Supporting Information

Automated ARGET ATRP accelerates catalyst optimization for the synthesis of thiol-functionalized polymers

Daniel J. Siegwart,^{1,2,#} Matthias Leiendecker,^{1,2,#} Robert Langer,^{1,2,3} and Daniel G. Anderson^{1,2,3}*

¹ Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139

² David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139

³ Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139

These authors contributed equally.

* To whom correspondence should be addressed: dgander@mit.edu

Methyl methacrylate (MMA) Di(ethylene

Butyl acrylate (BA)

2-(Dimethylamino)ethyl methacrylate (DMAEMA)

2-(Diethylamino)ethyl methacrylate (DEAEMA)

Poly(ethylene glycol) methyl ether methacrylate (OEOMA) with average M_n 300

Poly(ethylene glycol) methyl ether methacrylate (OEOMA) with average M_n 475

Figure S1. Monomers polymerized by ARGET ATRP in this study.

Figure S2. GPC traces showing cleavage of the disulfide bond by DTT in THF at 50°C and reduction in MW. The black line shows control (THF, 50° C, without DTT).