PDB ID	Chain	Nucleotide Number	Nucleotide Name	Angle ^a	Molecule	
1ET4	А	214	А	47.77	vitamin B(12) RNA aptamer	
1SDS	D	210	U	50.44	protein L7Ae bound to a K-turn derived from an archaeal box H/ACA sRNA	
1MMS	С	1071	G	42.36	ribosomal protein L11-RNA complex	
1872	0	1105	С	46.29	H. marismortui large ribosomal subunit	
1872	0	1369	А	46.57	H. marismortui large ribosomal subunit	
1872	0	1533	А	49.82	H. marismortui large ribosomal subunit	
1872	0	174	А	50.64	H. marismortui large ribosomal subunit	
1872	0	1776	А	48.93	H. marismortui large ribosomal subunit	
1872	0	2007	А	47.82	H. marismortui large ribosomal subunit	
1872	0	212	А	50.76	H. marismortui large ribosomal subunit	
1872	0	357	А	49.23	H. marismortui large ribosomal subunit	
1872	0	893	С	49.73	H. marismortui large ribosomal subunit	
1XMQ	А	508	С	49.27	t6A37-ASLLysUUU AAA-mRNA bound to the decoding center	
1MSY	А	2654	А	50.58	GUAA tetraloop mutant of Sarcin/Ricin domain from <i>E. coli</i> 23 S rRNA	
4FAQ	А	1	G	50.12	O. iheyensis group II intron before 5'exon hydrolysis	
4E8K	В	6	U	137.6	O. iheyensis group II intron before SER	
^a : defined as the angle formed by three consecutive phosphorus atoms.						

Table S2. Sharp Back	bone Kinks in	RNA	Structures
----------------------	---------------	-----	------------

metal class	ion	cationic radius (Å) ^a	hydration energy (kJ/mol) ^{b, d}	Lewis acid strength ^a	absolute hardness $(\eta)^{b, c, e}$	absolute electronegativity $(\chi)^{b, e}$
alkaline metal ions	Li ⁺	0.60	-514.10	0.188	35.12	40.52
	Na ⁺	0.95	-405.40	0.148	26.21	21.08
	\mathbf{K}^{+}	1.33	-334.72	0.112	17.99	13.64
	Rb^+	1.48	-310.50	0.102	11.70	15.77
	Cs ⁺	1.69	-278.00	0.094	10.60	14.50
other monovalent metal ions	Tl+	1.49	-325.90	0.120	7.16	13.27
alkali earth metal ions	Mg ²⁺	0.65	-1922.10	0.334	47.59	32.55
	Ca ²⁺	0.99	-1592.40	0.274	19.52	31.39
	Ba ²⁺	1.35	-1303.70	0.195	12.80	na

Table S3. Properties of the Different Metal Ions Used in This Work

a: (Brown, 1988); b: (Feig and Uhlenbeck, 1999); c: (Essington, 2005); d : (Payzant et al., 1973); e: absolute hardness (η) and absolute electronegativity (χ) are defined according to Pearson (Pearson, 1988); na = not available ; dark green indicates strong and light green weak X-ray anomalous scattering properties.

References

Brown, I.D. (1988). What factors determine cation coordination numbers? Acta Crystallogr. B 44, 545–553.

Essington, M.E. (2005). Soil and water chemistry: an integrative approach (Boca Raton: CRC Press).

Feig, A.L., and Uhlenbeck, O.C. (1999). The role of metal ions in RNA biochemistry. In The RNA world, R.F. Gesteland, T.R. Cech, and J.F. Atkins, eds. (New York: Cold Spring Harbor Laboratory Press), pp. 287–320.

Payzant, J.D., Cunningh, A.J., and Kebarle, P. (1973). Gas-phase solvation of ammonium ion by NH3 and H2O and stabilities of mixed clusters NH4+(NH3)N(H2O)W. Can. J. Chem. *51*, 3242–3249.

Pearson, R.G. (1988). Absolute Electronegativity and Hardness - Application to Inorganic-Chemistry. Inorg. Chem. 27, 734–740.

Construct	$\mathbf{k_1}^{\mathbf{a}}$	$\mathbf{k_2}^{\mathbf{a}}$			
wt	100	100			
G288A	0.79 ± 0.08	1.49 ± 0.29			
G288C	1.87 ± 1.08	1.22 ± 0.42			
G288U	10.1 ± 1.75	4.96 ± 1.33			
C377A	69.4 ± 7.14	38.4 ± 16.6			
C377G	9.53 ± 1.28	2.66 ± 0.01			
C377U	214 ± 35.4	105 ± 15.8			
^a : first (k ₁) and second (k ₂) splicing step rates for the indicated mutants relative to wild type (wt, k ₁ =					

Table S4. Kinetic Parameters of the Wild-Type Intron and Mutants

^a: first (k_1) and second (k_2) splicing step rates for the indicated mutants relative to wild type (wt, $k_1 = 0.011 \pm 0.003 \text{ min}^{-1}$, $k_2 = 0.094 \pm 0.012 \text{ min}^{-1}$, set to 100 %). The standard deviation was calculated from three independent experiments.