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1 Chemical potentials of species in the gas phase and on surfaces
We start with the chemical potential of an ideal gas. The dependence on its partial

pressure p at a given temperature 7 can be expressed as

u(T, p) = y"(T,p0>+RT1n§ (S1)

where u°(T, p°) is the chemical potential at the standard pressure p° (1 bar). Since
the interaction between molecules is ignored in the ideal gas model, the chemical

potential is equal to molar Gibbs free energy (i.e. £ =G, =G/N). If choosing the

temperature of 0 K as a reference, Eq. (S1) can be further broken into:

w(T, p)=u’(OK,p°)+[H, (T,p")-H, (0K, p*)]-TS,(T,p°) +RT1n£U
(S2)
= 1" (0K, p") + Au(T, p") + RTIn £
p

in which we have used the relations G, =H, —TS, and S, (0K)=0 among the

molar Gibbs free energy G,, the molar enthalpy H, and the molar entropy S,. The
difference between u°(T,p°) and u°(0K, p°)is folded in the term of Awu(T,p°),
referring to the thermal correction of chemical potential with reference to zero K. The

enthalpic correction is usually small and hence Au(T,p°) is dominated by the
entropy part — 7S, (7, p°) . Since at zero K entropy is zero, 1°(0K, p°) is equal to the
zero point energy (ZPE) corrected total energy of an isolated molecule (£ ), which
can be directly obtained from DFT calculations. In the following, we will drop the

labels of temperature and pressure, and use u° instead of u° (7T, p°) for simplicity.

Applying the Langmuir adsorption model, the coverage-dependent chemical potential
of surface species can be derived as follows. Given that a surface contains M
distinguishable sites, N; surface species i (7>0) binds on the surface independently,

and N, free sites remains:

free site species 1 | species 2 | species 3 | ... species i

No,qo Ny, q; N>, q> N3, g3 N, q;

where N; is the number of surface species or free sites, and g¢; is the partition function.

If one species occupies one site, we will have




M=Y"N, (S3)

>0
qo consists only of high-frequency vibrational modes of substrate atoms, and hence
may be treated to be unity. For the localized adsorption of surface species, there is no
translational and rotational modes, and ¢; (i>0) is constituted only by vibrational
modes.'*?

For such a system, the total partition function can be given by’

q N q N,
= M = i
O(T,M,N,)=M! 17 Noll;[ N (S4)

i it

and on taking logarithm and using Stirling’s approximation we can obtain

InQ=MInM-M+) N/ng,—> N, InN,+> N,

>0 0 >0
(85)
=MInM+) (N,Inq,—N,InN,)-N,InN,

il

For surface species 7, the chemical potential is

yi(T,Ni):—RTM L j#0, j#i (S6)
oN, ) .

Combining Egs. (S3), (S5) and (S6), the chemical potential of species i can be
obtained:

u(T,N,)=—RT(Ing, —InN, +InN,)

: S7
:—RTlnqi+RTln£ 7
NO
Replacing N with surface coverage 0, Eq. (S7) can be further written as:
u(T,0)=—RTIng, +RT1n% (S8)

0

where 6; and 6, are the surface coverage of species i and free sites. Defining
—RTIng, as u/(T), ie. the standard chemical potential of surface species i at

temperature 7, and replacing free site coverage 6y by 6+ we will obtain the form of
Eq. (1) in the main text. The presence of free site coverage reflects the fact that in
Langmuir adsorption model surface species need to accommodate at certain
adsorption sites, while in gas or liquid phases there are no such counterparts that
gaseous molecules or solutes need to be attached to. Note that the chemical potential
of free sites is always equal to zero because its partition function is unity, and it will

not appear in the equations below.



Similar to gas phase molecules, the temperature dependence of the chemical potential
of surface species can be given by:
4(1.6) = ' OK) +[H,,,(T) ~ H, (0K)]~ TS, () + RTIn -

£

0 (59)
= 47 (OK)+ Mgy (T) + RT n-_-

*

where 4’ (0K) is equal to the total energy E/” (ZPE corrected), and Ay, (T) is the

difference between (7)) and x4’ (0K). The thermal correction term Az, (7)) is quite

different from that of gaseous molecules containing a large entropy term. In contrast,
the entropies of simple adsorbed species (e.g. atoms or small molecule fragments) are

usually very small, and often neglected in microkinetic treatment. In this work, we use

u’ toreferto ' (T),and E” to u’(0K).

2 Elementary surface processes

In this section, we will employ chemical potentials as key kinetic parameters to
express reaction rates and reversibility of several typical elementary surface processes;
molecular adsorption, dissociative adsorption, association reaction and their reverse
processes.

2.1 Molecular adsorption

For the adsorption of gas phase molecule A,

Ag) + * == Ax

the forward reaction rate r, can be written according to transition state theory (TST):*
T *
r = qu—p—g@ (S10)
h q, p
where ¢~ is the partition function of the transition state (TS) excluding the vibration

between the molecule and the surface (superscript # refers to TS), g, is the partition

function of the molecule in the gas phase, and 6. is the surface coverage of free sites.
Combining with Eq. (S1), Eq. (S10) can be rearranged as:

~RTIng" ~(-RTIng, +RTIn %) o
P k.T _H Hg

ro= e RT 0, =-L—e R @, (S11)

B h h




o

where 4™ is the standard chemical potential of the TS, equal to —RT'Ing”, and g,

is the chemical potential of the molecule in the gas phase.

Similarly, the reverse reaction rate » is obtained:

—RTlnq:—(—RTlnqadJrRTlng—A)
k,T g~ & :
r=-2 0,= e RT 0. = e K6, (S12)
h qmi h h

where Eq. (S8) has been used, and ¢, and g, are the partition function and
chemical potential of the molecule on the surface, respectively.
According to the De Donder relation,’ the net reaction rate is:

r:r+—r_=r+(1—r—‘)=r+(1—z) (S13)
r

where z is the reversibility of the process.® From Egs. (S11) and (S12), the

reversibility is equal to:

z=e KT (S14)

2.2 Dissociative adsorption
With respect to the dissociative adsorption of gas molecule AB,

AB(g) + 2% == A* + B*

the forward reaction rate can be given by:

~RTIng” ~(~RTIng, +RT n42) s
# p it
LI T 77 o2 =Kl w2 (S15)
h q, p h h

Also, the reverse reaction rate is:

0 0
—RTIng* —(-RTIng +RT1n€—A)—(—RT1n qp+RT 1n9—3)

k,T q° k,T

r="m 4 g0 =" RT 6.
h 4,49, h (S16)
_ kZT R Y

where g, and g, are the partition functions of A and B on the surface, respectively,
and u, and u, are the chemical potentials of A and B on the surface, respectively.

Thus, the reversibility is

HatHg—Hg

—e KT (S17)

r_
z=—
r,



2.3 Association reaction

For an surface association reaction between adsorbates A and B
A* + B* — AB* + LS

the forward reaction rate can be written as

6 0
—RTIng”—(-RT1ng, +RTln6—A)—(—RTln a5 +RT1n0—B)

k,T g k,T

ro=—t—1 90, =" RT 6.
h 4.9 h (S18)
_ kBT e_# 7 _I;ITA - (9*2
h

and the reverse reaction rate is

0
—RTIng* —(-RTIng 5 +RT 1n#)

r==2-2_9,0. ="37Te AT 6.

o h g (S19)

where q,, and u,, are the partition function and chemical potential of AB on the

surface, respectively. Hence, the reversibility is equal to

HatHp—Hap

—e A7 (S20)

r
zZ=—
ry

According to the above derivation, we can see the reaction rate of a chemical process

k,T

on the surfaces can be simply written into a production of three terms: (i) , close

to 10" at 500 K; (ii) an exponential term of the difference between the chemical

potentials of the TS and the reactants; and (iii) the surface coverage term of free sites
6." , where n is the number of surface sites bounded with the reactants (Note that an
adsorbed species A* counts one site). It is worth noting that the second term refers to
the standard chemical potential x™° of the TS with no correction of surface
coverages, and the chemical potential x of the reactant which includes the effect of

surface coverage (see Eq. (S9)). As can be seen, the dependence of reaction rates on

reactant surface coverages is folded into the coverage-dependent chemical potentials.

3 Some proofs for the main text



3.1 Quasi-equilibrium
In the simple kinetic model proposed in the main text, if g < u,°, we can have the

following inequalities according to Eq. (6) in the main text:

4t Hp=py

ip” —HR _ RT

e mo1Ze T (S21)
Hr—H
e R —]

and further,

Hr—Hi Hp—Hp
e T <2—e RT <2 (S22)

where the inequality u, > 1, > 1, (see Eq. (7)) has been used. This inequality leads
to u, = u, if realizing that a small exponent, say , —u, being 0.1 eV, will give rise

to about 10 of the exponential function at 500 K, indicating that adsorption reaches

quasi-equilibrium at steady state.

3.2 Free site coverage on good catalysts
Rearranging Eq. (1) in the main text and applying €, + 6. =1 in our simple kinetic

model, we can obtain surface free site coverage:

—— 1 (S23)

uy—py

l1+e £

Substituting Eq. (S23) in Eq. (6) in the main text will give the expression of the

. .. . or
overall reaction rate, and the derivative of the rate with respect to 4, , F, must be
1

zero when the rate is a maximum. Thus, take its derivative and rearrange it to obtain:

Hr—H] +Hp° tp=Hi TR’ up Hy°

(@,-De T +(ag-De *  +ae™ +aet =0 (S24)

where a, and a, are the slopes of the BEP relations between reaction barriers and

enthalpy changes for adsorption and desorption, respectively. Namely, £, oc a,u;

6,uR; =a, and 8’”’3; = a, which have

1 1

and u;,” oc a,u; and taking derivatives gives

been used to derive Eq. (S24).
On the other hand, from Eq. (6) we can have:



Hrtpp” ety
u
M, RT 4, RT

RT
ekl = S25
uy? up’ ( )
e RT +e RT
Thus,
) Hp =47 +1g° Up=H] +Hp"°
Hi—Hy e RT +e RT
e RT = — — (S26)
MR Hp
e RT +e RT

In principle, one can solve Eq. (S24) to obtain the value of g, and then substitute it
to Eq. (S26), which can be further substituted in Eq. (S23) to acquire é,. Here, we
will make some assumption to estimate &, . It is known that the slopes of BEP

relations are normally between 0 and 1, varying with reaction types. As yet, the
largest slope is found to be ~0.9 for the dissociation of N,, NO and CO, TSs being
very final state like; the smallest slope is found to be ~0.3 for CH;—C+4H,
NH;—N+3H and H O—O+2H, TSs being very initial state like (see Ref. 7 for detail).

Based on this observation, we assume a, = a, , which may not be too bad considering

the rest terms in Eq. (S24) are exponentials. Thus, from Egs. (S24) and (S26) we can

obtain:
Hi=Hi
e k1 x Gr (S27)
l-a,
Substituting it in Eq. (S23) will lead to:
6.=1-a, (S28)

Therefore, based on the simple kinetic model it can be seen that free site coverage 6.

is on the magnitude of 10" for the optimal catalysts.

3.3 Ammonia synthesis

Ammonia synthesis can be simplified into three main steps:

Ny(g) + 2% == 2N*
Hyg) + 2% === 2H*
N* + 3H* === NH,(g)

It is known that H, adsorption is normally barrierless, and often reaches quasi-

equilibrium. Thus, we can have:



My, = 2y (529)
Also, as long as the reaction proceeds forwardly, from Eq. (7) we have:

f, > 21y, (S30)
His + 3y > Ly, (S31)

From these equations, we can obtain the bounds for adsorbed N chemical potential as

Eq. (10) in the main text.

References

1 Gupta, M. C. Statistical thermodynamics, Chichester: Wiley, 1990.

2 Clark, A. The theory of adsorption and catalysis, New York; London : Academic P,
1970.

3 Hecht, C. E. Statistical thermodynamics and kinetic theory, New York: W. H.
Freeman, 1990.

4 Chorkendorff, I.; Niemantsve, J. W. Concepts of modern catalysis and kinetics,
Weinheim, Wiley-VCH, 2003.

5 (a) De Donder, Th. in “L’Affinité.” Gauthier-Villers, Paris, 1927; (b) Boudart, M. in
“Kinetics of Chemical Processes.” Prentice-Hall, Englewood Cliffs, NJ, 1968; (c)
Boudart, M. J. Phys. Chem. 1983, 87, 2786; (d) Holstein, W. L.; Boudart, M. J. Phys.
Chem. B 1997, 101, 9991.

6 (a) Dumesic, J. A. J. Catal. 1999, 185, 496; (b) Cortright, R. D.; Dumesic, J. A. Adv.
Catal. 2001, 46, 161; (c) Campbell, C. T. J. Catal. 2001, 204, 520; (d) Dumesic, J. A.
J. Catal. 2001, 204, 525.

7 Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.;; Lok, C. M. J. Phys. Chem. C 2008,
112, 1308.



