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1 Chemical potentials of species in the gas phase and on surfaces 

We start with the chemical potential of an ideal gas. The dependence on its partial 

pressure p at a given temperature T can be expressed as 
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where ),( oo pTμ  is the chemical potential at the standard pressure po (1 bar). Since 

the interaction between molecules is ignored in the ideal gas model, the chemical 

potential is equal to molar Gibbs free energy (i.e. NGGm /==μ ). If choosing the 

temperature of 0 K as a reference, Eq. (S1) can be further broken into: 
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in which we have used the relations mmm TSHG −=  and 0)0( =KSm  among the 

molar Gibbs free energy Gm, the molar enthalpy Hm and the molar entropy Sm. The 

difference between ),( oo pTμ  and ),0( oo pKμ is folded in the term of ),( opTμΔ , 

referring to the thermal correction of chemical potential with reference to zero K. The 

enthalpic correction is usually small and hence ),( opTμΔ  is dominated by the 

entropy part ),( o
m pTTS− . Since at zero K entropy is zero, ),0( oo pKμ  is equal to the 

zero point energy (ZPE) corrected total energy of an isolated molecule ( totE ), which 

can be directly obtained from DFT calculations. In the following, we will drop the 

labels of temperature and pressure, and use oμ  instead of ),( oo pTμ  for simplicity. 

 

Applying the Langmuir adsorption model, the coverage-dependent chemical potential 

of surface species can be derived as follows. Given that a surface contains M 

distinguishable sites, Ni surface species i (i>0) binds on the surface independently, 

and N0 free sites remains: 

free site species 1 species 2 species 3 … species i … 

N0,q0 N1, q1 N2, q2 N3, q3 … Ni, qi … 

where Ni is the number of surface species or free sites, and qi is the partition function. 

If one species occupies one site, we will have 
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q0 consists only of high-frequency vibrational modes of substrate atoms, and hence 

may be treated to be unity. For the localized adsorption of surface species, there is no 

translational and rotational modes, and qi (i>0) is constituted only by vibrational 

modes.1,2,3 

For such a system, the total partition function can be given by1 
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and on taking logarithm and using Stirling’s approximation we can obtain 
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For surface species i, the chemical potential is 
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Combining Eqs. (S3), (S5) and (S6), the chemical potential of species i can be 

obtained: 
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Replacing N with surface coverage θ, Eq. (S7) can be further written as: 
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where θi and θ0 are the surface coverage of species i and free sites. Defining 

iqRT ln−  as )(To
iμ , i.e. the standard chemical potential of surface species i at 

temperature T, and replacing free site coverage θ0 by θ*,  we will obtain the form of 

Eq. (1) in the main text. The presence of free site coverage reflects the fact that in 

Langmuir adsorption model surface species need to accommodate at certain 

adsorption sites, while in gas or liquid phases there are no such counterparts that 

gaseous molecules or solutes need to be attached to. Note that the chemical potential 

of free sites is always equal to zero because its partition function is unity, and it will 

not appear in the equations below. 



Similar to gas phase molecules, the temperature dependence of the chemical potential 

of surface species can be given by: 
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where )0( Ko
iμ  is equal to the total energy tot

iE  (ZPE corrected), and )(TiμΔ  is the 

difference between )(To
iμ  and )0( Ko

iμ . The thermal correction term )(TiμΔ is quite 

different from that of gaseous molecules containing a large entropy term. In contrast, 

the entropies of simple adsorbed species (e.g. atoms or small molecule fragments) are 

usually very small, and often neglected in microkinetic treatment. In this work, we use 
o
iμ  to refer to )(To

iμ , and tot
iE  to )0( Ko

iμ . 

 

2 Elementary surface processes 

In this section, we will employ chemical potentials as key kinetic parameters to 

express reaction rates and reversibility of several typical elementary surface processes; 

molecular adsorption, dissociative adsorption, association reaction and their reverse 

processes. 

2.1 Molecular adsorption  

For the adsorption of gas phase molecule A, 

A(g)  +  * A*  
the forward reaction rate +r  can be written according to transition state theory (TST):4 
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where ≠q  is the partition function of the transition state (TS) excluding the vibration 

between the molecule and the surface (superscript ≠  refers to TS), gq  is the partition 

function of the molecule in the gas phase, and *θ  is the surface coverage of free sites. 

Combining with Eq. (S1),  Eq. (S10) can be rearranged as: 
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where o,≠μ  is the standard chemical potential of the TS, equal to ≠− qRT ln , and gμ  

is the chemical potential of the molecule in the gas phase. 

Similarly, the reverse reaction rate −r  is obtained: 
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where Eq. (S8) has been used, and adq  and adμ  are the partition function and 

chemical potential of the molecule on the surface, respectively. 

According to the De Donder relation,5 the net reaction rate is: 
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where z is the reversibility of the process. 6  From Eqs. (S11) and (S12), the 

reversibility is equal to: 
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2.2 Dissociative adsorption  

With respect to the dissociative adsorption of gas molecule AB,  

AB(g)  +  2* A*   +   B*  
the forward reaction rate can be given by: 
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Also, the reverse reaction rate is: 
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where Aq  and Bq  are the partition functions of A and B on the surface, respectively, 

and Aμ  and Bμ  are the chemical potentials of A and B on the surface, respectively. 

Thus, the reversibility is 
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2.3 Association reaction  

For an surface association reaction between adsorbates A and B 

A*   +   B* AB*   +   *  
the forward reaction rate can be written as 
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and the reverse reaction rate is 
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where ABq  and ABμ  are the partition function and chemical potential of AB on the 

surface, respectively. Hence, the reversibility is equal to 
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According to the above derivation, we can see the reaction rate of a chemical process 

on the surfaces can be simply written into a production of three terms: (i) 
h
TkB , close 

to 1013 at 500 K; (ii) an exponential term of the difference between the chemical 

potentials of the TS and the reactants; and (iii) the surface coverage term of free sites 
n

*θ , where n is the number of surface sites bounded with the reactants (Note that an 

adsorbed species A* counts one site). It is worth noting that the second term refers to 

the standard chemical potential o,≠μ  of the TS with no correction of surface 

coverages, and the chemical potential μ  of the reactant which includes the effect of 

surface coverage (see Eq. (S9)). As can be seen, the dependence of reaction rates on 

reactant surface coverages is folded into the coverage-dependent chemical potentials.  

 

3 Some proofs for the main text 



3.1 Quasi-equilibrium 

In the simple kinetic model proposed in the main text, if o
P

o
R

,, ≠≠ < μμ , we can have the 

following inequalities according to Eq. (6) in the main text: 
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and further, 
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where the inequality PIR μμμ >>  (see Eq. (7)) has been used. This inequality leads 

to IR μμ ≈  if realizing that a small exponent, say IR μμ −  being 0.1 eV, will give rise 

to about 10 of the exponential function at 500 K, indicating that adsorption reaches 

quasi-equilibrium at steady state.  

 

3.2 Free site coverage on good catalysts 

Rearranging Eq. (1) in the main text and applying * 1Iθ θ+ =  in our simple kinetic 

model, we can obtain surface free site coverage: 
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Substituting Eq. (S23) in Eq. (6) in the main text will give the expression of the 

overall reaction rate, and the derivative of the rate with respect to o
Iμ , o

I

r
μ∂
∂ , must be 

zero when the rate is a maximum. Thus, take its derivative and rearrange it to obtain: 
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where Ra  and Pa are the slopes of the BEP relations between reaction barriers and 

enthalpy changes for adsorption and desorption, respectively. Namely, o
IR

o
R a μμ ∝≠ ,  

and  o
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P a μμ ∝≠,  and taking derivatives gives Ro
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been used to derive Eq. (S24).  

On the other hand, from Eq. (6) we can have: 
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Thus,  
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In principle, one can solve Eq. (S24) to obtain the value of o
Iμ , and then substitute it 

to Eq. (S26), which can be further substituted in Eq. (S23) to acquire *θ . Here, we 

will make some assumption to estimate *θ . It is known that the slopes of BEP 

relations are normally between 0 and 1, varying with reaction types. As yet, the 

largest slope is found to be ~0.9 for the dissociation of N2, NO and CO, TSs being 

very final state like; the smallest slope is found to be ~0.3 for CH4→C+4H, 

NH3→N+3H and H2O→O+2H, TSs being very initial state like (see Ref. 7 for detail). 

Based on this observation, we assume PR aa ≈ , which may not be too bad considering 

the rest terms in Eq. (S24) are exponentials. Thus, from Eqs. (S24) and (S26) we can 

obtain: 
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Substituting it in Eq. (S23) will lead to: 

Ra−=1*θ                    (S28) 

Therefore, based on the simple kinetic model it can be seen that free site coverage *θ  

is on the magnitude of 10-1 for the optimal catalysts. 

 

3.3 Ammonia synthesis 

Ammonia synthesis can be simplified into three main steps: 

N2(g)  +  2 * 2 N*

H2(g)  +  2 * 2 H*

N*  +  3 H* NH3(g)
 

It is known that H2 adsorption is normally barrierless, and often reaches quasi-

equilibrium. Thus, we can have: 



*2
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Also, as long as the reaction proceeds forwardly, from Eq. (7) we have: 

*2
2 NN μμ >                                                                                                                (S30) 

3** 3 NHHN μμμ >+                                                                                                     (S31) 

From these equations, we can obtain the bounds for adsorbed N chemical potential as 

Eq. (10) in the main text. 
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