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1. Overview   1 

This paper introduces a hierarchical model to predict spatiotemporal variability of 2 

nitrogen dioxide (NO2) and nitrogen oxides (NOx) concentrations in the urban area of 3 

Southern California by combining high temporal resolution data from routine 4 

monitoring stations with high spatial resolution data from investigator-initiated 5 

episodic measurements.  Our approach had an improvement for estimation of 6 

spatiotemporal variability of NO2 and NOx concentrations in the Los Angeles region 7 

and this has meaningful indications for studies of short-term health effects.        8 

2. Materials and Methods   9 

A hierarchical two-stage model was designed to estimate the spatiotemporal variablity 10 

of NO2 and NOx concentrations.   11 

2.1. Episodic measurements from two field campaigns   12 

1) Measurements Collected by University of California, Los Angeles (UCLA): NO2 and NOx 13 

samples were collected using passive Ogawa samplers (Ogawa & Company USA, Inc., 14 

Pompano Beach, FL) in two continuous weeks in a warm season (September 16-October 1, 15 

2006) and a cold season (February 10-25, 2007) in Los Angeles County, California.  Each 16 

sampler was deployed for a two-week period.  The sampling locations were selected using a 17 

location-allocation algorithm that maximized the potential variability in measured pollutant 18 

concentrations and the spatial distribution of the targeted study population (Su et al., 2009).  19 

There were a total of 161 valid samples of measurements in each season.  We also conducted 20 

additional measurements co-located at 14 SCAQMD stations. 21 

2) Measurements Collected by University of California, Irvine (UCI):  Residential 22 

outdoor samples of NO2 and NOx were collected using passive Ogawa samplers (Ogawa & 23 
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Company USA, Inc., Pompano Beach, FL) for two weeks in the warm season (July 10-18 and 24 

July 24-August 1) and the cool season (November 13-21 and December 4-12) in 2009 in 25 

south Los Angeles County and Orange County, California.  Sampling sites were outdoor 26 

homes of subjects who participated in an air pollution and pregnancy outcome study funded 27 

by the National Institute of Environmental Health Sciences; i.e. participants who agreed to 28 

allow us to conduct outdoor sampling at their homes.  There were a total of 32 valid 29 

measurements in each sampling week.  We again co-located sampling at 11 SCAQMD 30 

stations.  Sampling sites of both the UCLA and UCI episodic measurements are not shown 31 

in Figure 1 to protect the confidentiality of human subjects.   32 

Systematic bias is possible for the measurements taken by the active samplers at the 33 

SCAQMD sites and the passive samplers used in the UCLA and UCI field campaigns.  We 34 

adjusted for such potential systematic bias by converting all measurements from passive 35 

samplers to the equivalent values of the active samplers based on the co-located 36 

measurements from the SCAQMD sites (Supplemental Materials Table S1 gives specific 37 

adjustment coefficients by linear regression for both the UCLA and the UCI measurements).   38 

2.2. Roadway classification 39 

We obtained roadway data for the study region from the ESRI StreetMapTM North America 40 

9.3 (http://www.esri.com).  This dataset included 2003 TeleAtlas® street polylines, which - 41 

as we previously demonstrated – are more accurate than TIGER 2000-based streets (Wu et al., 42 

2005).  We calculated total roadway length within different buffer sizes around each 43 

sampling site and classified roadways into four categories based on the U.S. Census Feature 44 

Class Code (U.S. Census Bureau, 1993): primary highways, typically interstates, with limited 45 

access (A1); primary roads without limited access, non-interstate roads (A2); smaller, 46 
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secondary or connecting roads, usually with more than two lanes (A3); and local, 47 

neighborhood and rural roads, usually with a single lane of traffic in each direction (A4). We 48 

calculated the shortest distance from sampling sites to each roadway type.   49 

2.3. Decomposition of independent temporal basis functions   50 

Theoretically, the temporal basis functions represent the general temporal changes in different 51 

dimensions of concentrations within the study domain.  Average weekly concentrations 52 

(N=5225= 209 weeks ×25 stations) were first log-transformed and normalized (mean of 0 and 53 

variance of 1), and then used to construct the independent temporal basis functions (smoothed 54 

EOFs).  As a technique of principle component analysis, singular value decomposition (SVD) 55 

was used to generate the independent temporal basis functions.  The SVD decomposition 56 

was performed with:  57 

                           ∗                                  [A1] 58 

where 1 ,… , 	and , … , , the mxn normalized matrix of the 59 

logarithmic transformation of routine observed concentrations, n is the number of sites and m 60 

is the total number of time slices.  1 ,… , 	and , … , , mxm 61 

real matrix whose columns represents temporal basis series (called left singular vectors), Σ is 62 

an mxn diagonal matrix with nonnegative real numbers (called singular values) on the 63 

diagonal representing the variance explained by each temporal basis series, V is an n×n real 64 

matrix of right singular vectors (V* is the conjugate transpose of V) (Marcus and Minc, 1968).  65 

We used penalized thin plate splines of  in GAM (Duchon, 1977) to model smoothed 66 

EOF, fi(t) in equation [2] of this paper.  The derivative based thin plate spline penalty was 67 

used to measure wiggliness and chose a good degree of freedom between data fitting and 68 

smoothness.  A good degree of freedom should make the smoothed curves not over-fitting 69 

the data but approximate the truly piece of temporal trend (Szpiro et al., 2010).  So its 70 

selection, while optimizing the fit, should penalize wiggliness.  We used Wood and 71 
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Augustin (2002)’s integrated approach of model selection and automatic smoothing parameter 72 

selection with generalized cross-validation (GCV) used to determine the smoothness 73 

parameters..  74 

2.4. Procedure of interpolation for UCLA measurements   75 

We used the 25 routine measurements and the linear spatiotemporal model to derive the ratios 76 

of two continuous weekly concentrations for UCLA’s measurements respectively for 77 

2006 and 2007 (09/16/06-10/01/06 and02/10/07-02/25/07).  The steps are described 78 

as followed.  79 

(1) Similar to Section 3.1 of the paper, the 25 routine measurements of time 80 

series were used to construct the temporal basis functions that were smoothed 81 

using GAM to represent the temporal trends of the temporal basis functions 82 

for the study domain;  83 

(2) 1 or 2 traffic-related covariates as emission sources or proxy to emission 84 

sources and wind speeds as a dispersion factor were extracted for the 85 

locations of the routine measurements.  Due to few samples (just 25 samples 86 

from the SCAQMD routine stations), we just used 2 or 3 covariates to avoid 87 

over-fitting in linear regression.  For emission sources, distance-weighted 88 

roadway length, AADT or traffic land-use statistics was calculated around the 89 

measurement sites using the optimal buffering distance (see Section 2.3.1 of 90 

the paper for determination of buffering distance).  Since we just had few 91 

samples (25), only a covariate of emission factor with the highest Pearson’s 92 
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correlation and p-value<0.1 was used with long-term average wind speed in 93 

the linear model.  94 

(3) A simplified maximum likelihood method without incorporation of spatial 95 

autocorrelation was used to estimate the spatially varying coefficients for the 96 

temporal basis functions:  97 

                           argmax ; 	                        [A2]  98 

where Yut={yut} is set of the observations from the log-transformed measured 99 

values of concentrations at location u and time slice t, Ψ is the coefficients to 100 

be estimated, mainly the linear coefficients of spatial covariates to calculate 101 

βi.; ; 	  is the density for Yut.  Due to too few spatial samples (25) 102 

and independence of temporal basis functions, we did not consider temporal 103 

and spatial dependence in the model different from Szpiro et al.’s method 104 

(2010) for solving βiu, in [A1]. Thus the likelihood function was simplified as:  105 

   Ln /2 ln 2 /2 ln /2 ∑   [A3] 106 

in [A3], ∑  was simplified as  without consideration of spatial 107 

autocorrelation.  108 

(4) Based on the linear coefficients solved above ( ), we could get an initial 109 

estimates for mean concentrations at the UCLA sampling locations, u* at 110 

particular time slices, t={t11,t12,t21,t22}, assuming t11 and t12 for 111 

09/16/06-09/23/06 and 09/24/06-10/01/06 as well as t21 and t22 for 112 

02/10/07-02/17/07 and 02/18/07-02/25/07.   113 
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                     ∗
∗ E ∗

∗ | ;                 [A3] 114 

where ∗
∗  is the concentration to be interpolated for UCLA’s measurement 115 

site, u*.  116 

(5) Based on [A3], we got the estimates for four time slices and then estimated 117 

their ratio along with two continuous weeks.    118 

                ∗
∗ / ∗

∗   or ∗
∗ / ∗

∗        [A4] 119 

(6) According to the ratios and the observed bi-weeks means, we directly 120 

estimated the values at each of the four time slices (t11,t12,t21,t22) for UCLA’s 121 

episodic sites.   122 

2.5. Selection of covariates    123 

There are two steps for selection of the effective covariates using GAM to correlate spatial 124 

covariates to temporal basis functions:  125 

(1) First, correlation analysis and scatter plots were made to remove the irrelevant covariates 126 

whose correlation with βi was less than 0.1 and the scatter plots did not suggest a clear pattern. 127 

The factors selected were regarded as an initial pool of regressors for next selection.   128 

(2) Then, multicollinearity of independent covariates and their statistical significance were 129 

examined. To avoid multicollinearity, we used variance inflation factors (VIFs) to divide the 130 

covariates into several groups: a) one group of weakly correlated covariates (VIF<10); the 131 

following 2 type of groups of remaining highly correlated covariates (VIF≥10): b) 132 

traffic-related groups including shortest distances to different types of roadways (A1, A2, A3, 133 

or A4), distance-weighted roadway length, traffic land-use, weighted AADT; c) land-use 134 

group including different types of land-use.  135 
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(3) Next, backward-selection was iteratively conducted until the optimal set of covariates 136 

selected.  Specifically, we selected one covariate at a time from each group of the highly 137 

correlated covariates and combined them with all of the weakly correlated covariates to 138 

construct a combination of covariates for predicting βi.  All of the covariates were tested in 139 

the model. R2 was used to backward-select the covariates in each combination: the covariates 140 

with p values ≥0.1 were removed until R2 remained the same, improved, or decreased least 141 

when all possible combinations of the remaining covariates were considered. Finally, the 142 

covariate combination with the maximum R2 was selected as optimal regressors.  143 

 144 

 145 

 146 

 147 

 148 

 149 

 150 

 151 

 152 

 153 

 154 

 155 

 156 
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Table S1.  Correlation between average biweekly measured values of collocated 157 

monitoring sites of UCI/UCLA and SCAQMD and their linear regression coefficients  158 

Source Pollutant 

Number of 

collocated 

locations  

Correlation 

coefficient 

Parameters 

Slope Intercepts 

UCI 

NO2 14 

0.98 0.88 5.20 

0.99 0.94 3.56 

0.996 0.58 12.91 

0.95 0.65 7.74 

NOx 14 

0.96 0.69 8.53 

0.95 0.69 5.46 

0.96 1.22 -13.41 

0.97 0.72 14.38 

UCLA 

NO2 11 
0.94 0.68 4.43 

0.95 1.00 0.29 

NOx 11 
0.98 0.80 2.38 

0.97 0.81 12.05 

 159 

 160 

 161 

 162 

 163 

 164 

 165 

 166 

 167 
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Table S2.  Important notation and symbols 168 

Symbol  Meaning  

  Log-transformed concentrations at time slice, t and location, u;    
 is the estimated value for  by the model.   

 Mean trend value at time slice, t and location u. It represents the 
seasonal trend. ̂  is the estimate by model.  

   Spatiotemporal residual at time slice, t and location, u. ̂  is the 
estimate.  

  ith spatially varying coefficient for the ith temporal basis function. 
 is the estimate.  

.  Set of the ith spatially varying coefficient across all the locations. 

fi(t)  ith temporal basis function. f0(t) is the constant function.   

.  Set of spatiotemporal residual at u across all the time slices.  

̅   Estimate of the mean for  modeled using set of spatial 
covariates (X)  

̂   Estimate of the spatial residual at u for , ∈  

̂   Random residual at u, with normal distribution, ̂ ~N(0,1) 

  Same as ̅  

  Link function for normal distribution between regression 
equation and .  

_ , _   Smooth function for wind speeds of both directions at u.	 _  
indicates wind speed along with south-north, _  indicates 
along with west-east.  

  Smooth functions for other local covariates.  

  Linear coefficient for the kth linear regressor, . .  

Θ(ф, σ2,τ)  Variogram parameters (range ф, partial sill σ2 and coefficient τ) 

̂   Estimate of the spatial residual at the neighboring location, ui, 

̂   Estimate of the regional residual or total variation of ..  

∑   Variogram output of matrix.  

  Optimal weights for ̂ , estimated by cokriging.  

  Optimal weights for ̂ , estimated by cokriging. 

Note: For the covariate defined above, if a cap sign like ˆ is added on the top of a 169 

covariate, it indicates the estimated or predicted value for this covariate.    170 
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3. Results    171 

Table S3.  Statistics of fit parameters by the routine time series and sporadic samples 172 

Statistics NO2 NOx 

β0 β1 β2 β0 β1 β2 

Min 0.59 -3.05 -15.03 0.69 -16.29 -12.03 

Max 3.46 15.60 12.5 4.32 2.05 15.17 

Mean 2.90 5.72 0.06 3.51 -9.22 0.80 

Variance  0.13 11.11 19.14 0.20 8.3 17.96 

Interquartile 
range (IQR) 

0.37 2.15 2.77 0.42 2.88 5.89 

Median 3.01 5.20 -0.26 3.62 -9.27 1.00 

 173 

 174 

 175 

 176 

 177 

 178 

 179 

 180 

 181 

 182 
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Table S4.  Variogram coefficients of Spatial Residuals for β0, β1 and β2 183 

Statistics 
NO2 NOx 

β0 β1 β2 β0 β1 β2 

Model Stable Exp* Stable Stable Exp* Stable # 

Model parameter 0.82 - 0.2 0.2 - 2 

Range 7.4 km 0.9 km 2.2 km 5.5 km 1.0 km 2.5km 

Partial sill 1*** 0.013 4.5 3.8 0.016 1.2 2.4 

Partial sill 2 0.009 2.8 1.7 0.02 1.1 1.7 

Partial sill 3 0.04 4.4 3.2 0.05 1.8 2.4 

Note: *: Exp: exponential variaogram model. #: Stable model (Johnston et al., 2003). 184 

**: partial sill 1 is for local residuals; partial sill 2 is for covariance between local 185 

residuals and regional residuals; partial sill 3 for regional residuals. Nugget was 186 

assumed to be 0 given the strong spatial autocorrelation of the residuals (Szpiro et al., 187 

2010).   188 

 189 

 190 

 191 

 192 

 193 

 194 

 195 

 196 
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Table S5. Sensitivity analysis for interpolation of UCLA samples  197 

Description Type R2 for time 

series(1) 

R2 for long-time 

averages(2) 

Method 1(3) NO2 0.84 0.89 

NOx 0.81 0.77 

Method 2  NO2 0.82 0.87 

NOx 0.63 0.75 

Method 3  NO2 0.83 0.87 

NOx 0.86 0.72 

Note: Note: (1) R-Square between the predicted values of all the time series for the routine 198 

stations and the temporal trends based on their observed values; (2) R-Square between the 199 

averages of the predicted values over 4 years for the 25 routine stations and averages of their 200 

observed values over 4 years; (3) Results from the original paper.  201 
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Table S6. Sensitivity analysis for outliers of episodic samples  202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 

Note: 1. number of UCI samples+ number of UCLA samples+ number of SCAQMD sites=total number of samples; 2. Lower and upper inner 210 

fences defined as Q1-1.5*IQR and Q3+1.5*IQR where Q1 and Q3 are respectively the first and third quartiles, and IQR is inter-quartile range. If 211 

a sample’s βi is smaller than lower upper inner fence or bigger than upper inner fence, the sample will be removed from the dataset; 3. Similarly, 212 

lower and upper outer fences defined as Q1-3*IQR and Q3+3*IQR. This was what we have used for the main results.  213 

 214 

 215 

Description  Type Thresholds Number of 

samples1  

R2 for 

time series

R2 for long-time averages 

1. No thresholds set to 

remove outliers  

NO2 No outliers removed  32+161+31=224 0.74 0.84  

NOx No outliers removed  32+161+31=224 0.74 0.67  

2. Lower and upper inner 

fences 2 

NO2 β0: [-0.2,3.7], β1: [-2.3,6.8], β2: [-12.2,4.5] 14+154+31=199 0.88 0.89 

NOx β0: [1.0,4.7], β1: [-15.8,1.8], β2: [-8.1,9.4] 13+160+30=203 0.87 0.70 

3. Lower and upper outer 

fences 3 

NO2 β0: [-0.2,4.2], β1: [-2.4,12.3], β2: [-12.3,8.4]  28+157+31=216 0.84 0.89 

NOx β0: [0.7,5.0], β1: [-17.7,3.7], β2: [-9.7,11]  26+161+31=218 0.81 0.77 
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   216 

                             a. NO2                                                b. NOx 217 

Figure S1. Box plots of spatially varying coefficients for NO2 and NOx  (b0-β0; b1-β1; b2=β2) 218 
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  219 

                   a                                 b   220 

  221 

                   c                                   d  222 

  223 

                    e                                 f  224 

Figure S2. Non-linear relationship between β0 and local covariates with the 95% 225 

confidence intervals for NO2 by GAM (to be continued) 226 
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  227 

                   g                                   h   228 

    229 

   i (wind speeds in west-east (W-E) and south-north (S-N))  230 

Figure S2. Non-linear relationship between β0 and local covariates with the 95% 231 

confidence intervals for NO2 by GAM (continued)   232 

 233 
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  234 

a                                    b 235 

 236 

                 c                                     d  237 

  238 

e  (wind speeds in W-E and S-N )  239 

Figure S3. Non-linear relationship between β1 and local covariates with the 95% 240 

confidence intervals for NO2 by GAM  241 
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 242 

                   a                                  b  243 

 244 

                   c                                   d    245 

   246 

e                          f  (wind speeds in W-E and S-N) 247 

Figure S4. Non-linear relationship between β2 and local covariates with the 95% 248 

confidence intervals for NO2 by GAM 249 

 250 
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 251 
                   a                                  b    252 

  253 

                  c                                    d     254 

  255 

                   e                                  f  256 

Figure S5. Non-linear relationship between β0 and local covariates with the 95% 257 

confidence intervals for NOx by GAM (to be continued)  258 
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  259 

g                     h (wind speeds in W-E and S-N) 260 

Figure S5. Non-linear relationship between β0 and local covariates with the 95% 261 

confidence intervals for NOx by GAM (continued) 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 
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  271 

                   a                                    b     272 

  273 
                   c                                    d 274 

  275 

e                          f (wind speeds in W-E and S-N) 276 

Figure S6. Non-linear relationship between β1 and local covariates with the 95% 277 

confidence intervals for NOx by GAM  278 

 279 
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   280 
a                                   b 281 

  282 

                  c                                  d      283 

  284 

e                                 f (wind speeds in W-E and S-N) 285 

Figure S7. Non-linear relationship between β2 and local covariates with the 95% 286 

confidence intervals for NOx by GAM 287 
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  288 

              a. NO2 (R
2=0.89)                        b. NOx (R

2=0.77)   289 

Figure S8.  Average values of long-term concentrations: observed values vs. estimated values 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 
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