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Supplementary materials

ReMIC genes co-localize in leukemia pathways

We superimpose ReMIC genes that are detected in the Runx- and Pik3-cluster at the scales for which the
strongest KEGG enrichments are observed and the leukemia KEGG pathways. ReMIC genes are labeled
according to their appearance in either the Runx- (red) or Pik3-cluster (blue) cluster (with circle size

indicating the number of ReMIC genes within each KEGG meta-node).
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Figure S1: The white and pink ReMIC genes are co-localized in a confined part of the chronic myeloid
leukemia pathway. Non-CIS ReMIC genes in the Pik3- and Runx-cluster all co-localize in the top left (blue)
and in bottom right (red), respectively.
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Figure S2: The ReMIC genes are co-localized in a confined part of the acute myeloid leukemia pathway.
ReMIC genes in the Pik3- and Runx-cluster all co-localize in the top left (blue) and in bottom right (red),

respectively.
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Figure S3: The ReMIC genes are co-localized in a confined part of the chronic myeloid leukemia pathway.
ReMIC genes in the Pik3- and Runx-cluster all co-localize in the top left (blue) and in bottom right (red),

respectively.



Analysis of the insertional mutagenesis data with the HotNet algorithm
We analyze our insertional mutagenesis data with the HotNet algorithm available on http://compbio.cs.
brown.edu/software.html.

First, the influence graph (i.e. the kernel matrix) is calculated by applying the diffusion kernel on the PPI
network. The diffusion strength is set to 0.1. To increase the computational costs, HotNet removes all edges
with weight less than a threshold §. The derived § value is 0.01 which is selected based on the permutation
analysis. Then, the reduced influence graph is captured by removing all genes that harbor mutations in more
than one tumor. Thus, significant connected components are explored in the graph including 4135 genes.

The resulting connected components include several small subnetworks (with two or three genes) as well
as one larger subnetwork. We identify two significant mutated subnetworks with more than 5 genes (p-value
< 1073). The small one consists of five pink genes: OIfr221, Olfr1396, Olfr314 and Olfr373 mutated in
three samples, and Arrb2 mutated in four samples of our insertional mutagenesis data. The extremely large
derived subnetwork includes most of the red and pink nodes in the PPI graph.

We find that the number of connected components is strongly dependent on the value of threshold
0. Thus, we increase this threshold to 0.1 to examine if we identify more connected components of the
reasonable sizes. In the results, in addition to one large subnetworks with 2008 genes, we detect six mutated
subnetworks of size > 7. They are not enriched for the general pathways in cancer category nor for the
leukemia pathways. The most enriched pathway and the genes apparent in each component are reported in

Table S1.



Table S1: The most enriched pathway of the connected components of size > 7 derived from the reduced
influence graph with 6 = 0.1. Numbers between parentheses show the number of mutations of the genes in
the samples.

size

Genes

Pathway

p-value

29

Plekhg2(4),Plekhg5(3),Arhgap30(2),Abr(4)
Arhgapl5b

(
Arhgap10(5),Arhgap6(4),Rhog(5),Rhof(13)

Rhobtb1(2),Arhgef3(16),Rhot2(9),Hmhal(5)

Obscn(2),Arhgef18(5),Syde2(3),Fgd2(38)
Arhgap19(11),Arhgap22(4),Vezfl(4)
Arhgap25(6),Arhgap24(2),Arhgef17(5)
Arhgap18(3),Arhgap4(5),Arap1(11)

4),Rhoq(3),Rhoh(19),Arhgap9(8)
5

PDGF signaling pathway

0.0004

Mat2b(2),Srm(3),Gm853(3)
Hemk1(5),Amd1(5),Ahcyl2(3)
Sat2(6),Mat2a(6),Mtrfll(3)

Methionine degradation

0.0001

Dolk(5),Pigl(11),Pigq(4),Pigv(16)
Pigw(5),Pigx(4),Dpm3(3)

Dolichyl-diphosphooligosaccharide

0.005

15

Tssk6(3),Emd(3),4831426119Rik(6)
Tsks(4),Sun2(4),Sun1(6),Cdk17(14)
Mfsd4(6),Elk3(11),Elk4(5),Serpinb5(3)
Cables1(4),Cdk5r1(3),Ptprh(8),Plec(3)

Meiotic Synapsis

0.003

Cpm(4),Ace(3),Pgpepl(11),Camkv(13)
Gng7(6),Htr1f(3),Dpp4(7),Prep(4)

5HT1 type receptor mediated

0.366

Nkiras1(3),Nfkbib(7),Nfkbie(4),Ppp6r3(4)
Ppp6r1(8),Bcl3(6),N4bp2(10)

Toll receptor signaling pathway

0.009




ReMIC gene clusters exhibit a pattern of mutual exclusive mutation

Mutation profiles of the ReMIC genes demonstrate that high scoring genes play an essential role in the
pattern of mutual exclusive mutations (Figure S4 and S5). For example, in the Pik3-cluster, Gfil harbors
mutations in more than 50% of the tumors (470 among all 933 tumors). The tumors without a mutation in
Gfil frequently harbor mutations near Myc, Cend3 and/or Rras2. Moreover, Notchl or Rt3 is mutated in
tumors in which most of the other genes harbor no mutation. Similar observations can be made for ReMIC

genes in the Runx-cluster. For example, Myb and Kzfl are mutated in different sets of tumors.

Tumaors

0l et e —|

UL IR O A A AT A A ! i i
2955583 R AR BN TR SRR LR N RS A BEVECL4E95IYEE B0 45D
IREEEE grig 3 Isse§§g§§m8£§ 3 E“mggﬁs 4835 85985 s§Iveciece
é =
5

Genhes

Figure S4: Mutation profile of ReMIC genes in Runx-cluster at the small-scale. For each gene (columns),
tumors (rows) with or without mutations are indicated by red or white, respectively. In this plot, genes
harboring mutation in more than 10 tumors are shown (65 ReMIC genes).
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Figure S5: Mutation profile of ReMIC genes in Pik3-cluster at the large-scale. For each gene (columns),
tumors (rows) with or without mutations are indicated by red or white, respectively. In this plot, genes
harboring mutation in more than 15 tumors are shown (92 ReMIC genes).
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Figure S6: The dendrogram extracted by the shortest-path betweenness clustering technique to divide ReMIC
genes into densely connected subnetworks at the small-scale (8 = 0.005). The vertical height of the joint
points indicate the order in which the joints take place. The root of the dendrogram is the original network
and the leaves are individual genes.The best cut-level of this dendrogram is indicated by the dashed line
which is the local maxima of the modularity measure. ReMIC gene clusters are indicated in colors. The
dendrogram is visualized using igraph R library [1].
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Figure S7: The dendrogram extracted by the shortest-path betweenness clustering technique to divide
ReMIC genes into densely connected subnetworks at the small-scale (8 = 0.01). The vertical height of the
joint points indicate the order in which the joints take place. The root of the dendrogram is the original
network and the leaves are individual genes.The best cut-level of this dendrogram is indicated by the dashed
line which is the local maxima of the modularity measure. ReMIC gene clusters are indicated in colors. The
dendrogram is visualized using igraph R library [1].



i

Modularity=0.409
\
0.2
Modularity Measure

\._:;‘:‘ ——

Figure S8: The dendrogram extracted by the shortest-path betweenness clustering technique to divide ReMIC
genes into densely connected subnetworks at the medium-scale (8 = 0.015). The vertical height of the joint
points indicate the order in which the joints take place. The root of the dendrogram is the original network
and the leaves are individual genes.The best cut-level of this dendrogram is indicated by the dashed line
which is the local maxima of the modularity measure. ReMIC gene clusters are indicated in colors. The
dendrogram is visualized using igraph R library [1].
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Figure S9: The dendrogram extracted by the shortest-path betweenness clustering technique to divide ReMIC
genes into densely connected subnetworks at the medium-scale (5 = 0.02). The vertical height of the joint
points indicate the order in which the joints take place. The root of the dendrogram is the original network
and the leaves are individual genes.The best cut-level of this dendrogram is indicated by the dashed line
which is the local maxima of the modularity measure. ReMIC gene clusters are indicated in colors. The
dendrogram is visualized using igraph R library [1].
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Figure S10: The dendrogram extracted by the shortest-path betweenness clustering technique to divide
ReMIC genes into densely connected subnetworks at the large-scale (8 = 0.025). The vertical height of the
joint points indicate the order in which the joints take place. The root of the dendrogram is the original
network and the leaves are individual genes.The best cut-level of this dendrogram is indicated by the dashed
line which is the local maxima of the modularity measure. ReMIC gene clusters are indicated in colors. The
dendrogram is visualized using igraph R library [1].
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Figure S11: The dendrogram extracted by the shortest-path betweenness clustering technique to divide
ReMIC genes into densely connected subnetworks at the large-scale (8 = 0.03). The vertical height of the
joint points indicate the order in which the joints take place. The root of the dendrogram is the original
network and the leaves are individual genes.The best cut-level of this dendrogram is indicated by the dashed
line which is the local maxima of the modularity measure. ReMIC gene clusters are indicated in colors. The
dendrogram is visualized using igraph R library [1].
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