
Text S1
Regulating the many to benefit the few: role of weak small RNA targets

Daniel Jost, Andrzej Nowojewski, and Erel Levine
Department of Physics, FAS Center for Systems Biology,

Harvard University, Cambridge, MA 02138, USA

Contents

A. Unified model for small RNA regulation 2
1. Stochastic model without auxiliary targets 2
2. Effect of diffusion 3
3. Accounting for interactions with auxiliary targets 3

B. Steady-state properties without auxiliary targets 4
1. Mean levels 4
2. Fluctuations 4

a. Linear noise approximation (LNA) 4
b. Protein fluctuations 5
c. Comparison with stochastic simulations 6

3. Effect of recycling the srRNA 6

C. Steady-state properties with auxiliary targets 8
1. Mean levels 9
2. Fluctuations 9
3. Information capacity 10

a. Effect of auxiliary targets 10
b. Effect of the degradation of the complex 11
c. Effect of recycling the srRNA 12

4. Effect of strong auxiliary targets 12

D. Kinetic properties 13
1. Method 13
2. Effect of diffusion 13

E. Conservation of microRNA targets 13
1. Data set 14
2. Analysis 14

a. Defining target sites and conservation score 14
b. Conservation of weak and strong targets 16

F. Parameters used in the main text 16
1. Figure 2 A 16
2. Figures 2 B,C and 3 16
3. Figures 4 and 5 17

References 17



2

Appendix A: Unified model for small RNA regulation

In this section, we present in details the model we used to study the srRNA-mediated regulation of principal targets
in presence of auxiliary targets.

1. Stochastic model without auxiliary targets

The general picture of srRNA post-transcriptional regulation is well-described by modeling the dynamics of the
number of srRNA s, of the number of principal mRNA targets m and of the number of target proteins p, by a set of
mass-action equations [1–5] where intrinsic fluctuations are captured by adding Langevin-like noises ξi accounting for
the stochasticity of the underlying reactions [6]:

ds

dt
= αs − βss− ksm+ ξs + ξk, (A1)

dm

dt
= αm − βmm− ksm+ ξm + ξk, (A2)

dp

dt
= γm− βpp+ ξp, (A3)

where αi refers to the transcriptional rate of species i, βi to its degradation or turnover rate, and γ to the translational
rate of the target protein. k represents the second-order kinetic constant between the srRNA and its target mRNA.
Eq.A1 and A2 assume that the pairing between the srRNA and the mRNA leads to a rapid and full degradation of the
complex. This type of active co-degradation is believed to occur for many prokaryotic small RNA-mRNA couples [7].
In eukaryotic pathways, evidence suggests that the degradation of the mRNA in the complex does not always yield
the degradation of the srRNA [8]. However, in many cases the mRNA-srRNA pair is sequestered for considerable
time, thus titrating the srRNA. Moreover, within the same framework it is easy to extend the model such that only a
fraction of the srRNA is co-degraded with the mRNA (see section B 3). This does not affect the results of our work
(see section C 3 c). In the following, for simplicity, we consider the minimal model given above, except in the sections
B 3 and C 3 c.

Within the Langevin framework, each reaction is treated as an independent Poissonian process with white delta-
correlated noise

〈ξi(t)〉 = 0, (A4)

〈ξi(t)ξj(t′)〉 = δijNiδ(t− t′), (A5)

with δij the Kronecker symbol, δ(t) the Dirac function, Ns = αs + βs〈s〉, Nm = αm + βm〈m〉, Nk = k〈s〉〈m〉
and Np = γ〈m〉 + βp〈p〉, where 〈·〉 represents the expectation value. The Langevin approach can be viewed as an
approximation of the corresponding Master-equation for large numbers of molecules [9]. One of its advantage is that
it allows to add extra contribution to the noise (such as diffusion or external noise) in a simple way (see below).

Within the same framework, transcriptional burstiness [10–13] can be efficiently accounted for by allowing the
promoter g to switch between two (on/off) states [6, 14]:

dg

dt
= kon(1− g)− koffg + ξg, (A6)

with 〈ξg(t)〉 = 0,

〈ξg(t)ξg(t′)〉 = 2(kon + koff)〈g〉(1− 〈g〉)δ(t− t′)
and αi = α0

i g .

Here kon and koff are respectively the on and off rate of the promoter, and α0
i the maximal transcription rate when the

promoter is fully induced (g = 1). Arguably, the Langevin formalism is not natural to describe a two-state system.
Indeed, instead of considering a binary switch dynamics between the two allowed states (on/off), g is a continuous
variable, and its equation of evolution (Eq.A6) is equivalent to a diffusion process in a quadratic potential centered
around 〈g〉. However, steady-state values for the mean and the variance of the promoter occupancy are perfectly
described by the Langevin framework (see Fig. S4). As seen below, this requirement is enough to provide excellent
agreement with stochastic simulations in the regime where the linear noise approximation is adequate.
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2. Effect of diffusion

This Langevin formalism implicitly assumes that the different species are well-mixed in the cell and that spatial
correlations could be neglected. This is true so long as the typical diffusion time across the cell (of typical dimension
L) τc = L2/D is much shorter that the different relevant time-scales of the system. However, even in a well-mixed
solution, diffusion plays an effective role by renormalizing the interaction constant between two reactants [15]

k =
4πD`k0/Ω

4πD`+ k0
, (A7)

with Ω ∝ L3 the volume of the cell, D the relative diffusion constant between the two reactants, ` the typical scale
of the reaction volume and k0 the microscopic reaction rate which accounts for the local effective interaction between
the two molecules. If k0 � D` then k ≈ 4πD`/Ω and the macroscopic reaction is diffusion-limited. If k0 � D` then
k ≈ k0/Ω and the interaction is reaction-limited.

Moreover, interaction between two molecules occurs in a very small volume (`� L). Therefore, diffusive arrival of
molecules inside the reaction volume is also a stochastic process and leads to fluctuations in the local concentrations
of the different species [14, 16, 17]. The corresponding variation in the rate ksm would be given in the linear noise
approximation [9] by

δ(ksm) ≈ k (〈s〉δm+ 〈m〉δs) , (A8)

with δs (δm) the random variable characterizing the fluctuations of s (m) due to diffusion. As long as the typical
diffusion time in the reaction volume (∼ l2/D) is much shorter than the other characteristic times of the system,
terms in Eq.A8 could be considered as a white Langevin noise defined as

〈δ(ksm)〉 = 0, (A9)

〈δ(ksm)(t)δ(ksm)(t′)〉 = k2τ(〈s〉2|δm|2 + 〈m〉2|δs|2)δ(t− t′), (A10)

where τ is a typical time-scale, and |δs|2 and |δm|2 are the strengths of the diffusion fluctuations [16]

|δs|2 =
Ω/(D`)

τ
〈s〉 , |δm|2 =

Ω/(D`)

τ
〈m〉 , (A11)

and D = Ds +Dm is the relative diffusion constant between the two species.
Grouping together all the terms related to the intrinsic fluctuations of the interaction between the srRNA and the

mRNA, the diffusion noise can be captured by correcting the amplitude of the Langevin noise ξk by

Nk = k〈s〉〈m〉 (1 + Σ(〈s〉+ 〈m〉)) , (A12)

with Σ = kΩ/D`. For diffusion-limited interactions, the prefactor Σ is constant and independent of D. For reaction-
limited interactions, Σ ∼ k0/(D`)� 1, and the diffusion noise is negligible.

3. Accounting for interactions with auxiliary targets

Next, we generalize the framework discussed above by considering the interaction between the srRNA and the
auxiliary targets. These targets represent mRNAs molecules which could interact with the srRNA (i.e., containing
a binding site) but whose mean levels are just weakly affected by the srRNA. Interaction between a srRNA and an
auxiliary target leads to the formation of transient complexes. The kinetics of the numbers of auxiliary targets n and
of complexes c follow the Langevin-like equations

dn

dt
= αn − βnn− kasn+ kdc+ ξn + ξa + ξd, (A13)

dc

dt
= −βcc+ kasn− kdc+ ξc − ξa − ξd, (A14)

where αn is the total production rate over all auxiliary targets. ka = (4πD`k0
a/Ω)/(4πD`+ k0

a) is the association rate
between the srRNA and the auxiliary targets and kd = (4πD`k0

d)/(4πD` + k0
a) the dissociation rate of the transient

complex. The dissociation constant Kd = kd/ka = k0
dΩ/k0

a is independent of the diffusion constant. Degradation of
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the complex is accounted for via βc. The Langevin noises are characterized by their amplitudes: Nn = αn + βn〈n〉,
Nc = βc〈c〉, Na = ka〈s〉〈n〉(1 + (kaΩ/D`)[〈s〉+ 〈n〉]) and Nd = kd〈c〉.

To account for the effect of the auxiliary targets on the srRNA level, one has to augment Eq.A1 by (−kasn+ kdc+
βc(1− pd)c+ ξa + ξd + ξ′c), with pd the probability that the srRNA is also eliminated during the complex degradation,
and N ′c = βc(1− pd)〈c〉.

Note that for each type (principal and auxiliary) of targets, we focus on the dynamics of the whole ensemble. We
do not consider possible heterogeneities (e.g. in the values of k or αm) within each ensemble that, for example, may
lead to hierarchical crosstalk between principal targets [1] (see Section C 4).

Appendix B: Steady-state properties without auxiliary targets

In this section, we review the steady-state properties of srRNA regulation for a single target.

1. Mean levels

The mean steady-state levels could be estimated by setting to zero all the time derivatives and the Langevin noises
present in our set of equations (Eq.A1-A3) [1]:

〈s〉 =
αs − αm − λ+

√
(αm − αs − λ)2 + 4αmλ

2βs
, (B1)

〈m〉 =
αm − αs − λ+

√
(αm − αs − λ)2 + 4αmλ

2βm
, (B2)

〈p〉 =
γ〈m〉
βp

, (B3)

with λ = βsβm/k the leakage rate which control the efficiency of the regulation [1]. These equations describe a
linear-threshold response for the protein level (see Fig. S1 A) where three different regimes could be identified: (i) an
unrepressed regime (αs � αm) where the srRNA-induced degradation of the mRNA target is small and the protein
is expressed (〈p〉 ≈ pmax); (ii) a crossover regime around the threshold (αs = αm) where both the srRNA and the
mRNA levels are low; and (iii) a repressed regime (αs � αm) where most of the mRNAs are targeted by the large
srRNA pool and the expression of the protein is very low (〈p〉/pmax ≈ λ/αs � 1) .

2. Fluctuations

The stochastic nature of the biochemical reactions composing gene regulation pathways leads to intrinsic fluctuations
around the mean signal levels [18–20]. Total intrinsic fluctuations in the output protein level are the results of the
propagation of the different sources of intrinsic noise along the regulatory pathway [20]. A canonical way to appreciate
the strength of protein fluctuations is to consider the Fano factor ν = Cp,p/〈p〉, with Cp,p the variance of p at steady-
state. ν is a measure of the noise-to-signal ratio, that allows estimating the deviation of the corresponding distribution
of protein number from the Poisson limit (ν = 1).

a. Linear noise approximation (LNA)

To compute Cp,p, we apply the linear noise approximation [9] to the set of Langevin equations. If we consider small
perturbations around the steady-state (s = 〈s〉+ δs, m = 〈m〉+ δm and p = 〈p〉+ δp), the system of equations driving

the evolution of the vector ~δ = {δs, δm, δp} could be written in the general form

d

dt
~δ = J~δ + ~ξ, (B4)

where (Ji,j) is the Jacobian of the full system and ξi the different noise contributions (〈ξi〉 = 0, 〈ξi(t)ξj(t′)〉 =
Ni,jδ(t− t′)).
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There are two standard (and equivalent) approaches to estimate correlations between species in the weak noise
limit. The first consists in taking the Fourier transform of Eq.B4, leading to

~̃δ = A−1 ~̃ξ, (B5)

with Ai,i = ıω − Ji,i, Ai,j = −Ji,j (i 6= j), and 〈ξ̃i(ω)ξ̃∗j (ω′)〉 = 2πNi,jδ(ω − ω′). The power spectrum S(ω) is then
obtained from

〈~̃δ(ω)~̃δ†(ω′)〉 = A−1〈~̃ξ(ω)~̃ξ†(ω′)〉(A−1)† (B6)

= 2πδ(ω − ω′)[A−1N(A−1)†] ≡ 2πδ(ω − ω′)S(ω).

Using the Wiener-Khintchine theorem, the covariance matrix is then given by

C ≡ 〈~δ~δ†〉 =

∫
dω

2π
S(ω) =

∫
dω

2π
[A−1N(A−1)†]. (B7)

The second method starts by explicitly writing the time-derivative of the covariance matrix

d

dt
C ≡ d

dt
〈~δ~δ†〉 = JC + CJ† + 〈~δ~ξ† + ~ξ~δ†〉. (B8)

Formally, the solution of Eq.B4 is given by

~δ = exp[Jt]~δ0 +

∫ t

t0

dt′ exp[J(t− t′)]~ξ(t′). (B9)

Therefore,

〈~δ~ξ† + ~ξ~δ†〉 = exp[Jt]〈~δ0~ξ†〉+

∫ t

t0

dt′ exp[J(t− t′)]〈~ξ(t′)~ξ†(t)〉+ 〈~ξ~δ†0〉 exp[J†t] +

∫ t

t0

dt′〈~ξ(t)~ξ†(t′)〉 exp[J†(t− t′)]

= exp[Jt]〈~δ0〉〈~ξ†〉+

∫ t

t0

dt′ exp[J(t− t′)]δ(t− t′)N + 〈~ξ〉〈~δ†0〉 exp[J†t] +

∫ t

t0

dt′Nδ(t− t′) exp[J†(t− t′)]

= N. (B10)

Using this result in Eq.B8, one arrives at

d

dt
C = JC + CJ† +N, (B11)

(which can also be obtained using the Ω-expansion of the Master-equation [9]). The steady-state covariance matrix
is given by solving the linear system JC + CJ† +N = 0 (often referred to as the fluctuation-dissipation theorem).

In the following, analytical results were derived using the first method whereas numerical results were computed
using the second.

b. Protein fluctuations

The Fourier transform method applied to Eq.A3 gives

〈|δp̃|2〉 =
2βpp

ω2 + β2
p

+
γ2

ω2 + β2
p

〈|δm̃|2〉, (B12)

Cpp = 〈δp2〉 =

∫
dω

2π
〈|δp̃|2〉 = p+ γ2

∫
dω

2π

〈|δm̃|2〉
ω2 + β2

p

. (B13)

The last equation illustrates that the noise in the protein level is the sum of a characteristic Poisson noise and of
the propagation of the mRNA noise through a lowpass filter of frequency βp. Generally speaking, one expects the
protein lifetime to be longer than interaction time-scales and mRNA lifetimes. Therefore, the lowpass frequency can
be considered much lower than other typical frequencies in the system, and Eq.B13 reduces to

Cpp = p+
γ2

2βp
〈|δm̃|2(0)〉. (B14)
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The Fourier transform method applied to the couple (s,m) leads to

δm̃ =
(ıω + βs + km)ξ̃m + (ıω + βs)ξ̃k − kmξ̃s
(ıω + βs)(ıω + βm + ks) + km(ıω + βm)

. (B15)

Accounting for transcriptional burstiness leads to the same expression if we renormalize ξ̃s,m → ξ̃s,m+α0
s,mξ̃gs,m/(ıω+

kons,m + koffs,m).
Using Eq.B14 and B15 and after some algebra, we can find simple expressions for the Fano factor in the unrepressed

and repressed regimes. In the unrepressed regime, the Fano factor is given by

νunrep ≈ (1 + b) + b

(
1− 〈p〉

pmax

)[(
αm − λ
αm + λ

)
+

(
αmβsλ

(αm + λ)2

)(
Ω

2D`

)]
, (B16)

where b = γ/βm is the protein burst size (average number of proteins produced per mRNA) and pmax = γαm/(βpβm)
is the maximal mean protein number obtained when αs = 0. The first term of Eq.B16 reflects the burstiness of the
translation of the mRNA [18]. Diffusion noise intervenes in the second (first-order) term and has only a very small
effect on the global noise in this regime.

In the repressed regime, we find

νrep ≈ (1 + b∗) + bβm

(
Ω

2D`

)(
1− b∗

b

)
, (B17)

where b∗ = b/(1 + k〈s〉/βm) = b〈p〉/pmax � b is the effective protein burst size. b∗ is much smaller than the natural
value b since the effective lifetime of the mRNA ([βm + k〈s〉]−1) is greatly reduced by srRNA-induced degradation.
The last term in Eq.B17 is the signature of the diffusion noise (Eq.A12) which tends to increase the expression basal
level. For slow diffusion (compared with βm), the slow stochastic diffusion of a very low number of mRNA molecules
can lead to relatively high fluctuations in the local mRNA concentration and diffusion noise may dominate. In the
limit of high diffusion, intrinsic fluctuations are greatly suppressed by a strong srRNA regulation (νrep � νunrep).

In the crossover regime, the mRNA and srRNA levels are both very low. The ultra-sensitivity of the system leads
to large (near critical) fluctuations [21] (see Fig. S1 B). Indeed, near the threshold, the cell state becomes broadly
distributed and alternates between unrepressed and repressed states, yielding to a large distribution for the protein
level with a high noise-to-signal ratio [22]. This effect is significantly enhanced by strong interaction (k � 1). In
this regime, varying the diffusion modifies the strength of the fluctuations mainly by changing the sensitivity of the
system via k (Eq.A7).

c. Comparison with stochastic simulations

We now compare the results of the linear noise approximation to those of stochastic simulation. Simulations were
implemented using the Gillespie algorithm [23]. Fig. S3A shows the good agreement between the solutions of the
rate equations (Eqs.B1-B3) and of the full-stochastic system. Small deviations are observed around the threshold
where correlations between the levels of srRNA and mRNAs are important. As already pointed out by Mehta et
al [6], Fig. S3B shows the good quality of the LNA to describe the mean and the variance of the different species,
even in the cross-over regime where numbers of molecules are low and the fluctuations are high. The position and
amplitude of the peak of the Fano factor, predicted by the LNA, deviate only slightly from the result from Gillespie
simulations. However, while the LNA well describes the behavior of the covariance matrix of the system, it is known
[21] that the classic LNA fails to reproduce the bistable distribution due to the ultra-sensitivity of the system close
to the threshold.

As discussed above, the LNA perfectly describes the steady-state values for the mean and the variance of the
promoter occupancy even when we consider transcriptional burstiness (Fig. S4), despite the intrinsic binary nature
of the promoter states.

3. Effect of recycling the srRNA

Here we assume that only a fraction f of the srRNA is co-degraded with the principal target mRNA [24]. The
system of mass-action equations describing the dynamics of s, m, p and c0 (number of srRNA-mRNA complexes) is



	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
Fig. S1: Review of the steady-state properties of a protein regulated by a srRNA in the absence of auxiliary targets. 
Mean protein level (A) and the corresponding Fano factor (B) are plotted as a function of the ratio between the 
srRNA and the mRNA transcription rates for different values of the interaction rate k (full lines: 0.1 min-1, dashed: 1, 
dotted: ∞). Strong interactions lead to sharp (”ultra-sensitive”) linear-threshold response. Fixed parameters are (in 
min-1) αm = 1, βm = 0.1, βs = 0.1, γ = 4, βp = 1/200 (see SI Text, Sec.A for a detailed definition of each parameter). 
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Fig. S2: Impact of parameters on the transition between fast and slow diffusion limit in presence of auxiliary 
targets. In the fast transport regions (white zones), auxiliary targets help maintaining a low level of intrinsic noise 
for the principal targets. In the slow transport regions (black zones), diffusion noise dominates and the presence of 
auxiliary targets increases the internal fluctuations of the principal targets. The frontier between fast and slow 
modes was computed using the notion of information capacity of the regulatory pathway (see SI Text Sec. C for 
details). In (E), we augment the burstiness of the srRNA promoter by decreasing the switch-off rate. Fixed 
parameters as in Fig. S1, completed by (in min-1) βn = 0.1, βc = 0, k0 = 0.1, ka0 = 0.1, kd0 = 1, (see SI Text Sec. A for 
a detailed definition of each parameter). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10.01

0.1

1

10

principal target mRNA production rate α  (min  )−1

dif
fu

sio
n 

ra
te

 (m
in 

 )−1

0.01 1 100
srRNA−mRNA local interaction rate k  (min  )−1

0.01 0.1 1 10

0.01 0.1 1 10 100
srRNA promoter switch−off rate k   (min  )−1

2 50.5

0.001 1,000
0.01

0.1

1

10

dif
fu

sio
n 

ra
te

 (m
in 

 )−1

0.01

0.1

1

10

dif
fu

sio
n 

ra
te

 (m
in 

 )−1

principal target mRNA degradation rate β  (min  )−1

0.01

0.1

1

10

dif
fu

sio
n 

ra
te

 (m
in 

 )−1

0.001

C

D

B

E

0.01

0.1

1

10

dif
fu

sio
n 

ra
te

 (m
in 

 )−1

0.01 0.1 1 10
srRNA degradation rate β  (min  )−1

A

s m m

0
off

0.01

0.1

1

10

dif
fu

sio
n 

ra
te

 (m
in 

 )−1

0.01 0.1 1
fraction of co-degraded srRNA f
0.03 0.3

F



7

0 1 2 3 4
0

2

4

6

8

10

α
s
 (min

−1
)

<
m

>

0 1 2 3 4
0.8

1

1.2

1.4

1.6

1.8

α  (min
−1

)

F
a

n
o

 f
a

c
to

r

A B

0 10 20 30
0

2

4

6

8

10

<
m

>

 time (min)

D

0 10

0 1 2 3 4 5
0

0.5

1

1.5

2

20 30
 FPT (min)

0

0.1

0.2

0.3

0.4

0.5

p
ro

b
a

b
ili

ty
 d

is
tr

ib
u

ti
o

n
 f
u

n
c
ti
o

n

 FPT (min)

p
.d

.f
.

D

0.8

1

1.2

1.4

1.6

0 10 20 30

 time (min)

F
a

n
o

 f
a

c
to

r C

FIG. S3: Comparison of the linear-noise approximation (full lines) and stochastic simulations (dots/circles). Steady-state (A,B)
and temporal response (C) for the mean number of principal targets 〈m〉 (A,C) and the corresponding Fano factor ν (B,inset
in C) as a function of the srRNA production rate αs (A,B) or time (C), in absence (black) or presence (red) of auxiliary targets
(〈n〉 = 10 in A,B; and ntot = 100 in C,D). (D) Probability distribution function (p.d.f) of the first-passage time (FPT) for m
(αm = 1 min−1) to reaches 0, after the activation of the srRNA transcription (αs = 10 min−1) . The inset in D shows the
p.d.f of the FPT for m (αm = 5 min−1) to reach [〈m〉(0)]/2 (αs = 50 min−1). Same parameters as in Fig. S1, completed by
ka = kd = 1 min−1 and βn = 0.1 min−1.
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given by

ds

dt
= αs − βss− k+sm+ k−c0 + (1− f)βc0c0 + ξs + ξk+ + ξk− + ξ′c0 , (B18)

dm

dt
= αm − βmm− k+sm+ k−c0 + ξm + ξk+ + ξk− , (B19)

dc0
dt

= k+sm− k−c0 − βc0c0 − ξk+ − ξk− + ξc0 , (B20)

dp

dt
= γm− βpp+ ξp, (B21)

with k+ the association rate between s and m, k− the dissociation rate of c0 and βc0 � k− the active degradation rate
of the complexes. The amplitude of the Langevin noise terms are: Nk+ = k+〈s〉〈m〉, Nk− = k−〈c0〉, Nc0 = βc0〈c0〉
and N ′c0 = βc0(1− f)〈c0〉.

Substituting the steady-state mean value of c0 (〈c0〉 = k+〈s〉〈m〉/(k−+βc0)) in Eq.B18 and B19 leads to the system

0 = αm − βm〈m〉 − k〈s〉〈m〉 (B22)

0 = αs − βs〈s〉 − kf〈s〉〈m〉 (B23)

with k = k+βc0/(k− + βc0). The mean gene expression of the principal targets is then given by

〈p〉 =
1

2αm

(
αm − αs/f − λ′ +

√
[αm − αs/f − λ′)2 + 4αmλ′

)
pmax (B24)

with λ′ = βsβm/(fk). Thus, accounting for f renormalizes the leakage rate λ and the threshold position αs/f , but
does not change the general shape of the linear-threshold response. Since a fraction of srRNA are recycled, for a fixed
srRNA transcription rate, the regulation will be more efficient for smaller f (Fig. S5A).

Fig. S5B shows a significant increase in the noise-to-signal ratio of the principal target proteins when the srRNA is
highly recycled. Indeed, as the fluctuations of s and m are highly correlated in the ultra-sensitive cross-over regime
[6, 21, 22], the intrinsic noise of the output proteins will suffer from the increase of the srRNA fluctuations due to the
stochastic degradation of the complexes c0.

Appendix C: Steady-state properties with auxiliary targets

In this section, we discuss the impact of auxiliary target on steady-state properties of the principal targets.
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1. Mean levels

Substituting the steady-state mean value of c (〈c〉 = ka〈s〉〈n〉/(kd + βc)) in Eq.A1 and A13, allows inter-
preting the auxiliary targets as stoichiometric weak targets of the srRNA with an effective interaction constant
keff = kapd(βc/kd)/(1 + βc/kd)� k:

d〈m〉
dt

= 0 = αm − βm〈m〉 − k〈s〉〈m〉 (C1)

d〈s〉
dt

= 0 = αs − βs〈s〉 − k〈s〉〈m〉 − keff〈s〉〈n〉 (C2)

d〈n〉
dt

= 0 = αn − βn〈n〉 −
keff

pd
〈s〉〈n〉 (C3)

The explicit solution of this system is quite cumbersome so we do not give its exact form here.
The level of auxiliary targets would start to play a significant role only when keff〈n〉 ∼ k〈m〉 [1], i.e when αn ∼

(k/keff)αm � αm. In this situation, the auxiliary targets modify the steady-state level of the srRNA and then
indirectly the one of the principal target. This could help to finely tune the position of the transition between
repressed and unrepressed regime (Fig.2A of the main text) but this effect does not change the regulatory logic of the
post-transcriptional regulation.

In the following we focus on the regime where the auxiliary targets have a negligible effect on the steady-state mean
levels of the free srRNAs and of the principal targets.

2. Fluctuations

To appreciate the effect of auxiliary targets on the fluctuations of principal targets, we first simplify the model by
assuming that auxiliary targets have no effect on the mean steady-state level of principal targets (βc/kd → 0). Effects
of a finite βc on the fluctuations are briefly discussed in the end of Sec.C 3. Results are obtained, as previously, within
the linear noise approximation.

Applying the Fourier transform method to n and c (Eqs. A13 and A14), we find expressions for δñ and δc̃ as a
function of δs̃. Substituting these expressions in the linearized Fourier equation for s gives

δs̃ =
−k〈s〉δm̃+ ξs + ξk + ıω (ıω+βn)

E (ξa + ξd)− ıω ka〈s〉E ξn

βs + ıω(ka〈n〉) (ıω+βn)
E + k〈m〉

, (C4)

with E = (ıω + kd)(ıω + βn) + ıωka〈s〉.
For high numbers of auxiliary targets (〈n〉/Kd � 1), Eq.C4 leads to

〈|δs̃|2〉 ≈ 〈s〉 Ω

D`
. (C5)

The fluctuations due to the interaction with the principal targets (−k〈s〉δm̃ and ξk) as well as those due to the
srRNA production (including transcriptional burstiness) and degradation (ξs) have been absorbed by the large pool
of complexed srRNAs, leaving only the contribution due to diffusion noise. Since fluctuations of s propagate in those
of m and p, the Fano factor is given by

ν = 1 + b

[
1 + (k2〈m〉〈s〉/αm)(2〈m〉+ 〈s〉)(Ω/2D`)

1 + k〈s〉/βm

]
. (C6)

For high diffusion constant, this expression reduces to ν = 1 + b∗. Note that unlike the case with no auxiliary target,
where this expression was only valid in the repressed regime (see Eq.B16), here the reduction of fluctuations holds for
any level of the srRNA.

For an arbitrary number of auxiliary targets, no simple expression can be found for ν. Figures 2 B,C of the main
text show numerical results of the Fano factor for different values of the parameters.

It should be noted that the relevant parameter here is not 〈n〉 but 〈n〉/Kd, since the efficacy of the fluctuation
absorption depends on the size of the complexed pool (〈c〉 = (〈n〉/Kd)〈s〉). Changing αn, βn, ka and kd while keeping
〈n〉/Kd constant does not impact significantly on the behavior of the process.

As before, Fig. S3B shows the remarkable ability of the LNA to describe the general behavior of post-transcriptional
regulation in presence of auxiliary targets.
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3. Information capacity

In the last section we saw that interactions with auxiliary targets reduce or increase the noise-to-signal ratio,
depending on the importance of diffusion noise in the system. Next we aimed to quantify the impact of these results
on the function of the srRNA regulatory pathway. Motivated by its recent successful applications to gene regulation
[25–28], we decide to focus on the capacity of this pathway to convey information.

In information theory, transfer of information between an input X and an output Y via a given channel is well-
characterized by the concept of mutual information [29]:

I(X;Y ) =

∫
dX

∫
dY P (X,Y ) log2

[
P (X,Y )

P (X)P (Y )

]
, (C7)

where P (X,Y ) is the joint probability distribution function of X and Y , P (X) and P (Y ) are the marginal probability
distribution functions. Intuitively, the mutual information represents the number of different output levels achievable
by varying the input, and depends on the intrinsic noise properties of the channel. The maximal mutual information
with respect to the distribution of inputs is called the information capacity of the channel.

Since biological circuits could be seen as information channel between environmental or internal signals and internal
responses, information theory concepts have been recently applied to genetic networks. It can be shown [25, 26] that
the information capacity of such circuit could be approximated, in the low-noise limit, by

Imax = log2

(
1√
2πe

∫
dX

∣∣∣∣d〈Y 〉(X)

dX

∣∣∣∣ 1

σY (X)

)
, (C8)

with σ2
Y the variance of the output for a given input level. The information capacity therefore depends directly on

the variation in the mean output level in response to a change in the input level and on the intrinsic noise properties
of the channel (via σY ). For example, a system with a flat or a very noisy response cannot carry information, and
would have a low information capacity.

a. Effect of auxiliary targets

We use Eq.C8 to estimate the global effect of auxiliary targets and diffusion on the information capacity of the
srRNA post-transcriptional regulation. We define the input as the transcription rate αs of the srRNA and the output
as the protein level p. Fig. S6 shows the effect of auxiliary targets on the information capacity of the srRNA regulation.
For slow transport, diffusion noise dominates and the information capacity is reduced by an increase of the number
of targets. In contrast, for fast transport, the pool of complexed srRNA allows an efficient absorption of the srRNA
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S2.
fluctuations in the crossover region, and promotes a good information transfer. More precisely, there exists a value
for the diffusion parameter d ≡ D`/Ω such that, for d > dc, adding auxiliary targets in the system decreases globally
the intrinsic noise of the output protein and improve the information capacity of the post-transcriptional regulation;
for d < dc, auxiliary targets increase the output noise and the information transmission is less efficient.

The value of dc depends on the different parameters of the system in a non trivial way, as shown in Fig. S2. As
expected the value of the production rate of the principal targets does not influence the position of the transition
(Fig. S2 C), since αm mainly defined the position of the different regulation regimes but not the general behavior of
the process. More surprisingly, dc does not depend significantly on the microscopic reaction rate k0 (Fig. S2 D).

The main contribution comes from the srRNA and mRNA turnover rates (Fig. S2 A,B). Since βm controls the
strength of the diffusion noise of the srRNA-mRNA interaction (see Eq.B17), high mRNA degradation rate will have
an impact on dc. Regarding βs we note that at the transition the fluctuations of the srRNA with (see Eq.C5) or
without (〈|δs̃|2〉 ∼ 〈s〉/βs) auxiliary targets have the same amplitude. This implies that βs ∼ d. Therefore, increasing
βs reduces the influence of burstiness absorption, and diffusion noise starts to dominate at higher values of the diffusion
constant.

When the srRNA transcription is highly bursty, one gain in information capacity even at slow diffusion (Fig. S2
E). This is due to buffering of transcriptional noise, which is higher for a bursty promoter, by the auxiliary targets.
Diffusion noise, however, does not depend on the nature of the transcription process. Thus, for bursty promoters the
advantage of auxiliary targets surpasses the disadvantage dues to diffusion noise even at slow diffusion.

b. Effect of the degradation of the complex

The previous part suggests that if d > dc, the more auxiliary targets the better. However, as explained in Sec.C 1,
at high number of auxiliary targets, the level of the free srRNAs and therefore that of the principal targets become
influenced by the presence of the auxiliary targets due to the (slow but finite) degradation of the complexes. If we set
βc to a non-zero value, in addition to affect the fluctuations (∼ σY ) of principal targets, the number of auxiliary targets
will also influence the sensitivity of the regulatory logic of the principal targets (∼ d〈Y 〉/dX). Therefore, from Eq.C8
we expect a change in the behavior of the information capacity as a function of n. While the boundary between slow
and fast transport mode does not significantly depend on the degradation rate of the complex (Fig. S7B), information
capacity in the fast diffusion regime exhibits a maximum at a finite number of auxiliary targets (Fig. S7A). This then
defines an upper limit for the number of auxiliary targets that improves the information transfer. Auxiliary targets
act also as kinetic traps for the srRNAs and slow-down the regulation process, as discussed below, imposing a stronger
bound on the number of auxiliary targets.
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c. Effect of recycling the srRNA

We saw in section B 3 that the partial recycling of the srRNA during the degradation of the complex srRNA-
principal mRNA increased the intrinsic fluctuations of the principal targets. Therefore, as in the situation of a bursty
srRNA transcription, one gain in information capacity even at slow diffusion (Fig. S2 F). Indeed, auxiliary targets
buffer the intrinsic noise of the free srRNAs which is more important at low f , and diffusion noise does not impact the
degradation of the complex c0. Thus, the advantage of auxiliary targets surpasses the disadvantage due to diffusion
noise even at slow diffusion.

4. Effect of strong auxiliary targets

In our work, we have identified the principal targets with the few strongly affected targets. However, some of these
targets may not be phenotypically relevant and may be defined as “strong auxiliary” targets [30]. In this section, we
briefly discuss the effect of such targets on the steady-state properties of the principal targets by augmenting our set
of Langevin equations by

dma

dt
= αa − βmma − ksma + ξa + ξka (C9)

with ma the number of strong auxiliary mRNAs.
Fig. S8A shows that strong auxiliary targets have a significant impact on the regulatory logic of principal targets,

shifting the threshold position (αs ∼ αm+αa) to higher values. They play a role a sponge by sequestering the srRNA
molecules away from the principal targets and therefore delaying the entry in the silenced regime.

However, Fig. S8B illustrates that the buffer effect played by weak auxiliary targets is not perturbed by the presence
of strong auxiliary targets.
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Appendix D: Kinetic properties

In this section, we describe the numerical method used to compute the first passage time (FPT) statistics. We also
present results on FPT if we account for diffusion noise.

1. Method

We use the Gillespie algorithm [23] to sample exact stochastic trajectories of the process where, for simplicity, we
neglect fluctuations in the total number of auxiliary targets ntot. Each simulation starts with a configuration sampled
from the steady state distribution of principal targets (Poissonian distribution with mean αm/βm). At t = 0 the
transcription of srRNA is switched on, and the kinetic response is assessed by measuring the statistics of the first
passage time when the number of principal targets reaches zero.

2. Effect of diffusion

To estimate the effect of diffusion on the first-passage time distribution, we use the linear-noise approximation (see
Sec.B 2 a). In the LNA, fluctuations around the mean are assumed to be small and normally distributed [9]. The total
probability P (m, s, c; t) to observe the microstate (m, s, c) at time t is then given by a multivariate normal distribution

P (m, s, c; t) =
1

(2π)3/2|det[C(t)]|1/2
exp[−X(t)†C−1(t)X(t)/2], (D1)

with the vector X = (m− 〈m〉(t); s− 〈s〉(t); c− 〈c〉(t)). The evolution of the covariance matrix C(t) follows Eq.B11.
Denoting Sm0

(t) =
∫∞
m0

dm
∫
dsdc P (m, s, c; t) the probability for m to be larger than m0 at time t, the first-passage

time probability hm0
(t) at m0 is given by

hm0
(t) =

− d
dt [Sm0

(t)]

Sm0
(0)− Sm0

(∞)
. (D2)

Fig. S3C shows the very good agreement between results from the LNA and those from the Gillespie algorithm for the
time evolution of the mean and the variance of m. However, the distribution of the FPT to reach m0 = 0 predicted
by the LNA has a long tail which dramatically increases (by almost 8 times) the predicted variance for the FPT (see
Fig. S3D). This underlines the limits of the LNA to describe the exact probability distribution functions in systems
with small number of particles.

In order to study the effect of diffusion on the FPT distribution, we place ourselves in a regime where the LNA
should well characterize also the first-passage time. We choose higher production rates for m and s (αm = 5 min−1,
〈m〉(0) = 50 and αs = 50 min−1) and we study the first-passage time to reach m0 = 〈m〉(0)/2 = 25. The inset in
Fig. S3D confirms the success of the LNA in this regime.

Fig. S9A and B show the mean and variance of the FPT as a function of the diffusion rate and of the number of
auxiliary targets. Low diffusion rates exhibit higher mean and variance. Even for a small number of auxiliary targets
where the mean response of the srRNA-repression outperforms the one of the TF-like repression, the uncertainty of
the response in the slow transport mode could be very large.

The entire probability distribution function for the FPT as a function of the diffusion rate is shown in Fig. S9C, D
and E. For fast diffusion, as expected, the distributions are well peaked around a mean value, which increases with
the number of auxiliary targets. When the diffusion is slow, however, all interactions become diffusion limited, and
diffusion dominates the noise. In this limit the distribution is peaked at short first-passage times, due to possible
avoidance of the auxiliary targets, but exhibits a long tail, due to possible long searches for the principal targets.

Appendix E: Conservation of microRNA targets

In this section we briefly describe the methods used to analyze the evolutionary data on microRNA targets.
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1. Data set

We study the conservation of microRNA targets on a set of 87 microRNA families conserved among vertebrates
(Dataset S1). The dataset, including sequences of seed regions and mature species for each microRNA in each of
the 12 studied vertebrate genomes, was downloaded from the TargetScan web site (www.targetscan.org). The list
of aligned 3’UTRs (corresponding to 30,887 genes) needed to search for target sites was downloaded from the same
website.

As a control, we performed parallel analysis on a set of 1,000 “mock” microRNAs (Dataset S2). The mature
sequences of the mock microRNAs were constructed by randomly picking one of the 87 natural mature sequences,
and replacing the seed regions by randomly generated sequence having the same dinucleotide composition as the seed
regions of the 87 natural microRNAs (Fig. S10).

2. Analysis

a. Defining target sites and conservation score

We used the TargetScan algorithm (implemented as perl script, available for download from the TargetScan website)
to obtain the list of putative binding sites for each microRNA (real or mock) in the corresponding genome. The list
of gene targets of a particular microRNA is defined as the list of all genes that have at least one putative binding sites
of that microRNA in their 3’UTR. Fig. S11 shows that for all species the distributions of target numbers is similar
for real and random seeds.

To investigate the conservation of the number of targets across species, we normalize the predicted number of targets
Ni,s per microRNA i in each species s by the total number of genes per species Ntot,s in the alignment. This allows to
correct for the loss of gene homologs as the evolutionary distance with human increases. The relative fluctuation of
the number of targets for the microRNA i across species is then defined as the ratio between the standard deviation
and the mean of the ensemble of values for Ni,s/Ntot,s (s=human, chimpanzee,..., frog).
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Taking the list of human targets as reference, we represent the predictions of Targetscan by a binary array xti,s,

where xti,s = 1 if gene t is a target of microRNA i in human and in species s, and 0 otherwise. The observed frequency

f ti of t for microRNA i is then defined as the mean value of xti,s across the species

f ti =
1

11

∑
s6=human

xti,s. (E1)

We exclude human from the sum since xti,s is always equal to 1 in human by definition. To estimate the conservation

of a human target in vertebrates, we define a conservation score Cti as the ratio between f ti and the background
frequency f t0 (Cti = f ti /f

t
0) where f t0 = (1/11)

∑
s6=human δt,s with δt,s = 1 if gene t is present in species s, 0 otherwise.

f t0 represents an upper bound for f ti . For example, Cti = 1 means that gene t is a target of microRNA i in every
species where t is present. This target-dependent normalization of f ti permits unbiased comparisons between all the
genes even if some are not present in every species.
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FIG. S12: Same as in Fig. 6B of the main text but for different definitions of the strong and weak ensembles. The limit (in
log2 of the fold-change) is fixed to −0.4 (A), −0.8 (B) or -1 (C).
b. Conservation of weak and strong targets

To investigate the conservation of principal and auxiliary targets, we use published experimental data that measured
global proteome response to transfection of a microRNA (miR-1, miR-124 and miR-181) in (human) HeLa cells [31].
For each transfected microRNA, we extract from the experimental dataset the protein level change of each of its
target genes (as defined above), if it had been measured. Dataset S3 contains the list of these genes for miR-1 (382
genes), miR-124 (249 genes) and miR-181 (345 genes), as well as the corresponding fold-change in protein level (in
log2 unit).

The distribution of fold-repression does not offer a natural separation between principal and auxiliary targets in
HeLa cells. We therefore split the targets based on their fold-change into an subset of “strong targets”, representing
targets with a fold-repression below a given arbitrary limit (log2 of the fold-change ≤ −0.6) and the complementary
subset of “weak targets”. We choose this arbitrary limit in order to have enough statistics for the strong target
ensemble. We verified that our conclusions do not depend on the choice of this limit (see Fig. S12).

For each gene t of a given subset (weak or strong), we estimate its conservation scores relatively to the transfected
natural microRNAs, or to the random microRNAs (({Cti} for i ∈ {miR-1, miR-124, miR-181} or i ∈ {random
seeds}). Comparisons between the corresponding distributions of conservation scores allows to check the specificity
of conservation properties of weak and strong targets of natural microRNAs.

Appendix F: Parameters used in the main text

Typical values for parameters are only known for bacterial srRNA pathways [1, 4]. Therefore, we choose to use
these ranges of values to plot our figures. However, Fig. S2 shows that the effects described in the paper are robust
over a wide range of parameters values which likely also includes the eukaryotic pathways.

1. Figure 2 A

Fixed parameters are (in min-1) αm = 1, βm = βs = 0.1, γ = 4, βp = 1/200, k = 0.1, ka = k, kd = 1, βn = 0.1,
βc = 1/200, pd = 1/20.

2. Figures 2 B,C and 3

Fixed parameters are (in min-1) αm = 1, βm = βs = 0.1, γ = 4, βp = 1/200, βn = 0.1, βc = 0, k0 = 0.1, k0
a = 0.1,

k0
d = 1, d =∞ ( A) or 0.05 (B).
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3. Figures 4 and 5

Fixed parameters are (in min-1) αm = 1, αs = 10, βm = βs = 0.1, k = ka = 0.1, kd = 1.
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