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1 Supplementary information

1.1 The binding-diffusion model

In the following we derive a model for the analysis of binding reactions by FCS following
and extending an approach originally developed by Elson and Magde [1]. The basic
biological assumption of this model is that proteins can either freely diffuse or can be
immobilized by binding to specific binding sites (see figure S1). Diffusion is assumed to
follow Fick’s law, while binding is modelled as a single-step bimolecular binding reaction.
This reaction-diffusion system can be described by a system of differential equations:

∂[A]

∂t
= D∇2[A]− kon[B][A] + koff [AB]

∂[B]

∂t
= −kon[B][A] + koff [AB] (1)

∂[AB]

∂t
= kon[B][A]− koff [AB]

where [A] is the concentration of unbound proteins, [B] is the concentration of available
binding sites, and [AB] is the concentration of the AB complex. D is the diffusion
constant of A, ∇2 is the Laplacian operator, kon is the association rate constant, and
koff is the dissociation rate constant.

To simplify eq. (1), the concentration of binding sites, [B], is assumed to be much
larger than the concentration of binding partners, [A] + [AB]. Under this condition,
changes in [B] due to binding can be neglected and [B] can be assumed to be constant.
This eliminates the second equation from eq. (1) and also introduces a pseudo-first-order
association rate constant kon[B].

1.2 Derivation

1.2.1 The concentration correlation function

The first step in calculating the fluorescence autocorrelation function is to calculate
the concentration correlation function. For a system of m labelled components, the
concentration correlation function, φjl(r, r

′, t), compares the concentration fluctuations
of component j at position r to the concentration fluctuation of component l at position
r′ and after time τ :

φjl(r, r
′, τ) = 〈δCj(r, 0)δCl(r

′, τ)〉 (2)

Here, δCl(r, τ) = Cl(r, τ)− 〈Cl〉 is the local deviation from the average concentration
〈Cl〉.

If the δCl are small with respect to the equilibrium concentrations, chemical rate
equations such as those in eq. (1) can be used to describe the relaxation of the δCl. In
general terms, the system of differential equations for the δCl can be written as:
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Figure S1: Schematic depiction of the binding-diffusion model. The diffusion constant
D describes the labelled protein’s diffusion, while the association rate con-
stant kon[B] and the dissociation rate constant koff describe the transient
interaction with immobile binding sites. The confocal observation volume,
from which the fluorescence fluctuations are observed, is modelled by a three-
dimensional Gaussian.
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∂δCl(r, τ)

∂τ
= Dl∇2δCl(r, τ) +

m∑
k=1

TlkδCk(r, τ) (3)

Here, the matrix elements Tlk are the chemical rate constants and the equilibrium
concentrations of the components, and Dl is the diffusion constant of component l.

To calculate φjl, eq. (3) needs to be solved for the δCl(r, τ). This is achieved by
Fourier-transformation, which transforms eq. (3) into:

∂C̃l(q, τ)

∂τ
=

m∑
k=1

MlkC̃k(q, τ) (4)

where C̃l(q, τ) = (2π)−3/2
∫
d3r eiqrδCl(r, τ) is the Fourier-transformation of δCl(r, τ),

and Mlk = Tlk − Dlq
2δlk. For the particular binding-diffusion system in eqs. (1) with

the two species A and C, the matrix M is:

M =

(
−kon[B]− q2D koff

kon[B] −koff

)
(5)

The solution of the system in eq. (4) is expressed through the eigenvalues λ(s) and the
matrix of eigenvectors X of the matrix M :

C̃l(q, τ) =
m∑
s=1

X
(s)
l eλ

(s)τ
m∑
k=1

(X−1)
(s)
k C̃k(q, 0) (6)

This result is inserted into eq. (2), and Fourier-synthesis is performed:

φjl(r, r
′, τ) = (2π)−3/2

∫
d3q e−iqr

′〈δCj(r, 0)C̃l(q, τ)〉

= (2π)−3/2

∫
d3q e−iqr

′
m∑
s=1

X
(s)
l eλ

(s)τ
m∑
k=1

(X−1)
(s)
k 〈δCj(r, 0)C̃k(q, 0)〉

= (2π)−3

∫
d3q e−iqr

′
m∑
s=1

X
(s)
l eλ

(s)τ
m∑
k=1

(X−1)
(s)
k

∫
d3r′′ eiqr

′′〈δCj(r, 0)δCk(r
′′, 0)〉 (7)

The zero-time correlations φjk(r, r
′′, 0) = 〈δCj(r, 0)δCk(r

′′, 0)〉, can be simplified as-
suming an ideal chemical solution. Under this condition, the positions of different
molecules of the same species as well as those of different species must be uncorrelated,
and:

〈δCj(r, 0)δCk(r
′′, 0)〉 = 〈Cj〉δjkδ(r− r′′) (8)

Hence, the mean square fluctuation of Cj in a given volume is equal to the mean
concentration 〈Cj〉, as dictated by Poisson statistics.
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By inserting eq. 8 into eq. 7, and performing the integration over r′′, we arrive at the
following equation for the concentration correlation function1:

φjl(r, r
′, τ) =

〈Cj〉
(2π)3

∫
d3q eiq(r−r′)

m∑
s=1

X
(s)
l eλ

(s)τ (X−1)
(s)
j (9)

As has been shown elsewhere, this function is symmetric with respect to the indices j
and l: φjl(r, r

′, τ) = φlj(r, r
′, τ) [1].

1.2.2 The normalized intensity correlation function

The normalized intensity correlation function G(τ) is defined by the fluorescence inten-
sity fluctuations δi(t) measured at time t and after time t + τ , averaged over all t, and
normalized to the squared mean intensity:

G(τ) =
〈δi(0)δi(τ)〉
〈i(t)〉2

(10)

The intensity fluctuations δi(τ) of component j are proportional to the concentration
fluctuations δCj(r, τ), as well as to the excitation intensity I(r), and the product of the
jth component’s extinction coefficient and fluorescence quantum yield, Qj :

δi(τ) =

∫
d3rI(r)

m∑
j=1

QjδCj(r, τ)s (11)

In fact, I(r) describes both the illumination as well as detection properties of the
optical setup. For a confocal microscope, I(r) is approximated by a three dimensional
Gaussian with the transversal width r0 and the axial width z0:

I(r) = exp
(
−2
(
x2 + y2

)
/r2

0

)
· exp

(
−2z2/z2

0

)
(12)

Inserting eq. (11) into eq. (10) yields:

G(τ) =
1

〈i(t)〉2

∫∫
d3r d3r′ I(r)I(r′)

∑
jl

QjQlφjl(r, r
′, τ) (13)

Because of the symmetry of φ, the number of summation terms that actually have to
be calculated can be reduced by writing:

G(τ) =
1

〈i(t)〉2

∫∫
d3r d3r′ I(r)I(r′)

∑
j

∑
l≤j

(2− δjl)QjQlφjl(r, r′, τ) (14)

With eq. (9), this leads to:

1With
∫
d3r′′ eiqr

′′
〈Cj〉δjkδ(r− r′′) = 〈Cj〉δjkeiqr.
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G(τ) =
1

〈i(t)〉2

∫
d3q

∑
j

∑
l≤j

(2− δjl)

QjQl
〈Cj〉
(2π)3

m∑
s=1

X
(s)
l eλ

(s)τ (X−1)
(s)
j

∫∫
d3r d3r′ eiq(r−r′)I(r)I(r′)l (15)

With the integral:∫∫
d3r d3r′ eiq(r−r′)I(r)I(r′) = (π/2)3 r2

0 z0 e
(−r20(q2x+q2y)/4−z20q2z/4) (16)

and the mean intensity

〈i(t)〉 =

∫
d3rI(r)

m∑
j=1

Qj〈Cj〉 = (π/2)3/2 r0
√
z0

m∑
j=1

Qj〈Cj〉 (17)

the general form of the normalized intensity correlation is:

G(τ) =
1

(
∑
Qj〈Cj〉)2

∫
d3q e(−r

2
0(q2x+q2y)/4−z20q2z/4)

∑
j

∑
l≤j

(2− δjl)QjQl
〈Cj〉
(2π)3

m∑
s=1

X
(s)
l eλ

(s)τ (X−1)
(s)
j (18)

1.2.3 The correlation function in cylindrical coordinates

To simplify the calculation of G(τ), the integration over q is performed in cylindrical
coordinates, using the substitutions qx = qr cos qφ, qy = qr sin qφ, q2

x + q2
y = q2

r , dqxdqy =
rdqrdqφ. Instead of integrating over qx and qy from -∞ to∞, the integration is performed
over qφ and qr from 0 to 2π and 0 to ∞, respectively. The integral is simplified further
by taking into account the fact that the integral is symmetric with respect to qz. Hence:

G(τ) =
1

(2π
∑
Qj〈Cj〉)2

∫ ∞
0

dqr

∫ ∞
0

dqz re
(−r20q2r/4−z20q2z/4)

∑
j

∑
l≤j

(2− δjl)QjQl〈Cj〉
m∑
s=1

X
(s)
l eλ

(s)τ (X−1)
(s)
j (19)

Note that q2 = q2
r + q2

z is also replaced in the matrix M .
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1.3 Parameter dependence

For the matrix M defining the binding diffusion model (eq. (5)), the integral in eq. (19)
cannot be solved analytically but has to be approximated numerically. Figure 2 shows
numerical solutions to eq. (19) calculated for different parameter values. In these ex-
amples the geometrical parameters are set to r0 = 0.2µm and z0 = 4.75 r0, reflecting
the optical properties of the experimental setup used in this work. The total concen-
tration of fluorescent proteins is set to Ctotal = [A] + [AB] = 78 nM, corresponding to
an average of 10 particles in the observation volume. This concentration of fluorescent
proteins is typically in encountered in live cell FCS experiments such as those described
in the main text. The solutions are shown as a function of the diffusion constant, the
dissociation rate constant, and the fraction of unbound proteins, F . Here, F is defined
as the average concentration of unbound protein, [A], relative to the total concentration,
Ctotal = [A] + [AB]. Based on the law of mass action, F can be expressed as a function
of the association and dissociation rate constants:

F =
[A]

Ctotal
=

koff

kon[B] + koff
(20)

Typical diffusion constants of proteins that are freely diffusing in living cells and are
not part of large multi-protein complexes range from 5µm2 s−1 to 50µm2 s−1, while
dissociation rate constants of proteins transiently interacting with a macromolecular
structure such as chromatin can range from 1 s−1 to 100 s−1 (see for example [2]). In
this parameter regime, diffusion and binding kinetics produce two clearly distinguishable
components in the autocorrelation curves (figure 2). The first component is dependent
on the diffusion constant only and shifts to shorter correlation times when D is increased.
The dissociation rate constant only affects the second component that shifts to shorter
times when koff is increased. The fraction of unbound proteins determines the relative
contribution of the two components to the correlation curve.

To conclude, the binding-diffusion model derived here allows the quantitative analysis
of binding reactions between mobile proteins and immobile binding sites by FCS. By
fitting this model to experimental data, it should be possible to determine the diffusion
constant, the dissociation rate constant, as well as the steady-state fraction of unbound
proteins. It is important to point out, that this information can only be reliably gained
from curve fitting if the two autocorrelation components are sufficiently well separated
and the dissociation rate is within a certain range. If the interaction is highly transient,
i.e. koff is very large, the intensity fluctuations are dominated by diffusion and only a
single autocorrelation component is visible. In this case, fitting of the binding-diffusion
model to the data will not lead to correct estimates for the binding and diffusion param-
eters because changes in D and koff will compensate each other. If, on the other hand,
the interaction is very stable, i.e. koff is very small, bound proteins will eventually reside
in the focal volume so long, that they will be bleached. Strong photobleaching results in
an artifactual autocorrelation component at long correlation times, which would prevent
the correct analysis of the diffusion and binding components.
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1.4 Calculation of the apparent interaction strength

In a chemical binding equilibrium, the KD is defined as

KD = [A][B]/[C] (21)

Here, [A] and [B] are the concentrations of unbound binding partners A and B, while
[C] is the concentration of the complex between A and B. With the total concentrations
[A]T = [A] + [C] and [B]T = [B] + [C], eq (21) becomes:

KD = [C]

(
[A]T
[C]
− 1

)(
[B]T
[C]
− 1

)
(22)

The total concentrations of A and B and the concentration of C are related to the
observables of FCCS experiments, the auto- and crosscorrelation amplitudes, in the
following way:

[A]T = 1/(GAVeff) (23)

[B]T = 1/(GBVeff) (24)

[C] = GX/(GAGBVeff) (25)

Here, GA and GB are the autocorrelation amplitudes of A and B, GX is the crosscor-
relation amplitude. Veff is the size of the observation volume. For the sake of simplicity,
Veff is assumed to be equal for all channels, an assumption that is only approximately
correct. Inserting these equations into eq. (22), yields:

KD =
GX

Veff GAGB

(
GA
GX
− 1

)(
GB
GX
− 1

)
(26)

The calculation of a KD for protein-protein interactions is complicated by two char-
acteristic features of live cell measurements. First, the interaction takes place in the
presence of a potentially large number of competing interactors. Second, in addition
to the labelled proteins, which are encoded by the DNA plasmid used for transfection,
there is an unknown fraction of unlabelled proteins expressed from their genomic lo-
cation, which participate in the binding equilibrium. It is therefore not possible to
calculate an absolute KD for the binary interaction of A and B. Hence, crosscorrelation
experiments were quantified by calculating a dimensionless apparent interaction strength
to compare the extent of interaction in different samples. This also allowed to neglect
the effect of an impartial overlap of the two observation volumes, which should be the
same in all samples. The apparent interaction strength was calculated as the inverse of
the KD, with Veff = 1. The apparent interaction strength was normalized between the
highest and lowest mean values observed.
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Figure S2: Representative autocorrelation curves of EGFP measured in the nucleus of
an interphase HeLa cell (A), the cytoplasm of an interphase HeLa cell (B),
on the chromatin of a HeLa cell in metaphase (C), and in the cytoplasm of a
HeLa cell in metaphase (D). The measurements were fit with a model of free
diffusion (red line). The upper panel shows the fit residuals. The insets show
confocal images of the measured cells, where the measurement positions are
indicated by white crosses. Scale bars: 5µm

8



Figure S3: Theoretical autocorrelation curves calculated from the binding diffusion
model. The diffusion constant is varied from 5 to 100 µm2 s−1 (top panel),
the fraction of unbound proteins is varied from 0.1 to 0.9 (middle), and the
dissociation rate constant is varied from 1 to 100 s−1 (bottom). In each case
the arrow points in the direction of increasing parameter values.
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Figure S4: A representative autocorrelation curve of RCC1-EGFP recorded in the nu-
cleus of an interphase HeLa cell, fit with a single component diffusion model
(A), a two component diffusion model (B), and the binding diffusion model
(C).
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Figure S5: Correlation of the particle number determined for RCC1-EGFP in interphase
nuclei and the parameters D, koff , and F . Each circle represents a FCS
measurement in an individual cell.
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Figure S6: FCS measurements on histone H2B-EGFP show a fast bleaching of the H2B-
EGFP fluorescence (top), which indicates that nucleosomes are immobile on
the timescale of the FCS experiment. Under the same conditions, the fluo-
rescence of RCC1-EGFP is stable (bottom). Both measurements were taken
at the same laser power in nuclei of HeLa cells.
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Figure S7: Representative autocorrelation curves of NT-EGFP measured in the nucleus
of an interphase HeLa cell (A), on the chromatin of a HeLa cell in metaphase
(B), and in the cytoplasm of a HeLa cell in metaphase (C). NT-EGFP refers
to a fusion protein comprising the first 27 amino acids of RCC1γ fused to
EGFP. All data were fit with a model for free diffusion. The upper panel
of each graph shows the fit residuals. Insets show confocal images of the
measured cells, where the white crosses indicate the measurement positions.
Scale bars: 5 µm.
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Figure S8: Representative crosscorrelation measurements showing autocorrelation curves
of the EGFP channel (blue), the mCherry channel (red), and the cross-
correlation curve (black). All measurements were taken in nuclei of inter-
phase HeLa cells coexpressing either RCC1-EGFP and mCherry-Ran (A),
RCC1-EGFP and mCherry-RanT24N (B), EGFP and mCherry-RanT24N
(C), RCC1-EGFP and mCherry (D), or expressing EGFP-p38-mCherry (E).
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