
El Emam et al.: A secure distributed logistic regression protocol for the detection of rare adverse drug events 

 
1/34: AppendixPV-v8.docx 

Appendix: Details of the SPARK Protocol 

1 Logistic Regression 
Let  1, , NY Y  Y  be independent Bernoulli variables with mean    1E , , N    Y μ .  Given an 

intercept and a set of covariates  1,, , v  X 1 X X , where  1  , , Nj j jx x   X  contains the values for 

covariate j , we define a logistic model with parameters β using the formula:  

 logit
1

log
 

  
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μ
μ Xβ
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(we say that the logit function links the random component μ  to the systematic component Xβ ). The log-

likelihood  ;l β y  of the full model, which can be used to assess model fit (usually given as -2 log-likelihood), 

equals:  
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where iX  is row i  from the design matrix X .   

For a set of observations  1, , Ny y y , we can determine parameter estimates b  at which the log-

likelihood  ;l β y  of the model is maximized using the Newton-Raphson method (or, equivalently, the Fisher 

scoring method, since the estimated and observed information matrices are the same for a logistic model [1]). 

That is, we iteratively compute the estimates using 
1( 1) ( ) ( ) ( ) ,t t t t     b b u at iteration t , where 

 ( ) ( )t t u X y p  is the estimated score vector with probability of success     -1logitt tp X  b , and 

( ) ' ( )t t X W X  is the estimated information matrix with weight matrix 
    ( ) diag 1t tt
i ip p   W .  This 

fitting method can be used for any generalized linear model (with new derivations for the score vector and 
information matrix) [2], and has been shown to converge to a solution in fewer iterations than other optimization 
algorithms applied to logistic models [3].  

2 Current Protocols and Systems 
Assume there are k  sites that are the data sources for the pooled analysis. They want to securely collaborate 
with each other to construct a logistic regression model on the pooled data set, but they are unable to share 
personal health information with each other. This kind of data is referred to as “horizontally partitioned data” 
because each party has a subset of records from the whole data set containing the information on all the 
attributes. 

Let each site iP  have its own data set iD  such that 
1

k

i
i

D D  is the pooled data set. Let there be v  

independent attributes in each record of the dataset D . We assume that the objective of the sites is to 
construct a logistic regression model on D  (or other type of generalized linear model) without exchanging raw 
data. We assume that the variables represent sensitive personal health information, and should an adversary 
extract the raw values then this would be considered an inappropriate disclosure by the computation protocol. 
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A number of different distributed data network approaches have been proposed and used in the literature [4-7]. 
Below we review the architectures of these distributed networks and explain how they address the privacy 
problem. 

2.1 Multi-site Regression 
A number of proposals have been made to perform distributed analysis through collaborative computation 
among the sites. In 2004 Du et al. suggested that sites could “exchange aggregate information, not the raw 
data”, in order to perform multiparty linear regression with horizontally partitioned data [8]. This is essentially the 
same approach suggested in DataSHIELD, although DataSHIELD has extended it to generalized linear models 
[9], and more recently in GLORE, which only considered logistic regression but added the Hosmer-Lemeshow 
goodness-of-fit test and area under the receiver operating characteristic (ROC) curve (AUC) [10].. 

The parameter estimates 
( )tb  are common to all sites, but the score vector 

( )tu  and information matrix  ( )t  
are computed individually and combined later (by sharing with each other or a third party) to update the overall 

parameter estimates 
( 1)tb . That is, let ( )t

i  be the individual information matrix for site i , and ( )t
iu  be the 

individual score vector for site i , where  1, ,i k  . Then the overall information matrix is ( ) ( )t t
i

i

   

and the overall score vector is ( ) ( )t t
i

i

u u , each representing a sum over all sites. 

This is the approach suggested by Du et al. in 2004 [8], and implemented recently in DataSHIELD [9], and 
GLORE [10]. Under this approach, however, it may be possible for an adversary to extract information and 
values about the raw data, which would be considered an inappropriate disclosure of personal health 
information. 

There are two possible architectures for the distributed analysis. In the first architecture a third-party would 
receive the component information matrix and score vector from each site. Let's call this the analysis center 
(AC). The AC would then perform the matrix inversion, and compute the new model parameters for the next 
iteration, and send the new parameters back to each of the sites. The sites would then compute their 
information matrix and score vector anew and the cycle repeats. However, the AC is not trusted to access or 
view the raw data (if the AC was trusted, then we could just send the raw data to the AC and let it create a 
pooled data set and construct the overall model). When the iterations are completed the AC would have the 
final model parameters. 

In the second architecture there is no central AC, and therefore the sites collaborate in a round-robin fashion. 
The initiating site, say site 1, sends the initial parameters, its information matrix and score vector to the 
neighbouring site, say site 2.  Site 2 then sums that with its matrix/vector and forward these to site 3, and so on 
until the final matrix and vector comes back to site 1, which inverts the matrix and computes the new 
parameters. Then the cycle starts again. When the iterations are completed all of the sites will have the final 
model parameters. 

Below we show that under certain conditions neither of these two architectures prevent the disclosure of PHI if 
no cryptographic methods are used. Therefore, these protocols are not secure [8-10]. In the first architecture 
with the AC, the information it receives from the sites can lead to inappropriate disclosures. In the second 
architecture the information site 2 receives from site 1 can lead to inappropriate disclosures. These are 
described below. 

For ease of presentation, and to simplify notation, we withhold the use of subscripts that index sites in the 
following discussions of potential inadvertent disclosures. All disclosures presented below are at the site level. 

2.2 Inappropriate Disclosures from the Linear Model 
A linear model is the simplest form of a generalized linear model, with normal errors and identity link function. It 
has score vector:  

  u = X y Xb  ..……………………… (1)

and information matrix :  
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2

1

s
 X X  ..……………………… (2)

Where X  is the design matrix, y  is the outcome vector, and b  is the vector of parameter estimates.  

Rearranging the components of the score vector, and including the information matrix, yields the equation:  

2s   X y = u X Xb u b  ..……………………… (3)

If an intercept is included in the linear model (a point which would be known to all sites), then the estimated 

variance 
2s  can be easily recovered. That is, with an intercept in the model, the first column of the design 

matrix will be 1’s, hence the first entry of the information matrix will be   21,1
N

s
 , where N  is the total 

number of observations in D . 

Sharing the parameter estimates, score vector, and information matrix in a multi-site linear regression therefore 

leads to the disclosure of X y  and X X  (wherein information regarding higher-order interactions, which may 

be sparse, is given away in the off-diagonal entries [11]). Note also that these summary values, when computed 
by each site and shared, results in their disclosure at the site level.   

Assume the covariates in X  measure risk factors for a disease, and that the outcomes in y  are a surrogate 

measure of the disease.  Then extreme values in X y  could be used to identify a population with high or low 

rates of the disease. For example, assume we have a covariate that records patients’ blood alcohol level, and 
the outcome records the results of a liver enzyme test.  High values from the liver enzyme test could indicate 

liver disease.  If the summary values X y  are high, then we may infer a population with high blood alcohol 

levels and the presence of liver disease (which could strongly suggest alcoholism).  This is an example of the 
disclosure of personal information for participants at one site, and possibly source disclosure (i.e., if sites 
compare these summary values to their own participants, they could determine which site contains a group with 
high rates of alcoholism).  We will see examples of disclosures from X X in other sections (i.e., from 
categorical data, or the covariance matrix). 

If the estimated variance  cannot be recovered for some reason, then we would state the disclosures were 
true up to a constant, which is still not an acceptable situation (e.g., extreme values would still be identifiable in 
the summary data).  Concerns regarding the disclosure of these summary data have been raised many times 
[11-16]. 

2.3 Disclosures from Indicators 

Indicators take on the binary values 0 or 1 in the columns of the design matrix X , indicating the absence or 
presence, respectively, of an attribute (e.g., gender male or female).  They are also commonly found when one 
uses categorical variables in general (e.g., gender male, female, or unknown), which are transformed into a set 
of indicators in the design matrix for the sake of mathematical analysis (such that the resulting design matrix is 
of full rank, for matrix inversion).  The structure of the design matrix would need to be defined in advance of 
performing multi-site regression so that the results of each site can be combined. 

As previously noted, if an intercept is included in a model, then the first column of the design matrix will be 1s, 

and the first entry in the matrix 
'X X  will indicate the total number of observations, i.e., '

1,1
N   X X .  In fact, 

all entries '

,j j
  X X  for indicator j  represent the number of 1s in the column, regardless of whether an 

intercept is used. 

When data is split among sites, it is plausible that one or more sites could have a column of 1s in their design 
matrix, or a large proportion of 1s.  Equivalently, they could have a column of 0s, or a large proportion of 0s 
(i.e., a sparse column).  For example, a site with data for a sensitive population, such as an abuse treatment 
center, may wish to participate in a study involving three or more groups, but an indicator that identifies this 
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population directly or indirectly would reveal which summary data belongs to them when pooling information 
(i.e., source identification). 

Disclosures of this nature extend to the information matrix 
' XWX  of a generalized linear model, where 

W  is the diagonal weight matrix.  For example, if we assume an intercept is included, then 
' '

, 1,1j j
      X X X X  gives the exact proportion of 1s for indicator j , and ' '

, 1,1j j
      X WX X WX  gives an 

approximation. The approximation is especially good for indicators with a large number of 1s or 0s.  For 

example, if an indicator is represented by a column of 1s then ' '

, 1,1
1

j j
       X WX X WX ; if an indicator is 

represented by a column of 0s then ' '

, 1,1
0

j j
       X WX X WX   One can also use the bounds on the 

weights to help with the inference (e.g., for a logistic model the weights are between 0 and 1). 

Consider the following design matrix X , representing a data set with an intercept and three binary indicators, 
and an accompanying weight matrix W  with off-diagonal entries of zero (created for this example from a 
random sample of the uniform distribution): 

 

 

1 1 1 1 0.874

1 1 0 1 0.461

1 1 0 0 0.888

1 1 0 0 0.834

1 1 1 0 0.429

1 0 1 0 0.887

1 0 1 0 0.139

1 0 1 0 0.954

1 0 1 0 0.390

1 0 1 1  0.
, diag

1 0 1 1

1 0 1 0

1 0 1 0

1 0 1 0

1 0 1 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1
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 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

X W
702

0.250

0.545

0.761

0.171

0.509

0.944

0.955

0.799

0.813

0.941

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Let the information matrix for the linear regression be 2s
 , and for the generalized linear model W .  Hence, 

for this example they are, 
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 2 2

20 5 12 10 13.25 3.488 6.616 7.253

5 5 2 2 3.488 3.488 1.303 1.3351
 , .

12 2 12 4 6.616 1.303 6.616 2.336

10 2 4 10 7.253 1.335  2.336 7.253

s s

   
   
    
   
   
   

W     

Notice how the diagonal entries of 2

2 '

s
s  X X  give the exact number of 1s in each column.  Interactions are 

given in the off-diagonal entries, such as indicator 2 and 3 given by 2
2,3

2
s

    , which implies that they have 

two rows in common with value 1.  We scale the matrix W  by the ratio of the number of observations to the 

sum of the weights  1,1W , then round the resulting matrix to compare with 2s
 : 

 
 1,1

20 5 10 10

5 5 2 220
round

10 2 10 4

11 2 4 11

 
   
    

        
 

W
W

 


 

The results are strikingly similar to 
'X X .  Sparse design matrices are particularly vulnerable to this form of 

transformation, due to the sparse interactions evident in the off-diagonal entries of the information matrix. 

Coding indicators using values other than 0 and 1 does not eliminate the possibility of disclosures.  For 
example, assume the values -1 and 1 are used, and an intercept is included.  In this example, for any indicator  

' '

, 1,1j j
      X WX X WX , for a column of 1s ' '

1, 1,1j
      X WX X WX , and for a column of -1s 

' '

1, 1,1j
       X WX X WX .  In other words, although different criteria are used when we change the coding of 

indicators, we are still able to make inferences from the information matrix, leading to disclosures. 

2.4 Disclosures from the Covariance Matrix 
For highly correlated variables, knowledge of one implies knowledge of the other. Such information could 
therefore lead to inferential disclosures. The asymptotic covariance matrix of the parameter estimates is the 
inverse of the information matrix (i.e., for a generalized linear model, the estimated covariance matrix is given 

by   11 '   X WX ). Hence, in the case of multi-site regression, the information matrix shared by each 

individual site may put them at risk (which, combined with the site's score vector and the previous parameter 
estimates, can be used to derive parameter estimates specific to that site). 

Reiter raises disclosure concerns with regards to standard errors of estimated model parameters [17, 18], and 
several researchers suggest that standard errors should not be provided if they are “too small” [11, 19]. 
Standard errors are derived from the diagonal entries of the estimated covariance matrix.  Very small values 
imply a strong fit between covariates and the site’s data, giving information away regarding the strength of the 
model on that data. 

One concern is that a model that fits data very well can lead to accurate, possibly even perfect, predictions 
which could be used by an adversary to match to an external dataset and re-identify individuals. Assume, for 
example, a model with a sensitive outcome, such as the presence of a rare or stigmatized disease (e.g., 
alcoholism). The parameter estimates could be used with known covariate values to predict outcomes.  For 
observations with the same combination of covariate values (common with categorical data) and the same 
outcomes, the predictions on that same combination of values will be exact [17, 18]. 

Very small standard errors could also be used to directly or indirectly identify a sensitive population, potentially 
revealing information about them and the source of the data.  This is similar to the concerns raised when using 
indicators, except that in this case we extend the measurement type to the nominal and interval scales. For 
example, we could have continuous variables that identify the population, such as one site that is known to 
have a focused age group. 
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A restriction on standard errors implies that confidence intervals cannot be provided, since standard errors can 
be uniquely derived from them. Similarly, p-values cannot be provided with parameter estimates, since standard 
errors can be uniquely derived from this information as well.  Rather, it is suggested that levels of significance 
be provided (e.g., 0 < p < 0.005, 0.005 < p < 0.05, 0.05 < p < 0.1, etc.) [11, 19]. 

Although revealing standard errors is a concern at the site level, the purpose of multi-site regression is to pool 
data into a larger dataset. Therefore, restricting the disclosure of confidence intervals and p-values for the 
combined model may be excessive. Provided the information matrices for individual sites and the overall model 
are secure, there should not be a concern providing standard errors for the overall model (implying that 
confidence intervals and p-values can also be provided for the overall model).  

2.5 Disclosures from Iterating 
The iterative process of the fitting procedure implies an exchange of information between sites or a third party 
that can be exploited.  The following example is taken from Fienberg et al. in [20], with regards to vertically 
partitioned data. It highlights the possibility of disclosures from shared summary data (e.g., the score vector) 
captured over multiple iterations, or when certain elements can be inferred from unique structures in the data, 
such as those we have outlined already. 

Recall that sites need to share the k  overall parameter estimates 
 tb  in multiparty regression, for all iterations 

of 1, ,t T  . Without loss of generality, we assume the canonical logit function of a generalized linear model 

(i.e., a logistic model), and that sites also share, or can access, the intermediate probability of success  
  ( ) -1logit tt

i ip  X b   for observation i , where iX  is row i  from the design matrix X .  To simplify notation, 

let    ( ) ( )logit tt t
i i ia p  X b . 

Assume that there are at least as many iterations as parameters to estimate (i.e.,  T k ), and that we collect 

the parameter estimates 
( )tb  and summary value ( )t

ia  at each iteration t  of the fitting procedure.  Now consider 

the linear system ' ,i iX B a
 
where (1) ( )k   B b b , and  '(1) ( ), , k

i i ia a a .  If the columns of B  are 

linearly independent, then we can solve the linear system such that ' 1,i i
X a B

 
resulting in a full disclosure of 

row i .  Note that the columns of B  could be any collection of k  linearly independent parameter estimates 
( )tb  

during the iterative process (not simply the first k  of them).  Furthermore, Fienberg et al. suggest that similar 

concerns may appear in the calculation of the score vector  ( ) ' ( )t t u X y p  [20]. 

2.6 Disclosures from Multiple Models 
Often one will build several models before deciding which provides the best fit for the purposes of explaining or 
predicting outcomes.  For example, interactions may be included but then found not to be practically or 
statistically significant, and therefore dropped.  The process of fitting multiple models, however, and sharing 
local summary data, can in itself lead to disclosures.  This is a common subject of consideration in the study of 
remote access methods [11, 17-19].   

For example, Sparks et al. in [11] demonstrate how as little as two strategically chosen linear models can be 
used to reconstruct the original data when the information matrix is provided. Consider the singular value 

decomposition of the design matrix  'X UD V , where '
kU U I , '

kV V I  (i.e., U  and V  are unitary), 

and D  is a diagonal matrix of singular values.  Then 1

U XVD  and   1 1



 ' 'X X VD V .  If the information 

matrix '
2

1

s
 X X  is provided then the matrix U  can be derived.  A second linear model with U  as the 

design matrix would lead to the disclosure of the linear predictor Xb  (i.e., the predicted outcome for each 
individual). Moreover, adding the linear predictor to the residuals of the original model leads to the disclosure of 
the design matrix X , with the original observations. 
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2.7 The Use of Secure Multi-Party Computation 
In 2004, the use of secure multiparty computation in this context was proposed and demonstrated by Karr et al. 
in [12], and the literature has grown since that time. 

Sharing local summary statistics with each other or a third party, such as the matrix  and vector ,  where 
 is the design matrix and  the outcomes, was deemed unacceptable, possibly even forbidden by law, by Karr 

et al. [12].  As they demonstrate, sites can calculate parameter estimates for their own data, and compare to the 
global results, but using secure multiparty computation ensures that they cannot determine which site may have 
caused deviations from their own. A detailed example of their approach for secure linear regression is given in 
[13]. 

In 2005 Karr et al. included generalized linear models to their approach using secure multiparty computation, 
which they acknowledge is virtually the same technique [14]. They observe that the approach has the 
advantage of “being resistant to source identification via attribute values” (e.g., high incomes in one data 
source). 

Secure computation of the logistic regression has been proposed [21-23], when data is horizontally partitioned 
among multiple sites. However, these protocols assume that the final information matrix is known by all sites, 
which introduces disclosure risks in the log-linear case with two sites. If X X  is known by a site then it can 
narrow down the possible values in the design matrix of the other site, especially if the original values are 
known to be integer (e.g., counts) and have a limited range. More generally, in the two site case one site would 
be able to determine the value of the information matrix for the other site, and this raises the disclosure risks 
noted above. Furthermore these protocols use a secure sum protocol which has known security weaknesses, 
as we illustrate below. 

Secure sum works in a round-robin fashion. The first site selects a random value r  and adds its own value to 

that: 1x r , and forwards that to the second site. The second site adds its own value and forwards it: 

1 2x x r  . This continues until the final sum reaches the first site: 1 2 kx x x r    . The first site subtracts 

r  from the total to obtain the sum. If there are two sites then it would be easy for the first site to determine the 

value 2x . If there are more than two sites, collusion among sites can also reveal the values from other sites. 

For example, if the second and fourth sites collude, then when the fourth site receives 1 2 3x x x r   , she can 

send that value to the second site. The second site would subtract 1 2x x r   to reveal the value for the third 

site. Therefore, this protocol is not suitable for two parties or if all of the sites cannot be trusted. This weakness 
can in principle be fixed by modifying the protocol, but will increase the communication cost between each pair 
of parties [24]. 

In the general case with mixed partitions, the same assumptions discussed above were used to construct a 
distributed computation protocol [25]. Another protocol was proposed for linear regression on vertically 
partitioned data using a secure matrix product [26]. 

Therefore, previous attempts at constructing a protocol suitable for data would still allow some inappropriate 
disclosures under certain conditions or were not applicable to horizontally partitioned data. 

2.8 Distributed Queries 
An increasingly popular architecture for analyzing data located at multiple sites without pooling the data can be 
characterized as distributed data aggregation. Under this model a central user sends queries to multiple sites. 
Each site executes the query and sends the results back to the central user [27-30]. Such networks retain the 
data at the sites and only send summary information back to the central user in response to specific queries. 
However, it has been well established for some time that it is possible to leak sensitive information by running 
multiple overlapping queries on a database – this is known as the problem of inference from statistical 
databases [31]. The ability to extract sensitive information when multiple tables are available about the same 
population has been demonstrated on student data released by educational departments in the US [32] and on 
the re-identification of federal capital cases by combining information from multiple tables released by the 
Department of Justice [33].  
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The major problem in inference from statistical databases comes from queries that return a subset of data [34, 
35]. The two main inference attacks are queries with very small or very large outputs, and query overlapping 
(inference chaining) [36, 37]. An attribute in a statistical database could be compromised exactly or partially. If 
there is no restriction on the user’s queries, the exact value of a specific attribute could be deduced, especially if 
the user has some initial knowledge of the contents in the underlying table. Consider Table 1, named Diagnosis. 
Suppose that an adversary already knows that N11 is one of the patients in this data set. An adversary can run 
the following query:  

 
SELECT COUNT(*) 
FROM Diagnosis 
WHERE Name='N11' AND DiagnosisCode BETWEEN 290 AND 319 

This query would return a result set of size one, revealing the patient’s diagnosis. If the adversary does not 
know the patient’s name but the postal code instead then the following query will return the diagnosis:  

 
SELECT COUNT(*) 
FROM Diagnosis 
WHERE PostalCode='K1L' AND DiagnosisCode BETWEEN 290 AND 319 

These types of queries can be prevented by setting a restriction on the size of the result returned by the query. 
However, there are some inference methods, such as tracker queries [36], which are able to bypass this 
restriction by sending some related and overlapping queries, and combining the results to infer some individual 
data. More importantly, sometimes the number of queries needed for effective trackers can be small. 

Attempts to protect against such inferences by restricting the size of the query result (query set) would not be 
effective. Query set size control will block any query which produces a query set smaller than some threshold, 
say k  records. It also blocks any query set with more than N k  records, where N  is the total number of 
records in the table. This is because the complement of the query will have less than k  records which violates 
the inference control limit. Now, suppose instead of the complement of a query with the query set of k  records, 
we create a query which is the complement of another query, or more than one query, which in this case is not 
prohibited.  

 

 
Name Age Gender

Postal 
Code 

Language 
Diagnosis 

Code 

1 N1 72 F K1K En 305 
2 N2 63 F K1N En 294 
3 N3 58 M K1K Fr 153 
4 N4 56 F K2K En 231 
5 N5 51 M K1P Fr 294 
6 N6 48 M K1R It 282 
7 N7 39 M K2K Fr 745 
8 N8 38 F K1P En 523 
9 N9 31 F K1M En 310 

10 N10 29 M K1K En 312 
11 N11 29 F K1L En 300 

12 N12 23 M K1J It 482 
Table 1: Example table to illustrate tracker queries. 

 

Even with restrictions on the result set size, the adversary can run the following two queries:  

 
SELECT COUNT (*) 
FROM Diagnosis 
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WHERE Gender='F' AND Language='En' AND DiagnosisCode BETWEEN 290 AND 319

and: 

 
SELECT COUNT (*) 
FROM Diagnosis 
WHERE Name < > 'N11' AND  

   Gender='F' AND Language='En' AND DiagnosisCode BETWEEN 290 AND 319

If we assume that 2k  , both of the above queries have query sets between k  and N k  records, and 
therefore would not be blocked. However, by subtracting the results of the above two queries the adversary will 
obtain  the singleton query set equal to the result of the prohibited query, and can figure out the range of N11’s 
diagnosis code. This and other examples will lead us to set another stricter condition on the query set size. For 
instance, the allowable size for a query set has to be between 2k  and 2N k . However, consider the 
following two queries which are both allowed because of the size of the query sets, 7 and 5 records 
respectively:  

 
SELECT COUNT (*) 
FROM Diagnosis 
WHERE Gender='M' OR Language='Fr'

and:  

 
SELECT COUNT (*) 
FROM Diagnosis 
WHERE Gender < > 'M' AND Language < > 'Fr'

The adversary can pad a condition to each of the above queries as follows:  

 
SELECT COUNT (*) 
FROM Diagnosis 
WHERE (Name < > 'N11' AND  DiagnosisCode BETWEEN 290 AND 319) 
     OR (Gender='M' OR Language='Fr')

and: 

 
SELECT COUNT (*) 
FROM Diagnosis 
WHERE (Name < > 'N11' AND  DiagnosisCode BETWEEN 290 AND 319) 
     OR (Gender < > 'M' AND Language < > 'Fr')

The first query set has 8 records and the second one has 5. Now by adding up these two and subtracting from 
the total of the previous two queries, N11’s diagnosis code will be confirmed. 

Queries that reveal information are not limited to ‘count’ queries. Suppose we also know that N11’s age is 72, 
then we can construct the following ‘max’ query: 

 
SELECT MAX (Age) 
FROM Diagnosis 
WHERE DiagnosisCode BETWEEN 290 AND 319

By returning 72, the adversary can conclude that N11’s diagnosis code is in a specific range. Similar 
conclusions are possible using ‘min’ queries. Also, ‘sum’ queries can be used. As a simple example, suppose S 
is a sensitive numeric field and we want to have the result from the following query:  
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SELECT SUM(S) 
FROM Diagnosis 
WHERE Name=’N11’ 

This query has the query set size problem and cannot be processed. However, the following two eligible queries 
could be executed to get the private value: 

 
SELECT SUM(S) 
FROM Diagnosis 
WHERE Name<>’N11’ and Language=’En’

and: 

 
SELECT SUM(S) 
FROM Diagnosis 
WHERE Language=’En’

By subtracting the results from the two above queries, the value of S for N11 will be disclosed. 

These examples illustrate the ineffectiveness of inference control using query set size. The experimental results 
show that an adversary, who has some prior information about the distribution of attribute values in the 
underlying data sets, is able to find a general tracker with as few as one or two queries. 

Alternatives to query set size restrictions have been proposed, but these require the perturbation of the data 
[38, 39]. Such perturbative techniques will reduce the accuracy of analyses based on the data, and are not 
known to be used in the distributed networks cited above. 

2.9 Meta-analytic Approaches 
One approach to combine models across multiple sites providing data is for each site to develop a model and 
then a central unit would perform a meta-analysis of the models to construct the final model.  

Using Individual Patient (or Participant) Data (IPD) in a meta-analysis is widely considered the gold standard 
way in which to combine results from multiple studies or sites [40]. This means getting access to “raw data” on 
all patients from multiple studies or sites, so that investigators can build models on the original data. Privacy 
restrictions or concerns would prohibit the use of IPD in a meta-analysis as the raw data would need to be 
disclosed. 

Restricting investigations to aggregated data limits regression modeling to summary data that may or may not 
be complete, and limited to study-level covariates [41, 42]. In general, IPD reviews are preferred because one 
can: include unpublished data (e.g., due to non-significant effects, or privacy concerns); analyse common 
outcomes and patient subgroups; analyse by time to event; and conduct a more flexible analysis [43]. 
Furthermore, it has been shown through simulation [44] and with real medical data [45, 46] that IPD analysis is 
generally necessary to relate patient characteristics to treatment. Using aggregated data in a meta-analytic 
regression with study-level covariates will typically have very low statistical power compared to an equivalent 
analysis using IPD, with different parameter estimates between the two [44]. 

Furthermore, as noted earlier in Section 2.4, sharing standard errors from site-specific models may reveal 
sensitive information about the population at that site under certain circumstances. The standard errors would 
need to be shared for regression model meta-analysis. 

2.10 Other Methods 
Alternative methods have been proposed to perform a pooled analysis in the context of drug and vaccine safety 
surveillance. A straight forward approach to perform a pooled analysis from multiple sites is to minimize or de-
identify the data at source and then send the de-identified data to an AC for analysis [47-49]. De-identification 
always results in a loss of precision, and one must be careful that the de-identification applied is consistent 
across all sites and ensure that the risk of re-identification is acceptably low in the different jurisdictions of the 
sites. 
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Another proposed approach is the creation of propensity score models at each site, and then send these to the 
AC which would construct a final model with the propensity scores and other non-private variables [50, 51]. The 
authors show that pooling propensity scores provides equivalent results to a meta-analysis of model 
parameters. It is not clear what the loss in power and precision would be compared to an ideal pooled analysis 
with the original raw data. 

2.11 Summary 
The sharing of de-identified data to create a pooled data set and meta-analytics methods result in a loss of 
precision and power. Methods for multi-site regression would retain the precision and power. However, as noted 
above, current multi-site regression approaches are prone to inappropriate disclosure. Distributed networks that 
send queries to sites are prone to tracker queries that can reveal personal information. 

Our objective was therefore to develop a multi-site regression protocol that addresses the disclosure risks by: 
(a) not revealing the individual site information matrix and score vectors, (b) avoiding inference channels 
through multiple overlapping queries, and (c) retaining the precision of a raw data pooled analysis. Our protocol  
uses secure multi-party computation methods. This is the SPARK protocol described below. 

3 SPARK Protocol 

3.1 Existing Building Blocks 
Below we summarize the inputs and outputs for each of the secure building blocks that were already known and 
that we use in our protocol. A summary of the inputs and outputs is also provided in Table 2. 

3.1.1 Secure Dot Product 

For the multi-party case, secure dot product can be performed using secure multi-party multiplication. 

o Number of parties:  1 22, ,P P  

o Inputs: two private vectors of length m  

 1 1 1,1 1,2 1,: , , , mP V v v v   

 2 2 2,1 2,2 2,: , , , mP V v v v   

o Outputs: two private numbers 

 1 1:P a  

 2 2:P a  

such that:

 

1 2 1 2V V a a    

3.1.2 Secure Matrix Multiplication for Two Parties 

o Number of parties:  1 22, ,P P  

o Inputs:  two private matrices 

 

1,1,1 1,1,2 1,1,

1,2,1 1,2,2 1,2,
1 1

1, ,1 1, ,2 1, ,

:

m

m

s s s m s m

a a a

a a a
P A

a a a


 
 
 
 
 
 




   

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 

2,1,1 2,1,2 2,1,

2,2,1 2,2,2 2,2,
2 2

2, ,1 2, ,2 2, ,

:

u

u

m m m u m u

a a a

a a a
P A

a a a


 
 
 
 
 
 




   


 

o Outputs: two private matrices 

 

1,1,1 1,1,2 1,1,

1,2,1 1,2,2 1,2,
1 1

1, ,1 1, ,2 1, ,

:

u

u

s s s u s u

b b b

b b b
P B

b b b


 
 
 
 
 
 




   


 

 

2,1,1 2,1,2 2,1,

2,2,1 2,2,2 2,2,
2 2

2, ,1 2, ,2 2, ,

:

u

u

s s s u s u

b b b

b b b
P B

b b b


 
 
 
 
 
 




   


 

such that: 1 2 1 2A A B B  
 

3.1.3 Secure Multiparty Addition 

o Number of parties:  1 2, , , , kk P P P  

o Inputs:  k  private numbers 

  : , 1,2, ,i iP x i k   

o Outputs: k private numbers 

  : , 1,2, ,i iP y i k   

such that:

 

1 1

kk

i i
i i

x y
 

 
 

3.1.4 Secure Multiparty Multiplication 

o Number of parties:  1 2, , , , kk P P P  

o Inputs:  k  private numbers 

  : , 1,2, ,i iP x i k   

o Outputs: k private numbers 

  : , 1,2, ,i iP y i k   

such that:

 

11

k k

i i
ii

x y


   

3.1.5 Secure Matrix Sum Inverse for Two Parties 

o Number of parties:  1 22, ,P P  

o Inputs:  2  private matrices 
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 

1,1,1 1,1,2 1,1,

1,2,1 1,2,2 1,2,
1 1

1, ,1 1, ,2 1, ,

:

t

t

s s s t s t

a a a

a a a
P A

a a a


 
 
 
 
 
 




   


 

 

2,1,1 2,1,2 2,1,

2,2,1 2,2,2 2,2,
2 2

2, ,1 2, ,2 2, ,

:

t

t

m m m t s t

a a a

a a a
P A

a a a


 
 
 
 
 
 




   


 

o Outputs: 2  private matrices 

 

1,1,1 1,1,2 1,1,

1,2,1 1,2,2 1,2,
1 1

1, ,1 1, ,2 1, ,

:

t

t

s s s t s t

b b b

b b b
P B

b b b


 
 
 
 
 
 




   


 

 

2,1,1 2,1,2 2,1,

2,2,1 2,2,2 2,2,
2 2

2, ,1 2, ,2 2, ,

:

t

t

s s s t s t

b b b

b b b
P B

b b b


 
 
 
 
 
 




   


 

such that:   1

1 2 1 2A A B B
  
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Secure Building Block Number of 

Parties 
Inputs Outputs Equation 

Secure Dot Product 
 1 22, ,P P ,1 ,2 ,: , , ,i i i i i mP V v v v   :i iP a  1 2 1 2V V a a    

Secure Matrix 
Multiplication  1 22, ,P P    1 1 2 2: , :s t t uP A P A      1 1 2 2: , :s u s uP B P B   

1 2 1 2A A B B    

Secure Multiparty 
Addition  1 2, , , , kk P P P   : , 1,2, ,i iP x i k    : , 1,2, ,i iP y i k   

1 1

nn

i i
i i

x y
 

   

Secure Multiparty 
Multiplication  1 2, , , , kk P P P   : , 1,2, ,i iP x i k    : , 1,2, ,i iP y i k   

11

n n

i i
ii

x y


  

Secure Matrix Sum 
Inverse  1 22, ,P P    1 1 2 2: , :s t s tP A P A      1 1 2 2: , :s t s tP B P B     1

1 2 1 2A A B B
    

Table 2: Summary of inputs and outputs of existing secure building blocks. 
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3.2 Secure Multi-party Matrix Sum Inverse 

Suppose each of the sites has a d d  matrix and they jointly and securely want to compute the inverse matrix 
of the summation of their matrices in the form of the summation of private matrix shares: 

  1

1 1k kL L M M
     

 
, ,i i iL M P ..……………………… (4)

To simplify the presentation and without loss of generality, here we consider that 3k  . The protocol is similar 
in the case of 3k  . Note that it is implicitly assumed that the inverse exists for the summation matrix. The 
following are the major steps of this building block protocol: 

1. Party 3P  randomly generates a non-singular d d  matrix, 3R . 

2. Parties 1P  and 3P  perform secure matrix multiplication for their input matrices (see Section 3.1.2), 1L  

and 3R , respectively, such that:  

1 3 1 3,1L R N N  
 

, 1 1N P
 
, 3,1 3N P ..……………………… (5)

3. Parties 2P  and 3P  perform secure matrix multiplication for their input matrices (see Section 3.1.2), 2L  

and 3R , respectively, such that:  

2 3 2 3,2L R N N  
 

, 2 2N P
 
, 3,2 3N P ..……………………… (6)

4. 3P  selects a random number 0 1r   and sends  3,1 3 3N r L R   and   3,2 3 31N r L R    to 

1P   and 2P  , respectively. 

5. 1P  locally computes  1 1 3,1 3 3Q N N r L R     which is equal to  1 3 3 3L R r L R   , using 

equation (5). 

6. 2P  locally computes   2 2 3,2 3 31Q N N r L R      which is equal to   2 3 3 31L R r L R    , 

using equation (6). 

 

Note that according to the equations in the steps 5 and 6 the following equations are satisfied: 

      1 2 1 3 3 3 2 3 3 3 1 2 3 31Q Q L R r L R L R r L R L L L R             
 

      11 11
1 2 1 2 3 3 3 1 2 3Q Q L L L R R L L L

           . 

7. 1P  and 2P  run secure matrix sum inverse for two parties on their private matrices, 1Q  and 2Q , 

respectively (see Section 3.1.5), such that:  

  1

1 2 1 2Q Q T T
  

 
, 1 1T P

 
, 2 2T P ..……………………… (7)

8. Parties 1P  and 2P  perform secure matrix multiplication for their matrices, 1T  and 3R , respectively, such 

that:  
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3 1 3,1 1R T M M  
 

, 1 1M P
 
, 3,1 3M P ..……………………… (8)

9. Parties 2P  and 3P  perform secure matrix multiplication for their matrices, 2T  and 3R , respectively, 

such that:  

3 2 3,2 2R T M M  
 

, 2 2M P
 
, 3,2 3M P ..……………………… (9)

10. Then we have: 

        1 1 11 1
1 2 3 3 3 1 2 3 3 3 1 2 3L L L R R L L L R R L L L

              
 

       1

3 1 2 3 1 2 3 1 3 2R Q Q R T T R T R T
         

 

3,1 1 3,2 2 1 2 3M M M M M M M        

Note, that we set 3 3,1 3,2M M M  , such that 3 3M P . Therefore, iM  is the final private output 

matrix share of  , 1,2,3iP i . 

3.3 Secure Logistic Function 

Inside the secure logistic regression algorithm, the logistic function 
1

x

x

e

e
 has to be computed, while x  is 

privately shared among k  parties, such that 
1

k

i
i

x x


 . To jointly and securely compute this value such that at 

the end each party iP  receives their private output share iy , secure addition and multiplication building blocks 

are used as follows:  

1

11

11

1 1 1 1

1 1 111

k

i i
i

x k k

i ik kx x
x x ii

i
ii

e
c y

e e bee 


  



     
   


 ..……………………… (10)

The following are the steps for this secure building block: 

1. Parties perform secure multi-party multiplication for their private inputs, 'ix s , such that: 

11

i

k k
x

i
ii

e b



  

2. They then execute secure inverse addition for their inputs 'ib s  such that: 

1

1

1

1

k

ik
i

i
i

c
b 









 

3. Finally, they run secure multiplication for their private inputs, 'ic s , as follows: 
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11

k k

i i
ii

c y


  

Note that the same solution could be applied on 

 2

1

21

x

x xx

e

e ee


 
 to create separate private shares for 

the parties. 

The computation of inverse addition is an extension of secure addition. We illustrate the protocol here for two 

parties, 1P  and 2P . Assume each party has a value 1b  and 2b  and we need to compute:  

  1 2
1 2

1
c c

b b
 


 

Then we execute the following steps: 

1. Party 1P  computes  1E b  and a random number 1k  and sends these to 2P . 

2. 2P  generates a pair of random numbers 2r  and 2k , and computes: 

2
2 2 10kx r   

3. 2P  computes     2

1 2

x

hE b E b    and send that to 1P . 

4. 1P  decrypts the value it receives. 

At the end of the computation we have:  

 
 

1

2 1

1

1
1 2 2

2
2 2

10

10
10

k

k k

k

c
b b x

x
c r 


 

  

 

3.4 Secure multi-party 2-norm distance 
There is an existing secure protocol in [52] for secure 2-norm distance. However, in that protocol, which is 
restricted to two parties, each party owns a vector and they want to jointly and securely compute the distance 
between their vectors. In our context, there is no restriction on the number of parties and each element in each 
vector is privately shared among the parties, such that each element is the summation of corresponding shares. 
Therefore we propose a protocol suitable for our context below. 

In this building block the 2-norm distance of two vectors,   and  , is securely computed. Each item of these 

vectors is the summation of the private values belonging to k  parties, as follows: 

 0 ,0 ,
1 1

k k

v i i v
i i

    
 

    
 
       ,   0 ,0 ,

1 1

k k

v i i v
i i

    
 

    
 
   . 

where v  is the number of items in the vector. At the end each party has their private output share such that the 
summation of the shares would be the 2-norm distance of the given vectors. Thus, the following computation 
has to be jointly and securely done by the parties: 
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      22

1, , 1, ,
0 0

,
v v

i i i k i i k i
i i

       
 

          
 

                  
      2 2

1, 1, , , 1, ,
0 0

v v

i i k i k i i k i
i i

     
 

          .
 

By assuming , , ,j i j i j i    . Because we only need the distance to compare with a constant value in our 

protocol, we could ignore the square root and simply continue as follows: 

 2 2 2
1, , 1, , 1, 2, 1, ,

0 0 0 0 0

2
v v v v v

i k i i k i i i k i k i
i i i i i

       
    

         
 

       . 

Therefore, the following are the major steps of this sub-protocol: 

1. For each , ,
0

v

j i l i
i

 

 , j l , the two parties involved have to perform secure dot product to obtain their 

own private shares as follows: 

, ,
0

v

j i l i j l
i

   


  . 

2. Each party jP  sets their private output share as 2
,

0

2
v

j j j i
i

  


  . Therefore: 

   22 2 2 2
1, , 1, , 1, 2, 1, ,

0 0 0 0 0 0 1

, 2
v v v v v v k

i i i k i i k i i i k i k i j
i i i i i i j

            
      

             
 

        

 

where the final squared distance is the sum of the j  distributed among the k  parties. 

3.5 Secure Multi-party Comparison 
Secure comparison has been proposed in previous papers, such as in [53, 54]. However, those protocols are 
suitable in the case where we want to compare the two private values between two parties. In our context we 
wish to compare the summation of private shares among multiple parties with a constant value. 

In this sub-protocol k  parties will securely compare the summation of their private shares with a constant value
 , by using a central unit as a commodity server, without revealing their input values to each other and the 
central unit. The central unit remains unaware about the final result of the comparison, and only the parties will 
receive the final result. 

1. The central unit establishes a pair of encryption keys using the Paillier cryptosystem and broadcasts the 
public key to all the parties. 

2. The central unit generates one random number jr  for each party jP , encrypts it, and privately sends 

 jE r  to that party (i.e., this random number is not shared among the parties). 

3. Starting from the first party, each jP  encrypts their private input j , computes    j h jE E r  , and 

multiplies the result by the received value from the previous party, and sends the result to the next 

party. This means, for instance jP  will send    
1

j

i h i
i

E E r


  to 1jP  . 
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4. The last party, kP , after performing the same operations, multiplies the final value by   1
E  

, which 

produces the following encrypted value: 

      1

1 11

k k k

h i h i i i
i ii

E E E r E r   

 

    
        

    
   

Then, kP  generates a large random list, inserts the above value to the list, performs a random 

permutation, and sends the list to the central unit for decryption. 

5. The central unit decrypts each item of the list, subtracts 
1

k

j
j

r

  from each item, and returns the 

decrypted list back to kP .  

6. Party kP , after applying the permutation on the received list, retrieves the decrypted item which 

corresponds to the encrypted value in the sending list, and obtains the comparison result.  

7. Party kP  broadcasts the result to the other parties. 

3.6 Description of Protocol 
The SPARK protocol assumes a central analysis center (the AC) that would coordinate and combine the 
analysis results from all of the sites. It is not necessary for the AC to be trusted as it would not be able to view 
any of the individual sites' data nor able to draw inferences from information it receives. 

The pattern of communications would be between each site and the AC, and also among the sites. The latter is 
required to implement some of the building block protocols, such as secure comparison. 

 

3.6.1 Secure Logistic Regression 

We let the main design matrix be denoted X , containing v  independent attributes in each record, and the 
vector of the values of the dependent attribute, y , are as follows: 

1

2

k

 
 
 
 
 
 



X

X
X

X

 , 

,1

,2

, i

i

i

i i

i N

X

X
P

X

 
 
   
  
 


X  ,  1 21ij ij ij ijvX x x x  , 

1

2

k

y

y

y

 
 
 
 
 
 


y

 

, 

1

2

i

i

i

i

iN

y

y

y

 
 
   
  
 


y . 

Note, that 
1

k

i
i

N N


 , and each iX  is a  1iN v   matrix. 

The regression coefficient vector,b , will be kept private and each party will obtain a private share of this vector. 
Then, this vector would be reconstructed by the AC to produce the final vector and perform the required 

analyses. Each distributed coefficient value is indexed as isb , where i  indexes the site, and s  indexes the 

attribute. Therefore, we use the following notation: 

 0 1 vb b b  
 b

 

,

 

1

k

s is
i

b b




 

,

 

ij ib P . 

This means that every item of b  is the summation of the private shares belonging to the sites. The steps of the 
protocol are as follows: 
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1. Each party iP  initiates their shares for the regression coefficients, a zero vector, such that 

 0 0 0  b . 

2. Compute the fitted probabilities vector p . We define:

 

1 2

1 21 1 1

iNi i i

iNi i i

XX X

XX X

e e e

e e e

 

 

 
      


bb b

bb bp  

First, for each record ij iX P  all the sites jointly compute ijX b . These computations are not local and 

the sites have to securely collaborate to create their private shares. According to the distribution of the 
vector b , we have: 

   1 2 0 11ij ij ij ijv vX x x x b b b  
   b

 

 
 1 2 0 1

1 1 1

1
k k k

ij ij ijv i i iv
i i i

x x x b b b
  

   
 
   

 

 
0 1 1

1 1 1

k k k

i ij i ijv iv
i i i

b x b x b
  

     
 

     10 0 1 11 1 1 1k ij ijv v ij k ijv kvb b x b x b x b x b              ..……… (11)

Each  1 1ij l ijv lvx b x b   is securely computed using secure dot product between the two sites iP  

and jP . To compute equation (11) a total of  1k   secure dot products must be performed on vectors 

of size  1v  . Then ijX b  is converted to the summation of private output shares: 

1ij j kjX a a   b  , ij ia P  

By applying the secure logistic function presented in Section 3.3 on the above results as inputs each 
site will receive their private share for the vector p . 

3. Computing the weights matrix W . The weight matrix is an i iN N  diagonal square matrix, denoted 

as follows: 

1 0

0 k k k

 
 

  
 
 


  



W

W

W

. 

By using the secure logistic function described in Section 3.3, each element of this matrix will be the 
summation of the private shares: 

1
1

1

0

0
i

i i

k

i
i

i

k

iN
i N N

w

w



 

 
 
 

  
 
 
 
 





W  
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 2
1 1

il

il

Xk

il
X

i

e
w

e









b

b

 

,  1, , il N  . 

4. Computation of X W . In the following matrix multiplication, the product can be separated into k  
matrix multiplications. 

   
1

1 1 1

0

0
k k k

k

 
          
 
 

  
W

X W X X X W X W

W
 

1

1

1, ,1 , ,1
1 1

,1 ,11,1 ,1

1, , , ,1, , , ,
1 1

1 11 1 0 0

0 0

k

i kk

k k

j k j
j j

k NN

k k

j N k j Nv N v k v N v
j j

w w

x xx x

w wx x x x

 

 

          
      
                       

       
    

 

 




  
     

 

1

1 1

1 1

1, ,1 1, , , ,1 , ,
1 1 1 1

1,1 1, ,1 ,1 1, , ,1 , ,1 ,1 , ,
1 1 1 1

1, 1, ,1 , 1, , , , ,1 ,
1 1 1

k

k k

k

k k k k

j j N k j k j N
j j j j

k k k k

j N j N k k j N k j N
j j j j

k k k

v j N v j N k v k j N v k
j j j

w w w w

x w x w x w x w

x w x w x w x w

   

   

  

 
 
 
 
 

  
 
 
 
 
 

   

   

  

 

 


     

  , ,
1

k

k

j N
j

  
  
  
  
  
  
  
  
  
  

  


 . 

The first row of the above matrix is already the summation of the private shares. Each of the items in 
the rest of the matrix could be transformed to a summation of the shares using the secure multiplication 

building block. Therefore, at the end,  X W  will be the following matrix: 

 

,0,1 ,0,
1 1

,1,1 ,1,
1 1 1

, ,1 , ,
1 1 1

k k

j j N
j j

k k

j j N
j j k

k k

j v j v N
j j v N

w w

w w

w w

 

 

   

   
 
 

         
 
 
   
 

 

 

 






  



X W W W  

Each i
W  is a  1v N   matrix. 

5. Computation of   X W X : This matrix multiplication is also the same as the previous step, and at 
the end, each item of the matrix would be the summation of the private shares: 
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   

,0,0 ,0,
1 1

,1,0 ,1,
1 1 1

, ,0 , ,
1 1 1 1

k k

j j v
j j

k k

j j v
j j k

k k

j v j v v
j j v v

x x

x x

x x

 

 

    

   
 
 

         
 
 
   
 

 

 

 






  



X W X Z Z

 

in which each iZ  is a    1 1v v    matrix. 

6. Computation of   1
  X W X . The secure computation of this step is based on the building block 

described in Section 3.2. Each matrix of the above summation belongs to one party and the inverse of 

this matrix summation has to be calculated. Suppose we denote each  i i i
  X W X  by iZ . 

Therefore, by using the secure multi-party matrix sum inverse, the following equation would be 

obtained:   1

1 1k k

     Z Z T T  in which each i iPT  , and is a    1 1v v    matrix. 

7. Computation of y p . Because each item in p  is shared among the parties, this matrix subtraction 

could be converted to the summation of the private shares as follows: 

,1 , ,1 , , , , ,1 , ,
1 1 1 1

i i

k k k k

i i i i j i k i j N i j i j N
j j j j

y b y b b b
   

    
        

   
    y p  . 

8. Computation of    X y p : Similar to the step 5 , this matrix-vector product will be computed to 

generate the following matrix: 

  1 1, ,1 1, , , ,1 , ,
1 1 1 1

i i

k k k k

j j N k k j k j N
j j j j

b b b b
   

                                  
     X y p X X

 

        
, ,0 , , 1

1 1

k k

i j i j v k
j j

b b
 

 
     

 
  U U  .

 Each iU  is a  1v  -dimension vector. 

9. Computation of    1     X W X X y p . In this step, a matrix-vector multiplication has to be 

done, in which the matrix is the summation of k  matrices, and each item of the vector is the summation 
of k  items,  as follows: 

       1

1 1 1k k k

                X W X X y p T T U U V V . 

In the above equation,
 1 k V V

 
is a  1v  -dimension vector, and the matrix-vector product is 

jointly and securely computed by the k  parties using 
   1

2
2

k k
SDP v


 , in which  SDP a  is the 

secure dot product of two a -dimension vectors. 
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10. The new value of the vector b  will be computed as:  

   1

1 k

          b X W X X y p b V V  

,0 ,1 , ,0 ,1 ,
1 1 1 1 1 1

T Tk k k k k k

i i i v i i i v
i i i i i i

b b b V V V
     

   
    
   
        

,0 ,1 ,
1 1 1

k k k

i i i v
i i i

b b b
  

     
 
    

in which each , , ,i j i j i jb b V   . 

11. Loop termination. At the end of the loop the distance of the old and new b  has to be compared with the 
specified threshold, say  . For this comparison, different distance functions could be used. Here, we 
use 2-norm distance. Therefore, first by using the secure building block presented in Section 3.4, 

secure multi-party 2-norm distance of the two vectors, 
New b  and 

Old b , will be computed, such 

that: 

   
 0 ,0 ,

1 1

k k

v i i v
i i

   
 

    
 
  

    
,     0 ,0 ,

1 1

k k

v i i v
i i

   
 

    
 
    

and at the end of the sub-protocol: 

1

,
k

j
j




 
 

,
 

j jP   . 

For the comparison, the secure sub-protocol presented in Section 3.5 is used to compare 
1

k

j
j



  and 

. This comparison is done jointly by the parties and the AC. 

The main protocol is terminated according to the comparison result in step 11, if the distance between the new 
and old regression vectors is smaller than the threshold, and otherwise the protocol is repeated from step 2. 

4 Security Analysis 
In our proposed protocol the sites perform computations on their distributed and secure data. It is therefore a 
reasonable assumption that they correctly follow the protocol steps and provide valid data in their data 
communications with other sites. However, any site may also use the intermediate results received from the 
others to compute or infer private information. This means that all of the parties are considered semi-honest.  

Because the protocols are usually complex and different operations are used during their steps, the composition 
theorem [55, 56] is used for their security proof. The base sub-protocols in the algorithms presented in this 
paper are secure dot product, secure addition and multiplication, and secure comparison. Security proofs for 
these building blocks could be found in their corresponding papers. The exception is secure comparison, which 
is discussed in this section. Also, collusion attacks between two or more sites, or one or more sites and the 
central unit are examined. 

4.1 Secure Multi-party Comparison:  
To prove the security of this building block, we use the Simulation paradigm [55, 57]. Using this paradigm, a 
protocol is considered secure if for any party involved in the protocol all the information that can be gained by 

the party could also be acquired from their own inputs and outputs. Thus, for each party P a simulator S has to 
be found such that the party’s view using the secure protocol is computationally indistinguishable [55] from the 
output of that simulator. 
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 Central unit: The first two steps are done by the central unit. Thus, the first part of the simulator

CUS for this party would be: 

Input: Nothing 
Process:  

 Establishing the encryption keys 

 Selecting random numbers 1, , kr r  

 Encrypting the random numbers 

Output:     1, , , kPK E r E r
 

 
  In the output, PK is the public key. 
 

 1 1, , kP P   : In step 3 each party, except the first one, receives an encrypted message from the 

previous party, performs an encryption and a multiplication, and sends the result to the next 
party. Note that an encrypted message received by a party is considered a random number, 
because they do not know the private key and therefore are not able to decrypt the message. 

Thus, the simulator
1P

S for the first party is: 

Input:   1,PK E r  

Process:  

 Encrypting her private input 1  

 Performing    1 1hE E r   

Output:     1 1hE E r 
 

 

Also, the simulator
jPS for each party  , 2, , 1jP j k  will be as follows: 

Input:       
1

1

, ,
j

j l h l
l

PK E r E E r




 
 

 
  

Process:  

 Encrypting their private input j  

 Performing         
1

1

j

j h j h l h l
l

E E r E E r 




    

Output:     
1

j

l h l
l

E E r


 
 

 
  

 

 kP : In step 4 the last party performs the same operations as the previous parties have done. 

The last party also hides the result into a random list and sends it to the central unit. The first 

part of the simulator
kPS for this party would be: 

Input:       
1

1

, ,
k

k l h l
l

PK E r E E r




 
 

 
  

Process:  

 Encrypting their private input k  

 Performing           
1

1

1

k

h k h k h l h l
l

E E E r E E r  






 
    

 
  

 Generating a random list 
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 Hiding    
1

k

l h l
l

E E r


  in the random list 

Output: A random list of numbers 
 

 Central unit: The second part of the simulator for this party is as follows: 
 
Input: A random list of numbers 
Process:  

 Decrypting all the items in the list 

 Subtracting 
1

k

j
j

r

 from each decrypted item 

 Sending back the result to the last party 
Output: A random list of numbers 
 

 kP : The second part of the simulator
kPS is: 

 
Input: A random list of numbers 
Process:  

 Selecting the corresponding item from the list 
Output: The comparison result 

 

4.2 Collusion Attacks 
In the protocols that involve more than two parties, collusion between two or more parties could be used to 
extract one or more other parties’ private data. Here we discuss the possibility of such attacks applied to the 
sub-protocols presented in this paper, along with the main protocol. 

4.2.1 Secure Multi-party Comparison 

 Collusion between the central unit and one party: if the first party, 1P , colludes with the central unit, no 

private data from the other parties will be accessed because no information is sent from them to the first 

party. In case of collusion of the central unit with a party,
 jP  , other than the first one, the only information 

revealed to them is 
1

1

j

l
l





 , but no individual data, except in the case of 2j  . 

If the central unit colludes with kP , then the comparison result is also revealed to the central unit.  

 

 Collusion between two parties iP  and jP : No site knows the private key of the cryptosystem which is 

generated by the central analysis unit. Therefore, even by collusion, no useful and meaningful information 
about the other parties’ private data could be revealed to the colluding parties. 

4.2.2 Secure Matrix Sum Inverse 

 1P  and 2P : By colluding these two parties do not extract private information from 3P , because 3R  is a 

random value known only by 3P , and all the rest of the intermediate values are based on that value as well 

as 3L , which is also unknown to those two colluded parties. 

 1P  and 3P : In equation (6), both 2L  and 2N  are known only to 2P , and therefore collusion of 1P
 
and 3P , 

will not be revealed these values. Following the same reasoning, 2Q  , 2M and 2T  could not be accessed 

by these two parties. 
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  2P and 3P : The same reasoning as the previous case applies here. 

4.2.3 Secure 2-norm Distance 

In this sub-protocol, we only use the secure dot product between each pair of parties. This building block is 
applied to only two parties and therefore there is no collusion attack risk for this secure building block. 

4.2.4 Main protocol 

For evaluating collusion attacks, we consider three different scenarios: 
 
i. Collusion between (k-1) parties: Suppose there are k parties who keep the data and run the protocol to 

produce their own private shares of the output values of the regression coefficient vector. If k-1 parties 
collude, we go through the steps of the protocol to investigate any possible security issues: 

1. There is no security problem in this step, because each party just initializes their own private 
shares for the regression coefficient vector by 0’s. 

2. For each record ,i j iX P  all the parties jointly compute ,i jX b . If ,i jX  belongs to one of the 

colluding parties, at the end of this step, they only know their own output shares, and will not know 
the output share of that single party, because of the use of the secure dot product. In the case that 

,i jX  belongs to that single party, again none of their output shares from the secure dot products 

between that party and other parties will be revealed to those parties. However, this is not correct 
for the first iteration, in which all the private share values of the vector b  are zero. Therefore, to 
prevent any possible collusion attack, each party randomly selects very small and non-zero values 
for their input shares of the coefficient vector instead of zeros. In this way, even in the first iteration, 
private shares of the single party from the vector are unknown to the colluding parties. 

3. To compute the weight matrix, the secure logistic function is used by the parties. In this building 
block, secure addition and multiplication are used to convert the logistic function to a summation of 
output private shares. Again, because the colluding parties do not know the private input of the 
single party, they are not able to figure out the final output share of the single party because of the 
resistance of those building blocks to collusion attacks. 

4,5. In these steps, secure matrix multiplication is only used, which is safe against collusion attacks. 
6. Secure matrix sum inverse is used in this step, which has already been investigated for collusion 

attacks above, and found to be safe. 
7. There is no joint operation in this step and therefore, there is no collusion attack. 
8. Same as step 4, and safe. 
9.  In this step, secure dot product is used between every two parties. If this is done between two of 

the colluding parties, they will only know their own shares, and if it is done between one of those 
parties and the single party, at the end, the private share of the single party is kept unknown to the 
colluding parties because of the secure dot product is safe to collusion attack. 

10. There is no joint operation in this step and therefore, there is no collusion attack. 
11. In this step, secure 2-norm distance and secure comparison are used between the parties and their 

resistance to collusion attacks has been already investigated above and found to be safe. 
 

ii. Collusion between all the parties: If all the parties collude, they can jointly compute the regression 
coefficient vector from their private data. This is actually the non-privacy-preserving protocol. 

 
iii. Collusion between one or more parties and the central unit: If there are only two parties who have data 

and want to run the protocol to find their private shares of the regression vector, then collusion of the 
central unit with one of those parties will reveal the private shares of the other party to the central unit. 
In general, this is the case if the central unit colludes with all the parties except one. However, if there 
are less than (k-1) parties who collude with the central unit, then the maximum information the central 
unit will know is the summation of the private shares of the non-colluding parties, which will not help the 
central unit to extract their separate private shares. 
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5 Complexity Analysis 
In this section we analyze the complexity of each sub-protocol and building block used in them. We first show 
the complexity of the building blocks and then use those as the basis for the complexity analysis of the main 
protocol. The building blocks used in this work are secure addition (SA), multiplication (SM), dot product (SDP), 
matrix product (SMP), matrix sum inverse (SMSI), logistic function (SLF), 2-norm distance (SND), and 
comparison (SC). The complexity of each protocol is shown in terms of the number of sent messages, 
encryptions, and decryptions. 

In Table 3, k  is the number of parties involved, v  is the number of independent variables, d  is the dimension 

of a square matrix, and l is the number of items in the random list inside the secure comparison protocol. We 
only apply secure matrix product in the secure multi-party sum inverse sub-protocol, and therefore we only deal 
with the square matrix, which is why we consider only one dimension for the matrix multiplication. 

 

Secure Building Blocks Sent Messages Encryptions Decryptions

Addition   SA k   1k k   
  2 1

2

k k 
 

 1

2

k k 
 

Multiplication   SM k   1k k    1k k   
 1

2

k k 
 

Dot Product   SDP k  1k  1k  1 

Matrix Product   SMP d  22 d  
22 d  

2d  

Matrix Sum Inverse   SMSI d  214 d  
212 d  

26 d  

Logistic Function   SLF k   3 1k k   
25 3 2k k   

 3 1

2

k k 
 

2-Norm Distance   ,SND k v  
  1 2

2

k k v 
 

  1 2

2

k k v 
 

 1

2

k k 
 

Comparison   SC k   2 1 2k l    2 k  l  

Table 3: Complexity analyses of the secure building blocks. 
 

To find the complexity of the main protocol, we go through its steps in Section 3.2 to compute the cost for each 
iteration of the algorithm. The initial computations in step 1, and local computations in steps 7 and 10 are 
negligible compared to the other steps and therefore are ignored in the overall cost of the protocol. 

 Step 2:    1 1N k SDP v   to compute the secure product of the vectors with 1v   items among each 

pair of the parties. 

 Step 3: ( )SLF k  to apply secure logistic function on the private shares of  k  parties. 

 Step 3: ( )SLF k  to apply secure logistic function on the private shares of  k  parties. 

 Steps 4, 5, and 8:        1 1 2v N k k v v SM k      to perform secure matrix multiplications, 

when each item of the matrices is the summation of private shares. 
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 Step 6: ( 1)SMSI v  to do secure matrix sum inverse on matrices with ( 1) ( 1)v v    dimensions. 

 Step 9: 
   1

2
2

k k
SDP v


 to perform secure matrix-vector multiplication, in which the matrix is the 

summation of k matrices, and each item of the vector is the summation of k  items. 

 Step 11: ( , ) ( )SND k v SC k to apply secure 2-norm distance on k  parties sharing two vectors with v

 
items. 

 

Therefore, the overall complexity of the main SPARK protocol based on the computations in a single iteration is 
given by: 

             

         

1
2 1 1 1 2 ,

2

1 1 2

k k
SDP v SMSI v N k SDP v SLF k SND k v

v N k k v v SM k SC k


       

      
 

 

As can be seen, the order of the communication costs in both protocols mostly depends on the number of 

parties involved, k , and the number of independent variables, v . Also, because a portion of the computation 
depends on the number of data records, we could use parallel operations between different parties to make the 
protocol faster in real-world applications with a very large number of records. 

6 Extensions to Other Generalized Linear Models 
The basic protocol we have presented here can be extended to other Generalized Linear Models (GLM) [1]. 
The link functions for other GLMs are simpler than the logit function, as illustrated in Table 4. Secure 
computation of the link functions could be applied using the secure building blocks in this paper. In the Poisson 
log function, for example, we only need to compute the exponent of the product of regression vector and design 
matrix, which we already have in our protocol.  

 

Name Function 
Identity 
Reciprocal 1   
Reciprocal squared 21   
Square root   

Log  ln   

Complementary log-log   ln ln   

Logit   ln 1   

Table 4: Examples of link functions. 
 

As another example consider the reciprocal function, which is used with the exponential gamma distribution. 
With this link function, the reciprocal of each item of the Xb  vector has to be computed. Each item of the vector 
is the summation of the private shares: 

1ij i ika a   X b  

Thus, we have to securely compute the private shares of the parties, 'ijb s , such that: 
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  1

1 1
1

1
i ik i ik

i ik

a a b b
a a

     
 

 


 

This could be done using the secure inverse addition, which is actually a subset of the secure logistic function 
proposed in this paper as a secure building block. 

For other link functions and distributions the secure computation protocol depends on the explicit operations we 
have to perform, and could be done on a case by case basis. 

For the weight matrix, W , we have the same situation. That is, there is a different function to compute the 
items of the diagonal weight matrix depending on the link function and variance of the distribution.  The diagonal 
weight matrix is derived from equation:  

    2

1
.

var
i

i i

w
g 

 ..……………… (12)

Applying the link function to different distributions, we get Table 5. 

 

Distribution Link  Variance  Weight  
Bernoulli   ln 1   (1 )    1   

  ln   (1 )    1   

   ln ln   (1 )      ln 1   

Binomial ( k )   ln k   (1 )k    k k   

Poisson  ln      

    1   
    22  

Negative binomial ( k )   ln k   2 k    k k   

  ln   2 k      k k   

Normal   1 1
  ln   1 2  

 1   1 4  
Gamma 1   2  2  
   2  21   
  ln   2  1 

Inverse Gaussian 21   3  2 2  
 1   3    

  ln   3  1   

Table 5: The link functions applied to GLM distributions. 
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7 Extension to Generalized Estimating Equations 

7.1 Overview of GEEs 
We consider the case where there are repeated measures on a subject (which could be a site, facility, or an 

individual), such that each subject i  has 1, , ij N   observations, 
1

k

i
i

N N


 . In this case Generalized 

Estimating Equations (GEE’s) are used to adjust for the clustering by subject, resulting in a modified iterative 
procedure [50]. For subjects 1, ,i k   we have:  

 
1

1 1
1

1 1

k k
T T

z z i i i i i i i
i i

D V D D V y


 


 

        
   
 

 
b b p  ..……………… (13)

where ,i i i i i   D = W X  and  1/2 1/2.i i i i V W R W   Further,   diagi j ijW p  is a i iN N  

diagonal matrix of the variance function (based on the distribution), and  diagi ij ij     is a i iN N  

matrix, although i i I  for canonical link functions [58]. The dispersion parameter   and correlation 

parameters   which fully characterize the “working” correlation matrix   ,iR   can be estimated from the 

standardized (or Pearson) residuals,  

 
 

 
ˆ

.
ˆ

ij ij

ij

ij

y
e






p

p
 

Given the standardized residuals, we can estimate the dispersion parameter using 

 2

1 1

1 1ˆ .
iNk

ij
i ji

e
k N


 

    

The correlation parameters depend on the selected correlation structure. They can be found using the 
estimates provided in the following table [59]. 

 

Structure  *Corr ,ij ikY Y  ̂   

Independence 0  Not required  

Exchangeable   
 

1 1
11 i i

N

ij ikN n ni j k
e e     

AR(1) j k 
 1 1

, 111 1i i

N

ij i jN ni j n
e e       

Unstructured 
jk  1

1

N

ij ikN i
e e

  
 

*Correlation along main diagonal is  Corr , 1.it itY Y    

Table 6: Structure definition for working correlation and estimates. 
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We assume a canonical link function, and use logistic as our primary example.  Our variance function will 

therefore be    1i i i  p p p  for the binomial distribution. 

1. Use Newton-Raphson method to get initial parameter estimates 0b  (i.e., assuming independence 

correlation structure). 

2. Calculate the standardized residuals e , then the dispersion parameter ̂  and the correlation 

parameters ̂  from Table 6 (based on the selected structural definition). 

3. Calculate the working covariance matrix  1/2 1/2ˆˆ ˆ ,i i i i V W R W  where  ˆ
iR   is determined by the 

selected structural definition, and      ˆ ˆ ˆdiag diag 1 .i j ij i i  W p p p  

4. Update the parameter estimates zb , where  i i iD W X  (since we assume a canonical link function). 

5. Iterate steps 2 to 4 until convergence. 

6. Calculate the estimated covariance matrix of the parameter estimates z  using the “sandwich” 

estimator given by 

     
1 1

1 1 1 1

1 1 1

ˆ ˆ ˆ ˆVar .
k k k

TT T T
z i i i i i i i i i i i i i i

i i i

 
   

  

          
    
  b D V D D V y p y p V D D V D  

This empirically-adjusted covariance uses the data iy  sandwiched by the model-based covariance to adjust 

standard errors in case the true covariance is very different from the working assumptions. The standard errors 
for the parameter estimates are the diagonal entries of the above equation. 

7.2 Secure Generalized Estimating Equations 
There are some differences between the GEE’s method and logistic regression method presented in the 
previous section for the computation of the items in the coefficient vector. In GEE’s method, in each iteration, 
there is first an inner computation for each cluster, and then using those computed values the new values of 
coefficient vector’s item are calculated. Another difference is that in the independence correlation structure, 

  IR  and the dispersion parameter is assumed 1, i.e. 1  . 

Because of the horizontally partitioned data amongst the parties, each 1T
i i iD V D  could be locally computed. 

The same situation is satisfied for  1T
i i i iD V y  


. Therefore, equation (13) will be converted to 

 

1

1
1 1

,
k k

z z i i
i i

G H



 

        
   
 b b  

in which 1T
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
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

p . Now, the computation has been reduced to a secure 

multi-party matrix sum inverse, explained in the Section 3.2 for 
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

 
 
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  such that 
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
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 
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then a multiplication of a matrix and a vector,
1

k

i
i

L

 and

1

k

i
i

H

 , each of which are the summation of private 

shares. This multiplication could be securely converted to the summation of private vectors using secure dot 
product for the calculation of each item. Thus, the main equation will be transformed to 

 1
1

k

z z i
i

M


 b b  



El Emam et al.: A secure distributed logistic regression protocol for the detection of rare adverse drug events 

 
32/34: AppendixPV-v8.docx 

Note, that 
1

k

i
i

L

  is a    1 1v v    matrix and, 

1

k

i
i

H

  is a vector with  1v   elements, and therefore 

1

k

i
i

M

  would be a vector with  1v   elements, and the equation will be transformed to the summation of k  

vectors that separately belong to the parties. 

The computation of items in p , W and y p  are the same as those in the logistic regression protocol. 

 

The overall complexity of GEE protocol based on the computations in a single iteration is given by 

 
           1

2 1 2 ,
2

k k
SDP v SMSI v SLF k SND k v SC k


       
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