
Supporting Material: Cellular compartments cause multistability
in biochemical reaction networks and allow cells to process more

information

Heather A Harrington*
Division of Molecular Biosciences,

Imperial College London, London, U.K.,

Elisenda Feliu*
Department of Mathematical Sciences, University of Copenhagen,

Copenhagen, Denmark,
*Joint first authors

Carsten Wiuf 1

Department of Mathematical Sciences, University of Copenhagen,
Copenhagen, Denmark

Michael PH Stumpf2

Division of Molecular Biosciences,
Imperial College London, London, U.K.

1Corresponding author. Address: Department of Mathematical Sciences, University of Copenhagen, Univer-
sitetsparken 5, DK-2100 Copenhagen, Denmark Tel.: +45 353 20695, Fax: +45 353 20704

2Corresponding author. Address: Division of Molecular Biosciences, Imperial College London, Wolfson
Building, London, SW7 2AZ, U.K., Tel.: +44(0)2075945280, Fax: +44(0)2075949111



Supporting Material: Molecular localization causes multistability 1

Overview

In the Supporting Material we illustrate the claims made in the main text in more detail.
In Section 1 we study a one-site phosphorylation cycle, which is monostationary, and show that

shuttling species can introduce multistationarity. In Section 2 we study the extended two-site phospho-
rylation cycle. Without compartmentalization the two-site modification cycle exhibits multistationar-
ity for some choices of rate constants but not all. We show that compartmentalization can introduce
multistationarity even if the rate contents do not allow multistationarity in a two-site system without
compartmentalization.
1 Shuttling in a one-site phosphorylation cycle

Reactions and rate constants. We consider a one-site phosphorylation cycle with species S, S∗ (the
unphosphorylated and phosphorylated substrates),E (kinase), F (phosphatase), andX,Y (intermediate
complexes). Phosphorylation and dephosphorylation are assumed to follow a Michaelis-Menten mech-
anism (see below and main text). This motif cannot admit multiple steady states and is monostable (1).

To study the effect of compartmentalization we assume that the species S, S∗, E,X can shuttle
between the cytoplasm and the nucleus (see Figure 1). We let Zc denote the species Z in the cytoplasm.
Then, we have the following reactions:

• Reactions in the nucleus:

E + S
k1 // X
k2
oo

k3 // E + S∗ F + S∗ k4 // Y
k5
oo

k6 // F + S

• Reactions in the cytoplasm:

Ec + Sc
k7 // Xc

k8
oo

k9 // Ec + Sc F c + Sc∗
k10 // Y c

k11
oo

k12 // F c + Sc∗

Cytoplasm

Nucleus

S S∗

S S∗

X

Y

X

Y

E

F

E

F

Figure 1: Shuttling of a one-site phosphorylation cycle between the nucleus and the cytoplasm.
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• Shuttling reactions:

E
k13 // Ec
k17
oo X

k14 // Xc

k18
oo S

k15 // Sc
k19
oo S∗ k16 // Sc∗

k20
oo

To ease the notation, we have changed the notation of the reaction constants kr in the main text
and simply labeled them with consecutive numbers k1, . . . , k20. The correspondence between the two
notations is shown below:

Here k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

Main text kon,E koff,E kcat,E kon,F koff,F kcat,F kcon,E kcoff,E kccat,E kcon,F

Here k11 k12 k13 k14 k15 k16 k17 k18 k19 k20

Main text kcoff,F kccat,F kout,E kout,X kout,S kout,S∗ kin,E kin,X kin,S kin,S∗

Mass-action system of ordinary differential equations. We order the set of species in the following
way:

(x1, x2, x3, x4, x5, x6) = (E,X, S, S∗, F, Y ), (x7, x8, x9, x10, x11, x12) = (Ec, Xc, Sc, Sc∗, F c, Y c).

By assuming the law of mass-action, the dynamics of this reaction network is modeled by the following
system of ordinary differential equations (reference to time t is omitted, xi = xi(t)):

ẋ1 = −k13x1 + k2x2 + k3x2 − k1x1x3 + k17x7,

ẋ2 = −k2x2 − k3x2 − k14x2 + k1x1x3 + k18x8,

ẋ3 = k2x2 − k15x3 − k1x1x3 + k6x6 + k19x9,

ẋ4 = k3x2 − k16x4 − k4x4x5 + k5x6 + k20x10,

ẋ5 = −k4x4x5 + k5x6 + k6x6,

ẋ6 = k4x4x5 − k5x6 − k6x6, (1)

ẋ7 = k13x1 − k17x7 + k8x8 + k9x8 − k7x7x9,

ẋ8 = k14x2 − k8x8 − k9x8 − k18x8 + k7x7x9,

ẋ9 = k15x3 + k8x8 − k19x9 − k7x7x9 + k12x12,

ẋ10 = k16x4 + k9x8 − k20x10 − k10x10x11 + k11x12,

ẋ11 = −k10x10x11 + k11x12 + k12x12,

ẋ12 = k10x10x11 − k11x12 − k12x12.

This dynamical system has four conservation laws, accounting for the fact that the amounts of
enzymes and substrate are conserved:

0 = ẋ1 + ẋ2 + ẋ7 + ẋ8,

0 = ẋ5 + ẋ6, (2)

0 = ẋ2 + ẋ3 + ẋ4 + ẋ6 + ẋ8 + ẋ9 + ẋ10 + ẋ12,

0 = ẋ11 + ẋ12.

These conservation laws can be verified but adding the corresponding equations in (1). Since the model
does not incorporate shuttling of the phosphatase, the amount of phosphatase is conserved separately in
each compartment.
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Let Stot denote the total amount of substrate, and Etot, Ftot, F ctot denote the total amounts of kinase
and phosphatase in the system, respectively. The differential equations in (2) lead to the following
equations that are fulfilled at any time:

Etot = x1 + x2 + x7 + x8

Ftot = x5 + x6 (3)

Stot = x2 + x3 + x4 + x6 + x8 + x9 + x10 + x12

F ctot = x11 + x12.

The steady states of the system are obtained by setting all derivatives ẋi to zero. The system has the
capacity for multiple steady states if there exist rate constants k1, . . . , k20 and positive total amounts
Stot, Etot, Ftot, F

c
tot such that the equations ẋi = 0 together with (3) have more than one positive so-

lution. Therefore, for fixed reaction rates and total amounts, determination of multistationarity implies
solving a system of polynomial equations in 12 indeterminates (variables). The equations correspond-
ing to the conservation laws are linear, while those corresponding to setting the derivatives to zero are
quadratic (that is, they have terms of total degree 1 and 2).

Rate constants and total amounts for multistationarity (for Figs. 2, 3 in the main text). The CRNT
toolbox (2) provides a unique set of rate constants for which the system admits multiple positive steady
states

k1 = 11.679195 k2 = 144.94137 k3 = 91.527059 k4 = 207.26904 k5 = 22.115015,

k6 = 309.97808, k7 = 49.545796, k8 = 8.8750284, k9 = 262.90818, k10 = 356.03934,

k11 = 1.8978202, k12 = 44.457164, k13 = 1.0903408, k14 = 305.42214, k15 = 47.547732,

k16 = 41.866754, k17 = 86.473107, k18 = 215.67801, k19 = 1, k20 = 165.98446.

For this set of rate constants, two steady states are provided with total amounts:

Etot = 20.7066814, Stot = 35.21053215, Ftot = 3.84921092, F ctot = 11.0903086.

We aim to exemplify multistationarity with rate constants that are more biologically reasonable and
of the order of experimentally determined values (3, 4). To this end, we have manually investigated the
effect of changing a specific rate or a total amount with respect to the emergence of multistationarity. We
guide the proposed changes by the structure of the steady-state equations. This procedure has allowed
us to tune the rate constants and total amounts to reasonable values without loosing multistationarity.
Specifically, we settled for the rates (used to create Figures 2 and 3 in the main text):

k1 = 0.049 k2 = 0.009 k3 = 0.262 k4 = 0.356 k5 = 0.002 k6 = 0.044 k7 = 0.011

k8 = 0.144 k9 = 0.091 k10 = 0.207 k11 = 0.022 k12 = 0.309 k13 = 0.16 k14 = 0.14

k15 = 0.001 k16 = 0.166 k17 = 0.0006 k18 = 0.33 k19 = 0.047 k20 = 0.041,

and the total amounts {Etot, Stot, Ftot, F ctot} = {22, 35, 11, 3},where forward kinetic reaction rates
(k1, k3, k4, k6, k7, k9, k10, k12) have units µM−1s−1 and all kinetic and shuttling rates have units s−1,
which are within an order of magnitude of existing studies (3, 4). With these parameters, there are three
steady states, of which two are stable. Specifically, the steady states are approximately:

SS1 = (0.676, 2.357, 16.33, 1.261, 1.023, 9.977, 17.671, 1.296, 2.068, 0.751, 2.041, 0.959)

SS2 = (0.183, 0.965, 27.220, 0.126, 5.623, 5.377, 20.391, 0.461, 0.559, 0.107, 2.812, 0.188)

SS3 = (1.062, 2.87, 11.847, 2.145, 0.625, 10.375, 16.371, 1.701, 3.109, 1.503, 1.546, 1.454).
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The steady state SS1 is unstable and has only one eigenvalue with positive real part.

Conditions for monostationarity (Eqns (8) in the main text). Not all choices of rate constants and
total amounts have the capacity for multistationarity. We show here that there is a set of necessary
conditions for the existence of multistationarity that depends exclusively on the shuttling rates. To see
this, we apply the Jacobian injectivity criterion to a function that in part consists of the right hand sides
of the conservation laws (1).

Specifically, we consider the polynomial function fκ : R12 → R12 given by the right-hand side of
the four conservation equations (3) and the equations in (1) for all ẋi except for ẋ1, ẋ2, ẋ5 and ẋ11.
The latter equations are redundant and can be obtained from the conserved equations in (2). The 12
components of the function fκ = (fκ,1, . . . , fκ,12) are

fκ,1 = x1 + x2 + x7 + x11,

fκ,2 = x2 + x3 + x4 + x6 + x8 + x9 + x10 + x12,

fκ,3 = x5 + x6,

fκ,4 = x11 + x12,

fκ,5 = k2x2 − k15x3 − k1x1x3 + k6x6 + k19x9,

fκ,6 = k3x2 − k16x4 − k4x4x5 + k5x6 + k20x10,

fκ,7 = k4x4x5 − k5x6 − k6x6,
fκ,8 = k13x1 − k17x7 + k8x8 + k9x8 − k7x7x9,
fκ,9 = k14x2 − k8x8 − k9x8 − k18x8 + k7x7x9,

fκ,10 = k15x3 + k8x8 − k19x9 − k7x7x9 + k12x12,

fκ,11 = k16x4 + k9x8 − k20x10 − k10x10x11 + k11x12,

fκ,12 = k10x10x11 − k11x12 − k12x12.

If this function is injective over the real positive numbers Rn+, then multiple positive steady states with
the same total amounts cannot occur. As described in the main text, we use the Jacobian injectivity
criterion to investigate conditions on the rate constants for which the function is injective. Since fκ
is quadratic, the criterion applies. The determinant of the Jacobian of fκ can be computed using any
software that enables algebraic (symbolic) computations, like Mathematica or Maple. We compute
the determinant and extract the coefficients. These coefficients are polynomials in the rate constants
and most of them contain only positive summands. Therefore, we search for the coefficients that have
negative summands. After appropriate factorization and simplification, we conclude that the coefficients
are all positive if and only if the following expressions are positive:

C1 =k9k14 + k9k17 + k3(k18 − k17) = k9k14 + (k9 − k3)k17 + k3k18,

C2 =k3k12(k15 − k16)(k18 − k17) + k3k15k16(k18 − k17) + k12k15k16k18 + k9k14k15k16

+ k12k14k15k16 + k12k14k16k17 + k9k15k16k17 + k12k16k17k18,

C3 =k3k12k15(k18 − k17) + k6k9k14k15 + k6k12k14k15 + k6k12k14k17 + k6k9k15k17

+ k6k12k15k18 + k6k12k17k18,

C4 =k3k15(k18 − k17)k20 + k6k9k14k15 + k6k9k15k17 + k6k9k14k20 + k6k14k15k20

+ k9k14k15k20 + k6k9k17k20 + k6k14k17k20 + k9k15k17k20 + k6k15k18k20 + k6k17k18k20,
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C5 =k3k13 + k9(k14 − k13) + k3k18 = (k3 − k9)k13 + k9k14 + k3k18,

C6 =k6k9(k14 − k13)k19 + k6k12k13k14 + k6k12k13k18 + k3k12k13k19 + k6k12k14k19

+ k3k12k18k19 + k6k12k18k19,

C7 =k9(k14 − k13)k16k19 + k3k12k13k16 + k12k13k14k16 + k3k12k16k18 + k12k13k16k18

+ k3k12k13k19 + k3k13k16k19 + k12k14k16k19 + k3k12k18k19 + k3k16k18k19 + k12k16k18k19,

C8 =k6k9(k14 − k13)(k19 − k20) + k9(k14 − k13)k19k20 + k6k13k14k20 + k6k13k18k20

+ k3k13k19k20 + k6k14k19k20 + k3k18k19k20 + k6k18k19k20.

Observe that these expressions only involve the 8 shuttling rates and k3, k6, k9, k12. Instances for which
the coefficients C1, . . . , C8 are negative exist. If

k20 ≤ k19, k18 ≥ k17, k16 ≤ k15, k14 ≥ k13, (4)

then Ci > 0 for all i and hence multistationarity cannot occur for any choice of total amounts (these
inequalities correspond to Eqns. (8) in the main text). However, there is no guarantee that when these
conditions fail, the system admits multiple steady states for some total amounts. Figure 1 above is
reproduced as Figure 2 with the shuttling rate constants indicated.

We assume now that the dissociation constants are the same in the two compartments (the nucleus
and the cytoplasm), that is, we assume that k3 = k9 and k6 = k12. In this caseCi > 0 for all i 6= 2, 8 and
all shuttling rate constants. Therefore, two conditions suffice to guarantee monostationarity, namely:
C̃2 =k9k12(k15 − k16)(k18 − k17) + k9k14k15k16 + k12k14k15k16

+ k12k14k16k17 + k9k15k16k18 + k12k15k16k18 + k12k16k17k18 > 0,

C̃8 =k9k12(k14 − k13)(k19 − k20) + k12k13k14k20 + k12k13k18k20

+ k9k14k19k20 + k12k14k19k20 + k9k18k19k20 + k12k18k19k20 > 0.

Cytoplasm

Nucleus

S S∗

S S∗

X

Y

X

Y

E

F

E

F

k19

k15

k17

k13

k18

k14

k20

k16

Figure 2: Shuttling rates for the one-site phosphorylation cycle
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The first corresponds to C2 and the second to C8. By inspection of these two expressions, we conclude
that multistationarity cannot occur in any of the following cases:

(i) k20 ≤ k19, k18 ≥ k17, k16 ≤ k15, k14 ≥ k13,

(ii) k20 ≥ k19, k18 ≥ k17, k16 ≤ k15, k14 ≤ k13,

(iii) k20 ≤ k19, k18 ≤ k17, k16 ≥ k15, k14 ≥ k13,

(iv) k20 ≥ k19, k18 ≤ k17, k16 ≥ k15, k14 ≤ k13.

Note that these only involve the rate constants for the shuttling reactions. If the dissociation rate con-
stants are not exactly the same in the cytoplasm and in the nucleus, but very similar, then the conditions
above are still sufficient.

We see that the rate constants go in pairs: the shuttling rate constants of S relate to those of S∗, and
the shuttling rate constants of E to those of X . In particular, the following conditions are necessary for
multistationarity:

(1) If X shuttles into the nucleus slower than E then S shuttles into the cytoplasm slower than S∗ and
vice versa.

(2) If X shuttles into the cytoplasm slower than E then S shuttles into the nucleus slower than S∗ and
vice versa.

Sets of rate constants for which I1 < 0 can for instance be obtained by letting the product k9k16 be
large and the remaining products be small such that k14k15 +k12k17−k12k18 +k15k18 < 0 is satisfied.

# No multistationarity Multistationarity
1 All None

2
{S, S∗} {E, Y } {F,X} {S∗, E} {E,F} {X,Y } {S∗, X} {S, Y }
{S, F} {S,X} {S∗, Y } {E,X}
{F, Y } {S,E} {S∗, F}

3
{X,E, F} {Y,E, F} {X,Y,E} {S,E,X} {S∗, F, Y } {S,E, Y } {S∗, E,X}
{X,Y, F} {S, F,X} {S∗, E, Y } {S∗, F,X} {S,E, S∗} {S∗, F, S} {S, S∗, X}

{S,E, F} {S∗, F, E} {S,X, Y } {S∗, Y,X} {S, F, Y } {S, S∗, Y }

4
{Y,X,E, F} {S, S∗, X, F} {S, S∗, Y, E} {S,E,X, Y } {S∗, F,X, Y }

{S, F,X, Y } {S∗, E,X, Y } {S, S∗, X, Y } {S, S∗, E, F}
{S,E, F,X} {S∗, E, F, Y } {S,E, F, Y }
{S∗, E, F,X} {S, S∗, X,E} {S, S∗, Y, F}

5, 6 None All

Table 1: One-site phosphorylation system. For all possible sets of shuttling species it is indicated if the
system has the capacity for multiple steady states or not.

Sets of shuttling species and multistationarity. We have shown that if the species E,X, S, S∗ shuttle
between compartments, multistationarity is created. We next investigate what the sets of shuttling
species that provide multistationarity are. The results are summarized in Table 1. We use a systematic
way to classify each motif: First, we check if the system fulfills the Jacobian injectivity criterion for all
rate constants. If the coefficients of the polynomial in x given by the determinant of the Jacobian (as
above) are all positive, then the system cannot exhibit multistationarity for any set of total amounts (see
also (5)). If the criterion fails then we use the CRNT toolbox.
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We have obtained that if only one species shuttles then multistationarity cannot occur. That is,
at least two species, e.g. {S∗, X} or {S, Y }, are required to create multistationarity in the one-site
phosphorylation cycle for certain total amounts and rate constants. The addition of shuttling species
maintains multistationarity.

Effects of varying the shuttling rates. We analyze the steady-state response of S∗ in the nucleus as
the shuttling rate constants and total amounts change in the system.

The following table summarizes the type of saddle-node bifurcation curves obtained as shuttling
rate constants of molecular species are varied.

Rate constant Rate-response curve
k13, k14, k19, k20 For large rate constant, only a low stable steady state is obtained
k15, k17, k18 For a small rate constant, only a high stable steady state is obtained

k16 Similar to the previous case, but the high branch decreases (Fig. S1).

By varying a total amount and shuttling rate constant simultaneously, the system may undergo
irreversible switches. This occurs with respect to shuttling rate constants k14, k15, k17, and k20. Specif-
ically, for shuttling parameters, k15 and k17, the irreversible switch is obtained by either increasing
Ftot or decreasing Etot, Stot or F ctot. As the value of the shuttling rate constant increases, the response
curve switches from a low to a high steady state, favoring accumulation in the nucleus. Conversely,
increasing the value of shuttling parameters k14 and k20 induces an irreversible switch from the high to
low steady-state by either decreasing Ftot or increasing Etot, Stot. As highlighted in the main text (see
Figure 3), the k20 bifurcation is irreversible at baseline parameter values.

2 Shuttling in a two-site phosphorylation cycle

In eukaryotes, most protein phosphorylation events take place in more than one site. It is well known
that multisite phosphorylation can cause multistationarity by itself (6, 7). However, multistationarity
does not occur for all choices of rate constants.

We next investigate the effect of adding species compartmentalization in a two-site (sequential)
phosphorylation system. We first determine rate constants for which the two-site system cannot exhibit
multistationarity. Then, we add species shuttling and determine shuttling rate constants that induce
multistationarity.

Conditions for monostationarity in a two-site phosphorylation cycle. We consider a two-site phos-
phorylation cycle in which modifications take place sequentially. The reactions describing the system
are:

S0 + E
k1 // X1
k2
oo

k3 // S1 + E S1 + E
k4 // X2
k5
oo

k6 // S2 + E

S1 + F
k7 // Y1
k8
oo

k9 // S0 + F S2 + F
k10 // Y2
k11
oo

k12 // S1 + F

The set of species is ordered such that

(x1, . . . , x9) = (E,X1, S0, S1, F, Y1, S2, X2, Y2).

Assuming mass-action kinetics, then the differential equations describing the dynamics of the species
concentrations are:
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ẋ1 = k2x2 + k3x2 − k1x1x3 − k4x1x4 + k5x8 + k6x8,

ẋ2 = −k2x2 − k3x2 + k1x1x3,

ẋ3 = k2x2 − k1x1x3 + k9x6,

ẋ4 = k3x2 − k4x1x4 − k7x4x5 + k8x6 + k5x8 + k12x9,

ẋ5 = −k7x4x5 + k8x6 + k9x6 − k10x5x7 + k11x9 + k12x9,

ẋ6 = k7x4x5 − k8x6 − k9x6,

ẋ7 = −k10x5x7 + k6x8 + k11x9,

ẋ8 = k4x1x4 − k5x8 − k6x8,

ẋ9 = k10x5x7 − k11x9 − k12x9.

This system has the following conserved amounts:

Etot = x1 + x2 + x8, Ftot = x5 + x6 + x9, Stot = x2 + x3 + x4 + x6 + x7 + x8 + x9.

The steady-state equations are given by ẋi = 0. Because of the constraints given by the conservation
laws, the equations ẋ1 = 0, ẋ2 = 0 and ẋ5 = 0 are redundant and can be removed.

We proceed as above to determine rate constants for which the system cannot have multiple steady
states. That is, we apply the Jacobian injectivity criterion. We consider the function fκ : R9 → R9 given
by the three equations coming from the conservation laws and the 6 remaining steady-state equations:

fκ,1(x) = x1 + x2 + x8,

fκ,2(x) = x2 + x3 + x4 + x6 + x7 + x8 + x9,

fκ,3(x) = x5 + x6 + x9,

fκ,4(x) = k2x2 − k1x1x3 + k9x6,

fκ,5(x) = k3x2 − k4x1x4 − k7x4x5 + k8x6 + k5x8 + k12x9,

fκ,6(x) = k7x4x5 − k8x6 − k9x6,

fκ,7(x) = −k10x5x7 + k6x8 + k11x9,

fκ,8(x) = k4x1x4 − k5x8 − k6x8,

fκ,9(x) = k10x5x7 − k11x9 − k12x9.

If this function is injective over the positive real numbers then multiple positive steady states cannot
occur with the same total amounts in the conservation laws. Next, we compute the determinant of the
Jacobian of fκ. As a polynomial in x, the only coefficients (which depend on the rate constants ki) of
the determinant that are not sums of positive terms are:

C1 = −k2k4k6k7k9k10 − k3k4k6k7k9k10 − k1k4k6k7k9k11 − k1k4k6k7k9k12

+ k1k3k5k7k10k12 + k1k3k6k7k10k12 + k1k3k4k8k10k12 + k1k3k4k9k10k12

C2 = −k1k4k7k10(k6k9 − k3k12).

If a choice of rate constants fulfills C1, C2 > 0, then the system cannot have multiple positive steady
states for any total amounts. The coefficient C1 can be rewritten as

C1 = −k6k9k4k7(k2k10 + k3k10 + k1k11 + k1k12) + k3k12k1k10(k5k7 + k6k7 + k4k8 + k4k9).
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For C2 > 0 we require
k3/k6 > k9/k12.

If this inequality is fulfilled then C1 > 0 if also

k4k7(k2k10 + k3k10 + k1k11 + k1k12) < k1k10(k5k7 + k6k7 + k4k8 + k4k9).

This inequality can be rewritten as

k2 + k3

k1
+
k11 + k12

k10
<
k5 + k6

k4
+
k8 + k9

k7
.

Let
α1 =

k5 + k6

k4
− k2 + k3

k1
, α2 =

k8 + k9

k7
− k11 + k12

k10
, α3 =

k3

k6
− k9

k12
.

If
α1, α2, α3 > 0, (5)

then the two-site phosphorylation system cannot have multiple positive steady states no matter the
values of the total amounts. That is, a sufficient condition for the preclusion of multistationarity is
obtained.

Observe that α1 and α2 imply an inequality between the Michaelis-Menten constants of the kinase
and the phosphatase in each phosphorylation site. Namely, the Michaelis-Menten constant of E for the
second site is larger than that for the first phosphorylation site, and the Michaelis-Menten constant of F
for the first site is larger than that for the second site.

Negation of this condition is a priori not sufficient to guarantee multistationarity. However, if
α3 < 0, then there exist total amounts for which the motif exhibits multistationarity (8).

Mass-action system of ordinary differential equations for the two-site shuttling. Consider now two
copies of a two-site phosphorylation cycle as above and let S0, S1, S2, X1, X2, E shuttle between the
nucleus and the cytoplasm. The reactions describing the system are:

• Reactions in the nucleus:

S0 + E
k1 // X1
k2
oo

k3 // S1 + E S1 + E
k4 // X2
k5
oo

k6 // S2 + E

S1 + F
k7 // Y1
k8
oo

k9 // S0 + F S2 + F
k10 // Y2
k11
oo

k12 // S1 + F

• Reactions in the cytoplasm:

Sc0 + Ec
k13 // Xc

1
k14
oo

k15 // Sc1 + Ec Sc1 + Ec
k16 // Xc

2
k17
oo

k18 // Sc2 + Ec

Sc1 + F c
k19 // Y c

1
k20
oo

k21 // Sc0 + F c Sc2 + F c
k22 // Y c

2
k23
oo

k24 // Sc1 + F c

• Shuttling reactions:
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E
k25 // Ec
k31
oo X1

k26 // Xc
1

k32
oo S0

k27 // Sc0
k33
oo

S1
k28 // Sc1
k34
oo S2

k29 // Sc2
k35
oo X2

k30 // Xc
2

k36
oo

The species are ordered as:

(x1, . . . , x9) = (E,X1, S0, S1, F, Y1, S2, X2, Y2)

(x10, . . . , x18) = (Ec, Xc
1, S

c
0, S

c
1, F

c, Y c
1 , S

c
2, X

c
2, Y

c
2 ).

Assuming mass-action kinetics, the system of differential equations describing the dynamics of the
concentrations of the species is:

ẋ1 = k2x2 + k3x2 − k1x1x3 − k4x1x4 + k5x8 + k6x8 − k25x1 + k31x10,

ẋ2 = −k2x2 − k3x2 + k1x1x3 − k26x2 + k32x11,

ẋ3 = k2x2 − k1x1x3 + k9x6 − k27x3 + k33x12,

ẋ4 = k3x2 − k4x1x4 − k7x4x5 + k8x6 + k5x8 + k12x9 − k28x4 + k34x13,

ẋ5 = −k7x4x5 + k8x6 + k9x6 − k10x5x7 + k11x9 + k12x9,

ẋ6 = k7x4x5 − k8x6 − k9x6,

ẋ7 = −k10x5x7 + k6x8 + k11x9 − k29x7 + k35x16,

ẋ8 = k4x1x4 − k5x8 − k6x8 − k30x8 + k36x17,

ẋ9 = k10x5x7 − k11x9 − k12x9,

ẋ10 = k14x11 + k15x11 − k13x10x12 − k16x10x13 + k17x17 + k18x17 + k25x1 − k31x10,

ẋ11 = −k14x11 − k15x11 + k13x10x12 + k26x2 − k32x11,

ẋ12 = k14x11 − k13x10x12 + k21x15 + k27x3 − k33x12,

ẋ13 = k15x11 − k16x10x13 − k19x13x14 + k20x15 + k17x17 + k24x18 + k28x4 − k34x13,

ẋ14 = −k19x13x14 + k20x15 + k21x15 − k22x14x16 + k23x18 + k24x18,

ẋ15 = k19x13x14 − k20x15 − k21x15,

ẋ16 = −k22x14x16 + k18x17 + k23x18 + k29x7 − k35x16,

ẋ17 = k16x10x13 − k17x17 − k18x17 + k30x8 − k36x17,

ẋ18 = k22x14x16 − k23x18 − k24x18.

This system has the following conserved amounts:

Etot = x1 + x2 + x8 + x10 + x11 + x17,

Ftot = x5 + x6 + x9,

F ctot = x14 + x15 + x18,

Stot = x2 + x3 + x4 + x6 + x7 + x8 + x9 + x11 + x12 + x13 + x15 + x16 + x17 + x18.

Creation of multistationarity in a two-site phosphorylation cycle. We use the CRNT toolbox to ob-
tain initial rate constants and total amounts for which the system admits multiple positive steady states.
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The output rate constants do not fulfill α1, α2, α3 > 0 in each compartment independently. Hence, it
is not possible to decide whether multistationarity arises due to shuttling or due to phosphorylation of
two different sites.

Next we investigate the effect of changing the rate constants with respect to the existence of mul-
tistationarity for the same total amounts. We proceed by manually modifying the rates while keeping
multistationarity and such that the sufficient conditions for the preclusion of multistationarity in a two-
site phosphorylation cycle are satisfied in each compartment.

To demonstrate multistationarity with this system, we arbitrarily choose the following rate con-
stants:

• Reaction rates in the nucleus:

k1 = 100 k2 = 2 k3 = 10 k4 = 80 k5 = 6 k6 = 6

k7 = 350 k8 = 3 k9 = 10 k10 = 650 k11 = 8 k12 = 8.

• Reaction rates in the cytoplasm:

k13 = 300 k14 = 1 k15 = 10 k16 = 50 k17 = 1 k18 = 1

k19 = 350 k20 = 30 k21 = 190 k22 = 150 k23 = 2 k24 = 20.

• Shuttling rates:

k25 = 10 k26 = 30 k27 = 70 k28 = 30 k29 = 1 k30 = 10

k31 = 450 k32 = 20 k33 = 20 k34 = 25 k35 = 10 k36 = 100.

This choice of rate constants fulfills that α1, α2, α3 > 0 in the nucleus and in the cytoplasm (where
in the later, indices of the rate constants in α∗ are shifted by 12). Therefore, with these rate constants,
the two-site phosphorylation cycles in the nucleus and in the cytoplasm cannot have multiple positive
steady states independently of each other.

The system with the shuttling reactions, however, does have the capacity for multistationarity.
Specifically, if the total amounts are set to:

Etot = 50, Stot = 100 Ftot = 15 F ctot = 21,

then the system has three positive steady states: two of them are stable and one is unstable. The positive
steady states are the following:

SS1 =(1.89, 9.18, 0.62, 1.88, 0.01, 0.7, 25.11, 23.21, 14.28, 0.07, 13.38, 6.8, 0.04, 18.49, 1.15, 0.01, 2.28, 1.36)

SS2 =(6.45, 5.93, 0.1, 0.61, 0.01, 0.17, 35.4, 25.64, 14.82, 0.13, 9.33, 2.8, 0.03, 18.32, 0.8, 0.02, 2.52, 1.89)

SS3 =(0.37, 17.59, 5.96, 2.3, 0.17, 10.66, 0.6, 5.65, 4.16, 0.04, 25.8, 24.89, 0.06, 19.22, 1.72, 0.00044, 0.56, 0.06).

Here SS1 is the unstable steady state.

Rate constants to obtain seven steady states (for Figs. 4(B-D) in the main text). Additionally, we
have observed that, with specific choices of rate constants and total amounts, up to 7 steady states can be
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created in this system. These were arbitrarily chosen for illustration of the possible behavior the system
can emit. For instance, consider the rate constants (used in the main text to create Figures 4(B-D)):

(k1, . . . , k12) = (101, 2, 11, 79, 6, 6, 568, 3, 12, 1502, 8, 8),

(k13, . . . , k24) = (210, 3, 34, 49, 1, 1, 344, 26, 187, 149, 1, 1),

(k25, . . . , k36) = (10, 34, 7.5, 312.5, 0.1, 0.1, 44, 23, 2, 250, 0.1, 0.1),

and the total amounts (Etot, Stot, Ftot, F ctot) = (57, 111, 15, 21). This system has 7 steady states, 4 of
which are stable:

SS1 = (18.27, 2.41, 0.04, 0.03, 5.05, 6.28, 0.01, 4.12, 3.67, 5.2, 1.45, 0.005, 0.21, 0.01, 0.002, 46.2, 25.61, 20.99)

SS2 = (12.66, 1.2, 0.03, 0.17, 0.47, 3.11, 0.26, 14.67, 11.42, 3.4, 0.73, 0.004, 0.3, 0.01, 0.004, 33.77, 24.34, 20.99)

SS3 = (13.01, 0.05, 0.0009, 0.23, 0.01, 0.09, 16.34, 19.9, 14.9, 2.96, 0.06, 0.003, 0.29, 0.02, 0.01, 17.14, 21.06, 20.1)

SS4 = (13.66, 2.04, 0.004, 0.23, 0.004, 0.039, 35.84, 20.54, 14.96, 2.63, 3.95, 0.3, 0.22, 2.48, 0.84, 0.1, 14.18, 17.76)

SS5 = (14.56, 3.53, 0.006, 0.22, 0.004, 0.03, 40.64, 20.63, 14.96, 2.49, 6.85, 0.56, 0.14, 6.54, 1.45, 0.03, 8.95, 13.01)

SS6 = (4, 15.03, 0.4, 0.49, 0.27, 5.07, 0.38, 12.88, 9.65, 0.12, 23.78, 35.81, 0.2, 14.89, 4.88, 0.001, 1.19, 1.23)

SS7 = (5.94, 11.14, 0.15, 0.5, 0.02, 0.43, 6.89, 19.51, 14.55, 0.12, 18.91, 31.22, 0.17, 14.86, 4.07, 0.002, 1.38, 2.07)

The stable steady states are SS1, SS3, SS5, SS6.

AsEtot varies, the number of states changes as shown on a log-log scale in Figure S2, corresponding
to the bifurcation diagram (Figure 4B in the main text, semi-log scale).
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