5	d	43.5	s			
10	51.1	d	43.5	d	43.5				
11	67.6	d	39.5	d	39.5	s			
12	85.1	d	39.5	d	39.5				
13	26.7	d	35.8	d	35.9	s			
14	34.6	d	36.5	s					
15	81.8	d	36.5	s					
16	180.1	s							
17	18.8	d	35.8	d	35.9				
18	16.9	s		s					
19	18.0	s		s					

2 The abyssomicin biosynthetic gene cluster - Function assignment

Name	Gene start (bp)	Length (aa)	Proposed Function	Similarity with	Identity/Positives [%]
orfQ	1	208	NUDIX-Hydrolase	Frankia sp. EAN1pec	53/66
			putative MutT family protein	Nocardia farcinica IFM 10152	43/52
abyR	680	248	transcriptional regulator, SARP family	[Frankia sp. EUN1f]	54/71
				Frankia symbiont of Datisca glomerata	58/69
abyX	2629	396	cytochrome P450	Frankia sp. EAN1pec	66/77
				Streptomyces griseolus	56/70

abyH	5389	889	LuxR family transcriptional regulator	Frankia alni ACN14a	33/46
			putative activator	S. carzinostaticus	35/45
abyl	5745	252	putative pathway specific activator	S. longisporoflavus	50/64
			activator protein	S. hygroscopicus ATCC 53653	48/63
abyK	8827	579	YD repeat	Frankia sp. EAN1pec	46/57
			RHS repeat-containing protein	Amycolatopsis mediterranei U32	36/50
abyA1	8911	341	β-ketoacyl-acyl-carrier-protein synthase I 3-oxoacyl-(acyl-carrier-protein) synthase	Frankia sp. EAN1pec	68/81
			III	Streptomyces sp. NRRL 11266	64/75
abyA2	9933	622	phosphatase and glyceryl transferase	Streptomyces sp. NRRL 11266	57/68
			ChID1	S. antibioticus	57/68
abyA3	11798	78	discrete ACP	Streptomyces sp. NRRL 11266	58/75
			ChID2	S. antibioticus	53/72
abyA4	12031	251	dehydrogenase catalytic domain- containing protein	Frankia sp. EAN1pec;	64/78
			pyruvate/2-oxogluatarate dehydrogenase	Streptomyces sp. NRRL 11266	60/73
abyA5	12783	355	hydrolase superfamily dihydrolipoamide acyltransferase-like protein	Actinomadura kijanata	54/68
			ChID4	S. antibtioticus	51/65
abyB1	13847	5781	PKS I (module1: KS, ATa, ACP; module 2: KS° , ATa, DH, KR, ACP; module 3: KS, ATa, DH, KR, ACP; module 4: KS, ATa, DH, KR, ACP	S. avermitilis MA-4680	48/59
abyB2	31269	3645	PKS I (module 5: KS, ATp, DH, KR, ACP; module 6: KS, ATp, DH, ER, KR, ACP)	Streptomyces sp. DSM 21069	50/61
abyB3	42203	992	PKS I (module7: KS, ATa, ACP)	S. antibioticus	54/65
abyC	45942	230	regulatory protein, TetR	Frankia sp. EAN1pec;	60/75
				Brucella abortus biovar 1 str. 9-941	40/56
abyD	46026	475	drug resistance transporter EmrB/QacA subfamily;	Frankia sp. EAN1pec;	66/79
			export protein	S. antibioticus	44/60
abyE	47524	335	luciferase; alkanal monooxygenase α -chain/	Frankia sp. EAN1pec;	60/74
			Flavin utilizing monooxygenases	Brucella melitensis 16M	45/64
abyF1	48619	538	ABC transporter oligopeptide binding protein	Frankia alni ACN14a;	45/59
			•	Klebsiella pneumoniae 342	40/55
abyF2	50232	311	ABC transporter oligopeptide permease;	Frankia alni ACN14a	53/74
			binding-protein-dependent transport systems inner membrane component	Frankia sp. Ccl3	51/69
abyF3	51164	283	binding-protein-dependent transport systems inner membrane component	Frankia sp. EAN1pec	54/70
			oligopeptide ABC transporter permease protein	Symbiobacterium thermophilum IAM 14863	45/62

59/71
52/63
63/72
51/63
64/76
60/74
73/81
75/86
35/52
42/55
64/76
60/74
59/70
57/72

3 Inactivation studies: Primers and constructs used

3.1 Single Crossover Homologous Recombination

Internal gene fragments (app. 300bp) were amplified by PCR and cloned into pDrive following the manufacturer's instructions ("PCR cloning kit", Qiagen, Hilden, Germany). After restriction digestion with EcoRI, the fragments were ligated with EcoRI-digested and dephosphorylated (Antarctic phosphatase, New England Biolabs, Ipswich, MA, USA) pK18mob2¹ and introduced into E. coli DH5 α by transformation. Clones were confirmed by PCR and/or restriction digestion. Isolated plasmid DNA was introduced into E. coli ET12567 containing one of the helper plasmids pUZ8002 or pUB307 by transformation.2 Intergeneric conjugation followed using protocols described in Practical Streptomyces Genetics.2 After 16 hours of incubation at 28 °C, plates were overlaid with 4ml soft nutrient agar containing 10 µl apramycin (100mg/ml) and 10 µl nalidixic acid (25 mg/ml).² After a further 5 days of incubation at 28 °C, colonies were visible which were picked to fresh SGG-agar plates containing 100 µg/ml apramycin and 25 µg/ml nalidixic acid. Insertion into the correct chromosomal location was confirmed using a 3-primer system (the orientation of the insert in the vector was arbitrary, reflecting the cloning procedure): Two primers (confirmation primers 1 and 2) corresponded to the genome sequence of Verrucosispora AB-18-032 flanking the amplified region, while one primer corresponded to vector sequences (confirmation primer vector; see Figure S7). The wild type genome would yield a PCR fragment from confirmation primers 1 and 2 that would be shorter than the one expected for a mutant clone (confirmation primer 1 or 2 with confirmation primer vector; Figure S7 and Figure S8). Final confirmation was achieved by sequencing of the PCRproduct. A second gene deletion procedure (SOEing)³ was used to generate in-frame deletions (ca. 90% of the coding region of individual genes) for abyR, abyl and abyT. Two sets of primers were used to generate overlapping fragments that were spliced together by PCR to form the gene deletion cassette. The deletion cassettes were cloned into the non-integrating vector pKC11324 that had been digested with EcoRI and HindIII. Resulting constructs were used to transform Verrucosispora AB-18-032 by conjugation as described above. Double

crossover mutants (see below) were selected by screening for loss of apramycin resistance followed by PCR and sequencing confirmation. The primers used for SOEing are given in Table 2.

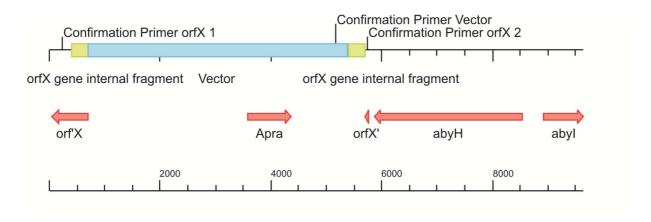


Figure S7: Scheme of genomic DNA sequence with inserted pK18mob2::abyXfragment (length 9645 bps).

Table S3: Primers for generation	on and confirmation of single crossover ("SXO") mutants			
Primers for insertion-fragment and confirmation primers				
SXO abyX fw	TCGAGACGGCGCTGACG			
SXO abyX rev	CCGCCCTGCGCGAGAATG			
SXO orfV fw	AGAGCCACTCCGAGCGCCAACG			
SXO orfV rev	CTCCTCGACGAGGTGGTTC			
SXO abyC fw	CGTCGAACAGGTCGGGAAAG			
SXO abyC rev	TGGCGAAGCCGACCATCTAC			
confirmation primer vector	CGCGCCATTCGCCATTCAGG			
abyX confirmation primer 1	CCTGTGCGGTGCTCGAAC			
abyX confirmation primer 2	ATGACCCGCACCTGTCCC			
orfV confirmation primer 1	CGCGGTCCGCAACTTCATCG			
orfV confirmation primer 2	TGCCGCAGGATCTCCTCCAC			
abyC confirmation primer 1	GAGCGCCTCGGTGGCCTGGTTC			
abyC confirmation primer 2	GTGTTCGCCCGCGAGGGCTACG			
Primers for SOEing (restriction	n site underlined)			
abyl_1F	GCCTGCGAATTCGGACCTGTGGGTCCTTGATG			
abyl_1R	GAGGAATCTAGATAATTCGTAGCGCATTGCTG			
abyl_2F	GAATTATCTAGAGAGGAACTCGGGTTGGAG			
abyl_2R	GAATTCAAGCTTAACCCGTTCCGCTACCTG			
abyR_1F	GAGCGGGGATCCGGGAAACCTCGTATCGAAGC			
abyR_1R	GTTGGCTCTAGAATGAGTTCGTCGGTGGTGAC			
abyR_2F	ACTCATTCTAGAGTTGGCGGCGTACCAGTC			

abyR_2R	GGACAAGCTTCCAAGGACATCTCCAACAGC
abyT_1F	CTGACCTGGATCCGGTCGACCTGGCACTGTTG
abyT_1R	CGGTCATCTAGAGTCCAGGTAACCGGTCGATC
abyT_2F	CTGGACTCTAGACGGTCACCTGTTCCACCT
abyT_2R	CCGTCCGAAGCTTGTAGGTGGGGTCGTCGTG

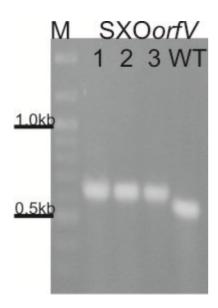


Figure S8: Example of confirmation of insertional inactivation: Agarose gel of PCR products generated with confirmation primers (SXOorfV = single crossover mutants of orfV; 1-3 = mutant samples; WT = wild type Verrucosispora sp. AB-18-032; M = bp length marker).

3.1.1 Primers used for Single Crossover Inactivation

Table S4: Lengths of PCR fragments wild type vs. single crossover mutant				
Gene	Verrucosispora::pK18 genefragment	WT		
abvX	689 or 568bp	504bp		
	·	•		
		•		
abyC orfV	->462bp 732 or 682bp	357bp 584bp		

3.2 Double Crossover Homologous Recombination by PCR Targeting³

To achieve in-frame deletion of genes, cosmid-clones were mutagenised according to protocols described by Gust et al. 5 pOJ436 2 contains an oriT as well as a Φ C31 attachment site, so a modified protocol was used. Primers for amplification of the streptomycin resistance cassette were designed so that only the antibiotic resistance gene plus promoter were amplified and not the whole cassette containing FRT and oriT. Restriction sites were introduced between the streptomycin resistance cassette primer and the gene-specific

homologous sequence of 39nt. In the case of cosmid 49 (A-3 - A4), *Ndel* was used, for cosmid 17 (C1) and for cosmid 45 (C2 and C3), a combination of *Nhel* and *XmaJl* were used.

3.2.1 Procedure

plJ778 was digested with EcoRI and HindIII and gel-purified twice (QiaexII gel extraction kit, Qiagen). PCR was carried out following the protocol of Gust et al. (for primers see Table S). The PCR product was purified using the Illustra GFX PCR DNA and Gel Band Purification Kit (GE Healthcare). Cosmids 17, 45 and 49 were introduced into E. coli BW25113/plJ790 by electroporation. After PCR-targeting of the cosmids, clones were analyzed by colony-PCR (using primers lying approximately 100bp to each side of the homologous regions, see Table S). Confirmed positive clones were grown in LB medium at 30°C and 200rpm. After isolation the mutagenised, streptomycin resistant cosmid was digested with Ndel or Nhel/XmaJI, respectively. Religation followed and the ligation mix was desalted and introduced into E. coli DH5 α by transformation. Streptomycin sensitive clones were analyzed by colony-PCR (primers Table S). The confirmed streptomycin sensitive cosmid was introduced into E. coli BW25113/pIJ790 and mutagenised with a PCR product obtained with primers for the streptomycin resistance cassette containing two 39nt extensions homologous to the flanking regions of the Φ C attachment site attB and the integrase. Confirmed clones (designated $\Delta\Phi$ C31) lacked the ability to integrate into the genome of Verrucosispora via attB/attP sitespecific integration. After introduction into *E. coli* ET12567/pUZ8002, intergeneric conjugation was carried out. After 5-7 days, exconjugants were picked to SGG plates containing 100µg/ml apramycin and 25µg/ml nalidixic acid (SGG: 1% dextrin, 1% glucose, 1% glycerol, 0.25% corn steep powder (Marcor, Carlstadt, NJ, USA), 0.5% peptone, 0.2% yeast extract, 0.1% NaCl, 0.3%, CaCO3 0.3% in tap water (1 L), adjusted to pH 7.3 prior to sterilization) plates and grown for 3-5 days after which several clones were chosen and transferred to fresh SGG-agar plates for three passages. Subsequently, spores were harvested from 7-10 day old patches and a spore dilution distributed on fresh SGG agar plates. After 5-7 days, individual colonies were visible and were picked onto SGG-Apra agar and SGG-agar. 2-3 day old apramycin sensitive (Apra^S)clones were analyzed by colony PCR (a small amount of mycelium was dispersed in 100µl water and incubated for 10min at 100°C; after cooling on ice and centrifugation 3-10µl of the supernatant were used as template in the PCR; for typical results see Figure S9). PCR-products were verified by sequencing. Several exconjugants per gene knockout were analyzed, and three individual clones of each mutant were identified and tested for production.



Figure S9: Colony-PCR products with confirmation primers. ΔΦC31 has a length of app. 1.2kb, ΔabyA1 a length of app. 300bp.

3.2.2 Primers used for double crossover inactivation

Table S5: ReDirect I	Table S5: ReDirect Primers for PCR-directed mutagenesis				
abyl Red up	GCAATGCGCTACGAATTACTCGGACCACTACGACTGGTGCATATGCTTATTTGCCGACTACCTTG				
abyl Red down	GCCTGCCCTTCAGCAGGCTTGGGCTACCTCCCGCCGCCGCATATGTATCACCACCGACTATTTGC				
abyA1 Red up	CCGCCTCACGCCGACCCCCTCGGGAGGACTGCAATGACCCATATGTATCACCACCGACTATTTGC				
abyA1 Red down	ACCCGGTGGCGGACGGGGCCGCGGCACCCGCCGTCACAGCATATGCTTATTTGCCGACTACCTTG				
abyA2 Red up	GATCAAGTCGGGCTTCGCGTTGGAGGGCCTGTGACGGCGCATATGTATCACCACCGACTATTTGC				
abyA2 Red down	GGGTGACGAAGTCGTGGACGGATCGCAGGGTGCTCACGGCATATGCTTATTTGCCGACTACCTTG				
abyA3 Red up	GTTGACCGGCTCCTGGCCCCCGGAGGAACCCCGTGAGCCATATGTATCACCACCGACTATTTGC				
abyA3 Red down	GCCGGCGCTCGCGGGCGACGGGGGAGACGCTGGTCACCGCATATGCTTATTTGCCGACTACCTTG				
abyA4 Red up	CCTGGGCGGGATCTACGCGACGGCGGTGGATCGGTGACCCATATGTATCACCACCGACTATTTGC				
abyA4 Red down	GGACGTACTGCTCAGCTCTGCGACGTCGTTGCTCATGCCATATGCTTATTTGCCGACTACCTTG				
abyC Red up	${\tt ACCAGCCCGGCCGGGCCGGCCGGGGCCCGGGGGCTCACCTAGGTATCACCACCGACTATTTGC}$				
abyC Red down	AGTTCAGTTCGGCGCACTGCACGGTAACATGGCCGAATGGCTAGCCTTATTTGCCGACTACCTTG				
abyD Red up	TCTATCGAACCGGCCCGACAAAAACCGGAGACGGCCATGCCTAGGTATCACCACCGACTATTTGC				
abyD Red down	CTCGGGGGCCCCGACCGGCCCCGGGTTTGGGGGTCGTCAGCCTAGCCTTATTTGCCGACTACCTTG				
abyE Red up	AGTCGACCGGCCCGTACCCACCAGAGAGGCCCCGATGCCTAGGTATCACCACCGACTATTTGC				
abyE Red down	GCGCCTAAAGCTGGCCTAAACCCGCAGGTCGCGCGCCTAGCTAG				
PhiC31Integr up	CTGGGTGGGTTACACGACGCCCCTCTATGGCCCGTACTGTATCACCACCGACTATTTGC				
PhiC31Integr down	CCGTCTCAGCGCCTAACAGGCTTCCCGGGTGTCTCGCTACTTATTTGCCGACTACCTTG				

Table S6: Confirmation Primers			
abyl Best. 1	CGGCGAAATACCATCCTGAC		
abyl Best. 2	ACGTGCGGACGAGTAAGTG		
abyA1 Best. upstream	CCGTCCGCTCGTTCATGG		
abyA1 Best. downstream	CTGCGGTACAGCTCGGACAG		
abyA2 Best. upstream	GACAGCGGGCGCTGGGTGTG		
abyA2 Best. downstream	CGGCCGGGAGCGAGATGGAC		
abyA3 Best. upstream	CGCCGGAACACGTCCAGTTG		
abyA3 Best. downstream	CGCACGGCCTCCAGGAAGAAG		
abyA4 Best. upstream	CGCCACCGGGCGGTCCATCTC		
abyA4 Best. downstream	GCCGGCGCGGATCCACTGTGTC		
abyC Best. upstream	TGTCGCCGCTGGCGCTGTTC		
abyC Best. downstream	GTCGGGCCGGTTCGATAG		
abyD Best. upstream	GGTGTCGCGCTCAGTCATTC		
abyD Best. downstream	GACGTCGAGGACGGATAC		
abyE Best. upstream	ACGCCCGCAGCCCGTCACCC		
abyE Best. downstream	CGCGGTGGCGGCGACCAGGAG		
PhiC31 Best. upstream	CGCCCACTGCCTTCAGAC		
PhiC31 Best. downstream	CCGCTGTGCTGTGGTGAC		

3.3 Double Crossover Homologous Recombination using pK18mob2

Deletion mutants for genes *abyE* and *abyK* were made by double crossover recombination using pK18mob2.

3.3.1 Procedure

Generation of an abyE gene replacement mutant

Two 1.4 kb fragments of the flanking regions of *abyE* were amplified by PCR using the primer pairs *abyE_*EcoRl_for, *abyE_*EcoRV_rev, *abyE_*EcoRV_for and *abyE_*Xbal_rev. The resulting PCR fragments *abyE_*EcoRl_EcoRV and *abyE_*EcoRV_Xbal were cloned together into pUC21 to generate pUC21_\(\Delta abyE.\) The insert of pUC21_\(\Delta abyE\) was excised with \(EcoRl/Xbal\) and cloned into pK18mob2\(^1\). Transfer to \(Verrucosispora\) AB-18-032 was performed as described in 2.1. Apramycin-resistant colonies were obtained and single cross-over events were confirmed by isolation of genomic DNA and PCR analysis with the primer pair \(abyE_\) proof_for \(/\) \(abyE_\) proof_rev. Integrants were grown without apramycin selection to allow for second cross-over recombination. Apramycin-sensitive clones were confirmed by PCR for the deletion of the internal fragment of \(abyE_\).

Generation of an abyK gene replacement mutant

Similar to the generation of the *abyE* inactivation construct, flanking regions of *abyK* were amplified with the primer pairs *abyK_*EcoRI_for / *abyK_*EcoRV_rev and *abyK_*EcoRV_for / *abyK_*Xbal_rev and cloned into pK18mob2. Transfer to *Verrucosispora* AB-18-032, generation and verification of the double crossover mutant was performed as described above using the primers *abyK_*proof_for / *abyK_*proof_rev.

Generation of an abyX gene replacement mutant

Similar to the generation of the *abyE* inactivation construct, flanking regions of *abyX* were amplified with the primer pairs *abyX_*EcoRI_for / *abyX_*EcoRV_rev and *abyX_*EcoRV_for / *abyX_Xbal_rev* and cloned into pK18mob2. Transfer to *Verrucosispora* AB-18-032, generation and verification of the double crossover mutant was performed as described above using the primers *abyX*proof_for / *abyX*proof_rev.

3.3.2 Primers

Table S7: Primers for double crossover homologous recombination using pK18mob2			
abyE_EcoRI_for	GACCGCTGAATTCGACGCCACACTG		
abyE_EcoRV_rev	CCGTGATATCGCTCCAGACCGGAAC		
abyE_EcoRV_for	GGCGCTGGATATCCTGCCCGAGCTG		
abyE_Xbal_rev	CTGCCCGTCTAGATTCCGTTGGTCGCGTTCC		
abyE_proof_for	CTCCTTCGACCAAGCCTTCTG		
abyE_proof_rev	GGAGCAGCAGAATGGCTGTC		
abyK_EcoRI_for	GGGCAGGAATTCGCTACGAATTAC		
abyK_EcoRV_rev	CACTTCCTGATATCCCGCATCTACAAC		
abyK_EcoRV_for	CGAGCGATATCTCCGGGTGGTAG		
abyK_Xbal_rev	CTGCGGTCTAGATCGGACAGCTCAG		
abyK_proof_for	TGATGAACGGAATGCCGGTGCCGAGAAAC		
abyKproof_rev	GCGGCGAGTTGCCCGAGACCAC		
abyX_EcoRI_for	GGGCAACGAATTCACCAGCCGGTATCGC		
abyX_EcoRV_rev	AACCGATATCCGGCCGCCTTC		
abyX_EcoRV_for	GGACAGATATCGCCGCGATCAGC		
abyX_Xbal_rev	CGGCGCTCTAGACGAGTGCCTGCTGG		
abyXproof_for	GGTACACGCCCTGCACCGAG		
abyXproof_rev	GTTCCCGATGACCCGCACCTG		

3.4 Complementation Experiments

3.4.1 Procedure

To complement the deletion mutants $\triangle abyl$ and $\triangle abyK$, the genes were amplified by PCR using primers abyl_fw and abyl_rev (abyK_HindIIIfor / abyK_Spel_rev). The PCR-products were purified using Invitek-columns and digested with EcoRI and Xbal. The product was ligated with EcoRI and Xbal-digested rs pSETermE \triangle HindIII and pUWLoriT, respectively. The constructs were introduced by electroporation into E.coli ET12567 + pUZ8002, followed by standard conjugation using spores from deletion mutants $\triangle abyl$ and $\triangle abyK$ using methods described in 2.1.

3.4.2 Primers

Table S8: Primers for Complementation Experiments			
abyl_fw	AAACCGAATTCTCGGAGGCAGCAATG		
abyl_rev	CCCGCTCTAGATCAGCAGGCTTGGGCTAC		
abyK_HindIII_for	CCAAAAGCTTGGGAGGCGACTGTGGCGCTCCGTC		
abyK_Spel_rev	GCGGTCACTAGTCCAGTCGCTCAGTCATTGTCG		

4 Phylogenetic analysis of Aby, Chl, Kij, Tca and Tmn

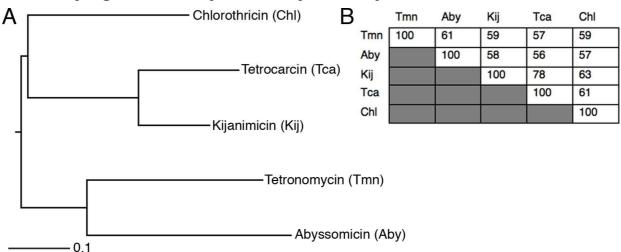


Fig. S10: A) Phylogenetic analysis of Aby, Chl, Kij, Tca and Tmn (see main paper for references) proteins involved in tetronic acid ring formation. Five proteins homologous to ChlM and ChlD1-D4 from each biosynthetic cluster were concatenated in the above order and aligned. Phylogenetically uninformative sites were removed from the alignment using Gblocks.⁶ The inferred maximum-likelihood phylogenetic tree was produced using PHYLIP.⁷ The scale bar indicates the branch length corresponding to 0.1 amino acid substitutions per site. B) Percentage identity table generated from the concatenated alignment.

5 References

- 1. Pelzer, S., Dorsch, H. & Spellig, T. A gene cluster encoding an efomycin polyketide synthase from a Streptomycete. in Ger. Offen. 40 (Germany, 2008)
- 2. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., Hopwood, D.A. Practical Streptomyces Genetics, 613 (The John Innes Foundation, Norwich, 2000).
- 3. Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K. & Pease. L.R.. Engineering hybrid genes without the use of restriction enzymes: Gene splicing by overlap extension. Gene. 77, 61-8 (1989)
- 4. Bieman M, Logan, R., O'Brien, K., Seno, E.T., Rao, R.N. & Schoner, B.E. Plasmid cloning vectors for the conjugal transfer of DNA from *Escherichia coli* to *Streptomyces* spp. *Gene.* 116, 43 9. (1992).
- 5. Gust, B., Challis, G.L., Fowler, K., Kieser, T. & Chater, K.F. PCR-targeted *Streptomyces* gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. U. S. A. 100, 1541-6 (2003)
- 6. Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biol 56, 564-77. (2007).
- 7. Felsenstein, J. PHYLIP Phylogeny Inference Package (Version 3.2). Cladistics. 5, 164-6 (2005).