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APPENDIX 1 - Details of the ‘weather-linked Bd proliferation model’ 

Figure A1. a) Bd growth in culture from the data of Piotrowski et al. (2004). The data are fitted with a 
quartic polynomial (black line). CLIMEX standard procedure is to use a plateau-shaped thermal 
function to approximate the typical quadratic response function such as that observed here. 
We instead estimated T0 and T3 (growth limits) from where the fitted polynomial function intersected 
the x axis to the nearest half degree (3°C and 29°C, respectively). The lower and upper optimal 
performance temperatures T1 and T2 (between which growth is optimal) were estimated by combining 
observations from Piotrowski et al. (2004) and Woodhams et al. (2008). Lower optimal temperature 
(T1) was adjusted to 10°C to accord with Woodhams et al. (2008) who demonstrate that Bd maintains 
relatively high population growth at low temperatures via life-history trade-offs, which see increased 
zoospore production as sporangium maturation rate decreases. The upper optimal temperature (T2) 
was set to 25°C to accord with Piotrowski et al. (2004). The dotted line depicts these critical threshold 
temperatures as they relate to the data of Piotrowski et al (2004) (note that in CLIMEX growth 
potential at T0 = T3 = 0 and T1 = T2 = 1); b) Distribution of the 821 sites (n = 10183 specimen records) 
represented in the dataset of Murray et al. (2010) used to estimate the moisture response parameters 
for the CLIMEX mechanistic model; c) the predicted environmental suitability (as represented by the 
CLIMEX Ecoclimatic Index) for the persistence of Bd given the temperature and moisture parameters 
used in generating the growth index (GI). The fit of the model predictions with the observed global 
distribution of Bd (courtesy of Matt Fisher and Dede Olson 
http://www.spatialepidemiology.net/bd/), indicates that a reasonable moisture response curve was 
found (via iterative fitting) for the derivation of the growth index, GI (see main text and Zalucki and 
van Klinken 2006 for further details). 

a) 
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b) 
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c)
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APPENDIX 2 - Multi-host infection patterns at Peter’s Creek 

 

Single-site, multi-host infection patterns  

Nine species were encountered at the main Peter’s Creek study site over the duration of the 

study. We made 1431 captures and swabbed 1072 animals to investigate infection dynamics 

at this site, the difference representing recaptured animals within field trips that were not re-

swabbed. Overall apparent disease prevalence in the frog community was 37.5% (95%CI = 

34.6 – 40.5%), but this varied among species (Table A2). Of the nine species encountered, 

five were detected with Bd infections. Four of the five Bd-positive species were relatively 

well sampled, comprising 98% of captures (Adelotus brevis, Litoria pearsoniana, Litoria 

chloris and Litoria wilcoxii) so further analyses were restricted to these species.  

 

Table A2. Species mean prevalence across three field seasons at Peter’s Creek 
     95%CI 
Species Captures Swabs Bd pos Prevalence lower upper 
Adelotus brevis 29 23 16 0.696 0.471 0.868 
Litoria pearsoniana 942 688 312 0.453 0.416 0.492 
Mixophyes fasciolatus 13 12 4 0.333 0.099 0.651 
Litoria chloris 254 216 47 0.218 0.164 0.279 
Litoria wilcoxi 182 123 23 0.187 0.122 0.267 
Rhinella marina 6 6 0 0.000 0.000 0.459 
Litoria peronii 2 2 0 0.000 0.000 0.842 
Litoria fallax 1 1 0 0.000 0.000 0.975 
Litoria verrauxii 2 1 0 0.000 0.000 0.975 
Total 1431 1072 402 0.375 0.346 0.405 

 

 

In a logistic model, a three-way interaction effect on infection between species, year and 

season (Spring, Summer) was supported (∆dev = 13.61, df = 6, p = 0.034). Species were 

subsequently treated separately below.  
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Infection in A. brevis  

Adelotus brevis had the highest overall infection prevalence (69.6%; 95%CI 47.1-86.8%) of 

the species encountered during the study (Table A2. Fig. A2), with between 3-10 times the 

odds of being infected than the other species (L. pearsoniana OR = 2.71, 95%CI 1.13-7.24; 

L. chloris OR = 8.03 95%CI 3.20-22.29; L. wilcoxii OR = 9.61, 95%CI = 3.64-28.03). Few 

data were available for temporal analysis for A. brevis, but a logistic model indicated support 

for effects on infection of sex (∆dev = 6.592, df = 1, p = 0.010) and an interaction between 

year and season (∆dev = 7.011, df = 2, p = 0.030). Little sense can be made of these effects 

given the very small sample sizes for individual categories, but males had higher overall 

prevalence (77.8%, 95%CI = 52.4 – 93.6%) than females (40.0%, 95%CI = 5.2 – 85.3%), 

prevalence was higher in summer than spring for two of three study years (which was in 

contrast to the other species) and prevalence was highest in the second field season 

(consistent with the other species). 

 

Infection in L. pearsoniana 

L. pearonsiana had a high mean prevalence across the study (45.3%; 85%CI = 41.6-49.2) and 

was 2.97 (OR 95%CI = 2.10-4.29) times more likely to be infected than L. chloris and 3.58 

(OR 95%CI = 2.26-5.91) times more likely to be infected than L. wilcoxii. It was also the 

most frequently encountered species, comprising 65.8% of all captures and 77.6% of all Bd-

positive results at Peter’s Ck over the three years of the study. In a logistic model, there was 

support for main effects on infection of the three variables year (∆dev = 51.96, df = d, p < 

0.001), season (∆dev = 14.60, df = 1, p < 0.001) and sex (males, females, juveniles; ∆dev = 

9.31, df = 2, p = 0.010), but no interaction effects were supported. The sex effect appeared 

due to a small number of juveniles (of unknown sex) having lower overall prevalence 

(14.2%, 95%CI = 1.8-42.8%) than adults (males 46.4%, 95%CI =42.3-50.4%; females 
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43.1%, 95%CI = 30.8-56.0%) such that the sex effect disappeared when juveniles were 

excluded from the model. The year effect was due to the second year of the study having a 

significantly higher infection prevalence (62.7%, 95%CI = 56.0-69.1%) than in both the first 

year (26.2%, 95%CI = 20.1-32.9%; Odds Ratio = 4.73, 95%CI = 3.11-7.25), and the third 

year (46.9%, 95%CI = 40.6-53.2%; OR = 1.90, 95%CI = 1.32-2.75). The third year also 

exhibited significantly higher prevalence than the first year (OR = 2.48, 95%CI = 1.67-3.74). 

The strong seasonal effect revealed that infections were nearly twice as likely in Spring 

(53.4%, 95%CI = 48.2-58.7%) compared to Summer (37.3%, 95%CI = 31.9-43.0%; OR = 

1.92, 95%CI = 1.41-2.63) in this species (Fig A2a). 

 

Infection in L. chloris 

L. chloris had relatively low mean infection prevalence (21.8%, 95%CI = 16.4-27.9%), 

significantly lower than A. brevis and L. pearsoniana (see above) but not different to L. 

wilcoxii. In a logistic model, there was support for an interaction effect on infection between 

year and season (∆dev = 7.732, df = 2, p = 0.021) but no evidence for an effect of sex. This 

interaction appeared due to an unusual spike in prevalence in Summer in the second year of 

the study, at which time L. chloris not only had higher prevalence than in the preceding 

Spring (a trend reversal compared to the other two years in this species and compared to the 

consistent seasonal trend in both L. pearsoniana and L. wilcoxii) but also the highest 

prevalence of any species during this sampling period. Like in L. pearsoniana, infection in L. 

chloris was much more likely in the second field season compared to the first or third (Fig 

A2b). 

 

Infection in L. wilcoxii 
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L. wilcoxii had mean infection prevalence similar to L. chloris. In a logistic model there was 

minimal support for all two-way interactions among year, season and sex (all p < 0.1). 

Dropping variables on the basis of a p<0.05 criterion, however, resulted in all interactions 

being lost from the model; the best model retained only a main effect of year (∆dev = 22.435, 

df = 2, p < 0.001). A marginal effect of season (∆dev = 3.382, df = 1, p = 0.066) was dropped 

in the final step. The year effect was similar to that found in L. pearsoniana and L. chloris; 

the second year of the study saw greatly increased infection prevalence (40.0%, 95%CI = 

23.8-57.9%) compared to the first year (2.1%, 95%CI = 0.0-11.1%; OR =  26.81, 95%CI = 

4.86-680.76) and marginally higher prevalence compared to the third year (20.5%. 95%CI = 

9.3-36.5%; OR = 2.53, 95%CI = 0.91-7.48, p = 0.080). Although not significant, the marginal 

seasonal effect was also similar in trend to L. pearsoniana, with frogs having generally 

greater probability of infection in Spring (23.1%, 95%CI = 13.5-35.2%) than Summer 

(14.0%, 95%CI = 6.3-25.8%; OR = 1.81, 95%CI = 0.71-4.93, p = 0.250) (Fig A2c). 
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Figure A2. Prevalence patterns in a) L. pearsoniana, b) L. chloris and c) L. wilcoxii across 3 
years of study (2006/7-2008/9) at Peter’s Ck. The lines are the fitted models for each species 
(see text). 
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APPENDIX 3 – Preliminary tests of the Random Forests modelling framework 

 

Multi-site, multi-species survey 

Before focussing on the model species at multiple sites, the RF modelling approach was 

tested for consistency with the above results on the ‘maximal’ dataset, comprising captures of 

the four main species from all sampled sites across the full course of the study (total of 2097 

swabs analysed). The relationships between the predictor variables and the infection 

response, as indicated by partial dependence plots, strongly mirrored the patterns observed in 

the previous species by species parametric analyses with respect to the effects of species, 

year, sex and season (Fig A3).  In a starting model that included each of the main variables 

explored above (species, year, season and sex), the OOB estimate of classification error rate 

(an internally derived measure of model predictive performance) in the Random Forests 

analysis was intermediate at 32.1%, meaning that the overall percentage of cases correctly 

classified (PCC) was 67.9% (1424 of 2097 tests). Specificity (% of negative species correctly 

classified) was 73.4%; however, sensitivity (% of positive species correctly classified) was 

lower at 60.2%. RF analysis showed ‘fair’ performance in predicting infection status as 

measured using a Kappa test (Kappa = 0.342, 95%CI = 0.302-0.383, where 0 = random 

prediction, 1 = perfect prediction). 

 

Of the captures used in the ‘maximal’ analysis, 49.8% came from the main Peter’s Ck study 

site (analysed above). Most (85.7%) of the additional captures outside the main study site 

were of the focal species, L. pearsoniana. Further analyses were thus restricted to this 

species, sampled from a total of 23 sites (1587 swabs analysed) over a three year period).  
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Figure A3. Results from preliminary Random Forests models indicating the effect of four 
variables (species, year, sex and season) on the probability of an individual returning a 
positive qPCR result. It can be seen that these results strongly mirrored those described in 
Appendix 2, in which a clear species, year and season effect was observed.  
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APPENDIX 4 – Extent of infection in the model species Litoria pearsoniana  

 

Methods 

To investigate extent of infection in the model species, an intensive sampling effort across 20 

additional populations spanning the geographic range of L. pearsoniana was undertaken. 

Sampling occurred in October of the third year of the study (2008). Study sites were selected 

based on the data of Parris (2001). Selected study streams were searched until a 

predetermined number of frogs (n=15) had been captured and swabbed. We anticipated from 

our surveys at the main sites that prevalence in this species at this time of year would be 

peaking and therefore high if the site was infected, so our sample size reflected this 

expectation; our target of 15 animals ensured that we should detect at least 1 positive animal 

with 99% confidence if prevalence in the population was >25% and sampling approximated 

random (Digiacomo and Koepsell 1986). Murray et al. (2009) show that detection probability 

of L. pearsoniana is not a function of infection (i.e., infection does not influence likelihood of 

capture), indicating that these prevalence surveys likely represent a relatively unbiased 

picture of prevalence among these populations.   

 

Results 

In the extent of infection survey (n=201 frogs tested), Bd was detected at all of the 19 sites 

where >1 animal was tested. Mean prevalence was 71.1% (95%CI = 64.4-77.3%). Of 9 sites 

at which the target sample size was achieved, mean prevalence was 75.7% (95%CI = 67.8-

82.6%), with one site having 100% of frogs in the sample infected (n=15).  
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APPENDIX 5 - Preliminary analysis of the Litoria pearsoniana dataset from the four 

main study sites 

 

Since 88.4% of the data collected on L. pearsoniana came from just the four main study sites, 

more detailed trend analyses were restricted to those sites. In a preliminary analysis on these 

data, males had marginally significantly higher probability of infection than females (OR = 

1.35, 95%CI = 0.94 – 1.96, p = 0.10) and significantly higher infection probability than 

juveniles (OR = 1.65, 95%CI = 1.21 - 2.27, p = 0.001). Females had non-significantly higher 

probability of infection than juveniles (OR = 1.22, 95%CI = 0.78 – 1.92, p = 0.42). The 

remaining analyses were restricted to males only, which comprised 76.4% of the data.    
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APPENDIX 6 - Generalised linear model corroboration 

 

Once the filtering process was complete and an adequate set of predictors was identified with 

RF (see Methods – Overview of statistical methods), logistic regression was used to confirm 

the importance of variables remaining in the pruned RF models. Although the machine 

learning method RF does an excellent job in navigating complex higher dimensional data 

structures, particularly where a large number of potentially cross-correlated and interactive 

predictor variables are of a priori interest, we included supplementary analyses with more 

conventional GLMs for the benefit of readers unfamiliar with machine learning methods in 

ecology. See also Appendix 3. 

 

Methods 

The large number of interactions possible in the maximal models could not be fitted, so only 

the main effects were tested. Curvature in the continuous response variables was considered 

using quadratic terms. 

 

To test for the influence of the raw climatic variables on infection status, a minimum 

adequate model (MAM) was first found from a maximal model containing the terms 

remaining in the pruned RF. To test whether the GI30 contributed further explanatory 

information to this model, it was added as a term to the MAM. To test whether GI30 was a 

suitable substitute for, or redundant to, the other variables potentially describing simple 

climatic differences in the maximal model, a new MAM was found from the maximal model 

now containing both the GI30 term and the raw climatic predictors.  

 

Results 
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In a logistic model, the importance of variables remaining in the pruned RF containing raw 

climatic variables (T.max30, RH.minT30, Rain on the day of sampling, month, year, site, SUL, 

season) was confirmed. Single term deletion tests for the terms in the minimum adequate 

model (MAM, in terms of minimising the AIC) are shown in Table 1. A second model 

containing only the GI30, SUL and Rain on the day of sampling (analogous to the RF) had 

significantly poorer fit (data not shown) and as such (unlike in the RF framework) was not an 

adequate replacement for the more complex model.  

 

The addition of GI30 and GI30
2 terms, however, significantly improved the fit of the MAM 

above (∆dev = 11.89, df = 2, p=0.003) and both terms were independently significant in a 

single term deletion test (GI30 ∆dev = 11.49, df = 1, p<0.001; GI30
2 ∆dev = 9.73, df = 1, 

p=0.002), indicating that GI30 contains additional explanatory information over and above the 

raw climatic predictors. This was not surprising since the GI was originally derived from 

temperature (daily minima and maxima), rainfall (daily) and humidity (daily minima and 

maxima) data integrated into two key organism-specific indices, temperature and soil 

moisture, and as such can be expected to contain information not captured by the single raw 

climatic variables, which were not modelled with interactions. 

 

A new MAM from the maximal model now containing the GI30 terms indicated that two 

climatic variables (RH.minT30, T.max30) in addition to Year retained explanatory information 

even when the significant effects of the GI30 terms were included (Table 2). Hence, while 

GI30 improved model fit, it was not an adequate ‘replacement’ for the other climatic variables 

or year. Month, however, was not retained in this model suggesting that GI30 was a suitable 

and more informative surrogate for the seasonal effect that month has on infection. The 

overall variance explained in this final model was ~20%.  
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Table A6.1. Minimum adequate model (MAM) in a logistic regression framework testing the 

influence via single term deletion of all terms identified as important for predicting infection 

status in the preceding RF analysis that contained raw climatic predictors. An attempt was 

made to capture the curvature obvious in the RF framework by including quadratic terms. 

This model significantly outperformed (in terms of AIC) the simpler model containing just 

the terms GI30, SUL and Rain. 

 
Deleted variable Df Deviance AIC LRT P 
<none>  1228.81 1264.81   
Rain2 1 1265.42 1299.42 36.61 <0.0001 
Year 2 1266.83 1298.83 38.02 <0.0001 
Site 3 1242.25 1272.25 13.44 0.0038 
30dayT.Max2 1 1236.66 1270.66 7.85 0.0051 
SUL2 1 1235.95 1269.95 7.14 0.0075 
30dayT.Max 1 1235.91 1269.91 7.10 0.0077 
SUL 1 1235.78 1269.78 6.97 0.0083 
Month 6 1245.54 1269.54 16.73 0.0103 
30dayRHminT2 1 1233.59 1267.59 4.78 0.0288 
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Table A6.2. Minimum adequate model (MAM) in a logistic regression framework testing the 

influence via single term deletion of all terms identified as important for predicting infection 

status in the RF framework (i.e., the growth index [GI30] was included in addition to the raw 

climatic predictors). 

Deleted variable Df Deviance AIC LRT P 
<none>  1227.97 1255.97   
Rain 1 1275.04 1301.04 47.07 <0.0001 
30dayRHminT 1 1251.73 1277.73 23.76 <0.0001 
Year 2 1255.15 1279.15 27.18 <0.0001 
30dayT.Max 1 1250.55 1276.55 22.58 <0.0001 
30dayT.Max2 1 1248.95 1274.95 20.98 <0.0001 
GI30

2 1 1245.12 1271.12 17.15 <0.0001 
GI30 1 1243.62 1269.62 15.66 0.0001 
Site 3 1244.4 1266.4 16.43 0.0009 
SUL2 1 1237.97 1263.97 10.00 0.0016 
SUL 1 1237.54 1263.54 9.57 0.0020 
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