Molecular Cloning of YPT1/SEC4-Related cDNAs from an Epithelial Cell Line

PHILIPPE CHAVRIER, MARTIN VINGRON, CHRIS SANDER, KAI SIMONS, AND MARINO ZERIAL*

European Molecular Biology Laboratory, Postfach 10.2209, Meyerhofstrasse 1, 6900 Heidelberg, Federal Republic of Germany

Received 18 June 1990/Accepted 20 August 1990

Molecular analysis of *Saccharomyces cerevisiae* secretion mutants has led to the identification of two Ras-like GTP-binding proteins, Ypt1p and Sec4p, which are essential for transport along the exocytic route. To study the regulation of membrane traffic in epithelial cells, a set of 11 clones encoding proteins similar to the YPT1/SEC4 products were isolated from an MDCK (Madin-Darby canine kidney) cell cDNA library. Four of these proteins, Rab8, -9, -10, and -11, are novel members of this subfamily of Ras-like proteins, and two of them are closely related to Ypt1p and Sec4p. The ratio of the number of clones isolated over the total number screened reveals a high level of complexity for this subfamily of GTP-binding proteins. This diversity supports their proposed function in controlling different steps in membrane traffic.

Ras and Ras-like proteins constitute a superfamily of GTP/GDP-binding proteins sharing regions of structural homology highly conserved through evolution (3). Different members of this superfamily can be grouped in individual subfamilies on the basis of their structural features. These characteristics suggest that the members of each subfamily, besides the common biochemical property of binding guanine nucleotides, carry out similar biological functions.

Recent in vivo and in vitro studies have indicated that the superfamily of Ras-related proteins includes proteins involved in controlling membrane traffic. Molecular analysis of *Saccharomyces cerevisiae* secretion mutants has led to the identification of two low-molecular-weight GTP-binding proteins, Ypt1p (13, 18, 19, 29–32) and Sec4p (15, 28, 39), which are structurally similar to the *ras* gene products and are essential for transport along the exocytic route.

Ypt1p is a 23-kDa GTP-binding protein which displays 38% homology with the human c-ras gene products (13, 30). Conditional lethal mutants of the ypt gene expressed at the nonpermissive temperature cause growth arrest and impaired sporulation, changes in microtubule organization, abnormal proliferation of endoplasmic reticulum and Golgi membranes, incomplete protein glycosylation, and a partial defect in secretion (29–32). Recent studies have shown that Ypt1p is involved in membrane transport from the endoplasmic reticulum to the Golgi or within the Golgi apparatus (2). Two other GTP-binding proteins, SAR1 (25) and ARF (33, 34), have also been implicated in early steps of protein secretion in *S. cerevisiae*.

Sec4p is also a Ras-like 23.5-kDa GTP-binding protein, and it controls a late step in secretion. Temperature-sensitive and dominant SEC4 mutants lead to a block in transport from the Golgi apparatus and the cells accumulate post-Golgi secretory vesicles (28, 39).

In higher eucaryotes, there is growing evidence for the involvement of GTP-binding proteins in controlling membrane traffic. The nonhydrolyzable GTP analog, GTP- γ -s, inhibits transport in several different cell-free systems assaying intracellular protein transport (14, 22, 23, 36).

Altogether, these results suggest that GTP-binding pro-

teins are involved in distinct steps in membrane traffic (4). Indeed, a number of YPT1/SEC4-related proteins have been identified in mammalian cells (5, 7, 10, 21, 27, 35, 41, 42). Among them, a protein structurally and functionally equivalent to Ypt1p has been found in mouse (19), rat (35) and human (42) cells. However, attempts to isolate a mammalian homolog of the yeast SEC4 gene have so far failed. In this report, we describe the isolation of 11 clones encoding YPT1/SEC4-related products from a kidney epithelial (MDCK) cell cDNA library. Of the cDNAs isolated, four are new members of this subfamily of Ras-related proteins and two of these are distinguished by the high sequence similarity they share with YPT1 and SEC4. The ratio of the number of cDNAs isolated over the total number of cDNAs screened reveals a higher level of complexity for this subfamily of GTP-binding proteins than previously determined.

MATERIALS AND METHODS

Cell culture, RNA extraction, and analysis. All cells were grown in medium supplemented with 2 mM glutamine, 100 U of penicillin per ml, and 10 μ g of streptomycin (GIBCO) per ml at 37°C in 5% CO₂. MDCK strain II cells were grown in minimum essential medium plus 5% fetal calf serum, NIH 3T3 cells were grown in Dulbecco modified minimum essential medium plus 10% fetal calf serum, and BHK21 cells were grown in Glasgow minimum essential medium plus 10% fetal calf serum supplemented with 10% tryptose phosphate broth.

Total RNA was prepared from confluent cells by using the guanidine hydrochloride procedure (9). Polyadenylated RNA was purified by binding to oligo(dT) cellulose (Pharmacia). For Northern (RNA) blot analyses, polyadenylated RNAs (1 μ g per slot) were separated by 1% agarose gel electrophoresis and transferred to nylon GeneScreen membranes. Filters were prehybridized in a solution containing 5× SSC (1× SSC is 0.15 M NaCl plus 0.015 M sodium citrate), 50% formamide, 5× Denhardt solution, and 1% sodium dodecyl sulfate at 42°C for 1 h. Hybridization was carried out in the same solution supplemented with ³²P-labeled probes (2 × 10⁶ cpm/ml) for 18 h at 42°C. Washings were performed in 0.1× SSC–0.5% sodium dodecyl sulfate at 60°C. X-ray films were exposed for 1 to 2 days at -70°C with intensifying screens.

^{*} Corresponding author.

	rab3	Ba															
		rab3	b														
rab3a	100		rab4														
rab3b	85	100		rab6													
rab4	39	40	100		47=r	ab1											
rab6	42	40	39	100		21=r	ab2										
47=rab1	52	50	47	41	100		1=ra	ւ b 5									
21=rab2	42	42	59	40	49	100		2=ra	ıb8								
1=rab5	37	38	44	44	47	40	100		14=r	ab7							
2=rab8	56	53	44	45	59	49	41	100		15=1	ab9						
1=rab7	31	32	34	34	34	35	34	35	100		32=r	ab10					
15=rab9	29	29	34	28	32	30	27	32	54	100		34=r	ab11				
32=rab10	54	54	44	44	59	49	39	77	34	32	100		38=r	ab4b			
34=rab11	41	40	52	36	52	55	46	48	34	32	47	100		YPT			
38=rab4b	38	40	87	39	47	58	43	43	33	32	44	53	100		'PT3		
YPT	49	50	50	42	78	45	45	56	34	35	59	52	50	100		SEC4	
YPT3	42	40	50	40	53	55	47	50	32	30	47	80	50	52	100		H-ras
SEC4	53	52	44	40	57	48	40	59	35	31	60	46	43	53	46	100	
H-ras	30	31	32	30	35	33	30	35	28	27	35	35	32	35	34	33	100

FIG. 1. Percentages of amino acid identities between MDCK proteins Rab1, -2, -5, -7, -8, -9, -10, -11, -4b; yeast YPT1, SEC4, and YPT3; and human H-*ras*, Rab3a, -3b, -4, and -6 in the sequence spanning region 1 (amino acid position 23 in the alignment of Fig. 3) to region 4 (position 187).

cDNA library screening. An oriented lambda MDCK cDNA library was constructed in the lambda cloning vector UNI-ZAP XR (Stratagene). Inserts had an average size of 2 kb. Fifty thousand bacteriophage plaques were screened by hybridization with a degenerate oligonucleotide (GTP-1 oligonucleotide) based on the conserved sequence Trp-Asp-Thr-Ala-Gly-Gln-Glu present in Sec4p (28), Ypt1p (13), and the different Rab proteins (35, 42). The sequence of the GTP-1 oligonucleotide was as follows: 5'-TGGGA(C₅₀/ $T_{50}AC(A_{70}/C_{10}/T_{10}/G_{10})GC(T_{30}/A_{70})GG(A_{25}/G_{25}/C_{25}/T_{25})$ $CA(G_{20}/A_{80})GAA-3'$ (numbers in subscript refer to the relative frequency of each base at a given position). Duplicate filters were prehybridized for 1 h at 42°C in a $6 \times$ SSC-5× Denhardt solution-0.05% sodium pyrophosphate-0.5% sodium dodecyl sulfate solution containing 100 µg of boiled herring sperm DNA per ml. Hybridization was carried out for 18 h at 42°C in a 6× SSC-1× Denhardt solution-0.05% sodium pyrophosphate solution containing 100 µg of yeast tRNA per ml with 25 pmol of GTP-1 oligonucleotide labeled with T4 polynucleotide kinase (Biolabs) per ml. Filters were then washed in $6 \times$ SSC-0.05% sodium pyrophosphate for 3 h at 44°C. Phage DNAs from the positive plaques were extracted, digested with EcoRI and XhoI restriction endonucleases, and transferred to a GeneScreen Plus membrane (Du Pont Co., Wilmington, Del.). Duplicate filters were hybridized in the previous conditions with GTP-1 oligonucleotide at 42 or 37°C with FLET-1 oligonucleotide; the latter corresponded to the fourth conserved domain in Raslike proteins, and its sequence was as follows: $5'TT(T_{50}/C_{50})$ $(T_{50}/A_{50})T(G_{50}/T_{50})GA(A_{25}/G_{75})(A_{75}/G_{25})C(A_{50}/C_{30}/G_{10}/T_{10})$ $(A_{75}/T_{25})(G_{75}/C_{25})(T_{75}/C_{25})GC-3'$.

The GTP-1 oligonucleotide-hybridized filter was washed for 1 h at 60°C under the conditions described above, while in the case of FLET-1, oligonucleotide washing was performed at 25°C. Eleven clones hybridizing with both oligonucleotides were further characterized. Cross-hybridization analysis performed at high-stringency conditions with the human Rab cDNAs as probes (42) revealed that clones 1, 21, and 47 were highly homologous to Rab5, Rab2, and Rab1, respectively. In vivo excision of the cDNA inserts from the UNI-ZAP XR vector was performed according to the manufacturer's procedure (Stratagene). Phagemid DNAs were prepared and used directly for double-stranded DNA sequencing with the T7 Sequencing kit (Pharmacia), using a set of different primers including the GTP-1 and FLET-1 degenerate oligonucleotides. The region of clone 2 upstream nucleotide 163 was obtained by using the anchored polymerase chain reaction procedure (20).

Computer methods. The multiple sequence alignment was done by using the MALI and PRALI programs (37) and was improved manually. On the basis of the alignment, the number of mismatches between the conserved parts of the sequences was calculated (Fig. 1). The phylogenetic tree was computed by using the program KITSCH from the PHYLIP package by J. Felstenstein (12). This program not only calculates the branching pattern of the tree but also estimates the evolutionary distance between adjacent branching points or end nodes. To represent the information in Fig. 1, we have depicted the tree together with a scale of sequence similarities in percent identical residues. In this way, one can read an approximate similarity between species from the height of the branching point linking them. Other methods (Fitch-Margoliash and parsimony) to calculate trees were also used and largely agree with these results.

Nucleotide sequence accession number. The sequences of Rab1, -8, -9, -10, -11, and -4b; Rac2; and Rho1 have been submitted to GenBank as accession numbers X56384 to X56391, respectively.

RESULTS

Isolation of YPT1/SEC4-related cDNAs. In order to isolate cDNA clones encoding proteins belonging to the Ypt1p/ Sec4p subfamily, 50,000 recombinant plaques of an MDCK cell cDNA library were screened by using an oligonucleotide corresponding to the amino acid sequence WDTAGQE. These seven residues are strictly conserved in Ypt1p, Sec4p, Rho, and all the proteins of this subfamily identified so far (5. 7, 10, 21, 27, 35, 41, 42). Fifty positive clones were isolated under low-stringency-hybridization conditions. A second screening at higher stringency reduced the number of positive clones to 19. These also hybridized under low-stringency hybridization conditions, with a second oligonucleotide corresponding to another conserved region between the Ras-related proteins (FLET-1 oligonucleotide). Cross-hybridization analysis using the phage inserts as probes lowered the number of distinct cDNAS to 11.

Structural features of YPT1/SEC4-related proteins. We next determined the nucleotide sequences of these cDNAs and the deduced amino acid sequences corresponding to

2 = rab8

GAGTGTAATATGGCGAAGACCTACGATTACCTGTTCAAGCTGCTGCTGATCGGGGACTCG	60
MetAlaLysThrTyrAspTyrLeuPheLysLeuLeuLeuIleGlyAspSer	17
GGGGTGGGGAAGACCTGTGTCCTGTTCCGGCTTCTCCGASGACGCCTTCAACTCAAC	120
${\tt GlyValGlyLysThrCysValLeuPheArgPheSerGluAspAlaPheAsnSerThrPhe}$	37
ATCTCCACTATAGGAATTGACTTTAAAATTAGGACCATAGAGCTCGATGGCAAGAGAATT	180
IleSerThrIleGlyIleAspPheLysIleArgThrIleGluLeuAspGlyLysArgIle	57
AAGCTACAGATATGGGACACAGCTGGTCAAGAACGGTTTCGGACGATCACAACAGCCTAT	240
LysLeuGlnIleTrpAspThrAlaGlyGlnGluArgPheArgThrIleThrThrAlaTyr	77
TACAGGGGCGCAATGGGCATCATGCTGGTCTATGACATCACCAACGAGAAATCCTTTGAC	300
TyrArgGlyAlaMetGlyIleMetLeuValTyrAspIleThrAsnGluLysSerPheAsp	97
AATATCCGGAACTGGATTCGGAACATTGAGGAGCATGCTTCTGCAGATGTCGAAAAGATG	360
AsnIleArgAsnTrpIleArgAsnIleGluGluHisAlaSerAlaAspValGluLysMet	117
ATACTCGGAAACAAGTGTGATGTGAACGACAAAAGACAAGTTTCCAAGGAACGGGGAGAA	420
IleLeuGlyAsnLysCysAspValAsnAspLysArgGlnValSerLysGluArgGlyGlu	137
AAGCTGGCCCTGGACTATGGAATCAAGTTCATGGAGACCAGTGCGAAGGCCAACATCAAT	480
LysLeuAlaLeuAspTyrGlyIleLysPheMetGluThrSerAlaLysAlaAsnIleAsn	157
GTGGAGAACGCATTTTTCACTCTCGCCAGAGACATCAAAGCAAAGATGGACAAAAAATTG	540
ValGluAsnAlaPhePheThrLeuAlaArgAspIleLysAlaLysMetAspLysLysLeu	177
GAAGGCAACAGTCCCCAAGGGAGCAACCAGGGAGTCAAAATCACACCAGACCAGCAGAAG	600
GluGlyAsnSerProGlnGlySerAsnGlnGlyValLysIleThrProAspGlnGlnLys	197
AGGAGCAGCTTTTTCCGATGTGTTCTTCTGTGAGGAACACTGCCTTACTCTGAGCCTCGC	660
ArgSerSerrnerneArgCysValLeuLeu *	207
TCAGCTGAGCTGACTGTGCCTGTCCTGAGTGAGCCCTCCTCACTCA	720
CUTUUAATAUTUUUTGUUGTGUUAGUUAUTGGGUUCATGG	760

4 = rac2

ATGCAGGCCATCAAGTGTGTGGGGGGGGGGGGGGGGGGG	60 20
ATCAGTTACACAACCAATGCATTTCCTGGAGAATACATCCCCACTGTCTTTGACAATTAC	120
IleSerTyrThrThrAsnAlaPheProGlyGluTyrIleProThrValPheAspAsnTyr	40
TCTGCCAATGTTATGGTAGATGGAAAACCAGTGAATCTGGGCTTATGGGATACAGCTGGA	180
SerAlaAsnValMetValAspGlyLysProValAsnLeuGlyLeuTrpAspThrAlaGly	60
CAAGAAGATTATGACAGATTACGTCCCTTATCCTATCCGCAAACAGATGTATTCTTAATT	240
GlnGluAspTyrAspArgLeuArgProLeuSerTyrProGlnThrAspValPheLeuIle	80
TGCTTTTCTCTTGTGAGTCCTGCATCATTTGAAAATGTTCGAGCAAAGTGGTACCCTGAA	300
CysPheSerLeuValSerProAlaSerPheGluAsnValArgAlaLysTrpTyrProGlu	100
GTGCGACACCACTGTCCCAACACCCCCTATCATCTTGGTGGGGACTAAACTTGATCTCAGG	360
ValArgHisHisCysProAsnThrProIleIleLeuValGlyThrLysLeuAspLeuArg	120
GACGACAAAGACACGATTGAGAAAACTGAAGGAGAAGAAGCTGACTCCCATCACCCA	420
AspAspLysAspThrIleGluLysLeuLysGluLysLysLeuThrProIleThrTyrPro	140
CAGGGTCTGGCCATGGCTAAGGAGATCGGTGCTGTAAAATACCTGGAGTGCTCTGCTCTC	480
GlnGlyLeuAlaMetAlaLysGluIleGlyAlaValLysTyrLeuGluCysSerAlaLeu	160
ACGCAGCGAGGCCTCAAGACAGTGTTTGATGAAGCTATTCGAGCGGTTCTCTGCCCCCCT	540
ThrGlnArgGlyLeuLysThrValPheAspGluAlaIleArgAlaValLeuCysProPro	180
CCCGTCAAGAAGAGGAAGAGAAAATGCCTGCTGTTGTAAAATGTTGGGTTCCCCTGCCCCA	600
ProValLysLysArgLysArgLysCysLeuLeuLeu *	192
TCCCCCTCAGAACCTTTGTACGCTTTGCTCAAAAATGGTGGAGCCTTCGCACTCAATGCC	660
AAGTTTTTGTTACAGATTAGTTTTTCCATAAACCATTTGAACCAATCAGTAATTTT	716

15 = rab9

AATAAGTTTGATACCCAGCTCTTCCATACAATAGGTGTAGAATTTTTAAATAAA	60
GAGGTGGATGGACATTTTGTTACCATGCAGATTTGGGACACAGCCGGTCAAGAGCGATTC GluValAspGlyHisPheValThrMetGlnIleTrpAspThrAlaGlyGlnGluArgPhe	120
AGAAGCCTGAGGACGCCGTTTTACAGAGGTTCTGACTGTTGCCTGCTCACTTTTAGTGTT ArgSerLeuArgThrProPheTyrArgGlySerAspCysCysLeuLeuThrPheSerVal	180
GATGATTCTCAGAGCTTCCAGAACTTGAGTAACTGGAAGAAAGA	240
GATGTGAAAGAGCCCGAAAGCTTTCCTTTTGTGATTTTGGGCAACAAGATCGACATAAGT AspValLysGluProGluSerPheProPheVallleLeuGlyAsnLysIleAspIleSer	300
GAACGACAAGTGTCTACAGAAGAAGCCCCAAGCTTGGTGCAGGGACAACGGCGACTATCCT GluArgGlnValSerThrGluGluAlaGlnAlaTrpCysArgAspAsnGlyAspTyrPro	360
TACTTTGAAACAAGTGCAAAAGATGCCACAAATGTCGCAGCAGCCTTTGAGGAAGCTGTT TyrPheGluThrSerAlaLysAspAlaThrAsnValAlaAlaAlaPheGluGluAlaVal	420
CGAAGAGTGCTTGCTACTGAGGATAGGTCAGATCACCTGATTCAGACAGA	480
CTGCACCGAAAGCCCAAGCCTAGCTCATCTTGCTGATCATTAGAGAGGTTCCCTGTG LeuHisArgLysProLysProSerSerSerCysCys *	540
CGATCTAACCAACTTACACACACATACACGGAAAATCACAGGGTGGGAAAGAAA	600 660
GGGGTGGGAGAAGAGGACACATCCACTCCAATGGAAGAATCAATTTACTCAGTAGTGGCACCT TACATTTATAAATTGTAATGGTTGCTAATAACGTTTAATTTAATATATGTAAGGTTACAGA GCTATABAGGACATGATCAACGCTTTAATTACAATTAAAACGCTTACAGAAGATTACCGCAAGA	720 780
TAATGCTTTTTTTTCCCCTGGCAAAATGGAGCACTACTTTTTTATATGTGTATATTTTGT GTAATTAGCATTTAATTCCTGGTTGAGGGGGGAAAAGATTCCCTAAAGCAATAATGTTAA	900 960
атаатаалдаттаалаатстаалалалалалалалалалала	1001

their largest open reading frames were analyzed. The polypeptides encoded by clones 1, 21, and 47 showed 98, 99, and 100% amino acid conservation with the human Rab5, Rab2, and Rab1 proteins, respectively (8). Protein 14 showed 99% amino acid conservation with BRL-ras=Rab7 but additionally the sequence was extended in its N terminus by MTSRKKV (5, 8). Figure 2 shows the nucleotide and predicted amino acid sequences of the rest of the clones (the N terminus of protein 15 is missing).

The encoded proteins range from 192 to 216 amino acids in length, and they all contain the WDTAGQE sequence corresponding to the oligonucleotide used in the cDNA library screening. Clones 4 and 41 encode the canine homologs of Rac2 (100% sequence identity; 10) and Rho1 (99%; 41). The

32 = r a b 10

GACTCGAGCCCTCGTTTTTCCCACGCTACCCCGGTCCTCCGGCCTGAGAACGCCCAAGTG	60
AGGAGTTGGCCGTCGTGAGAGGGACCGATCCCTTGGGGCCGCCGGCGGCGAGAGCCTGAG	120
CCGCTCCTCCCAATGGCGAAGAAGACGTACGACCTGCTTTTCAAGCTGCTCCTGATCGGA	180
${\tt MetAlaLysLysThrTyrAspLeuLeuPheLysLeuLeuIleGly}$	16
GACTCGGGAGTAGGGAAGACCTGCGTCCTTTTTCGTTTTTCGGATGATGCCTTCAATACC	240
AspSerGlyValGlyLysThrCysValLeuPheArgPheSerAspAspAlaPheAsnThr	36
ACCTTTATTTCCACCATAGGAATAGATTTTAAGATCAAAACAGTTGAATTACAAGGAAAG	300
$\label{eq:constraint} Thr \texttt{PheIleSerThrIleGlyIleAspPheLysIleLysThrValGluLeuGlnGlyLys}$	56
AAGATCAAGCTACAGATATGGGATACAGCAGGCCAGGAGCGATTTCACACCATCACAACC	360
$\label{eq:lelysleuGlnIleTrpAspThrAlaGlyGlnGluArgPheHisThrIleThrThr} LysIleLysLeuGlnIleTrpAspThrAlaGlyGlnGluArgPheHisThrIleThrThr$	76
TCCTACTACAGAGGAGCAATGGGTATCATGCTAGTATATGACATCACCAATGGTAAAAGT	420
${\tt SerTyrTyrArgGlyAlaMetGlyIleMetLeuValTyrAspIleThrAsnGlyLysSer}$	96
TTTGAAAACATCAGCAAATGGCTTAGAAACATAGATGAGCATGCCAATGAAGATGTGGAA	480
eq:pheGluAsnIleSerLysTrpLeuArgAsnIleAspGluHisAlaAsnGluAspValGluBelleuArgAsnIleAspGluHisAlaAsnGluAspValGluBelleuArgAsnIleAspGluHisAlaAsnGluAspValGluBelleuArgAsnIleAspGluHisAlaAsnGluAspValGluBelleuArgAsnIleAspGluHisAlaAsnGluAspValGluBelleuArgAsnIleAspGluHisAlaAsnGluAspValGluBelleuArgAsnIleAspGluHisAlaAsnGluAspValGluBelleuArgAsnIleAspGluHisAlaAsnGluAspValGluBelleuArgAsnIleAspGluBelleuAspGluBelleuAspGluBelleuAspGluBelleuAspGluBelleuAspGluBelleuAspGluBelleuAspGluBelleuArgAsnIleAspGluBelleuArgAsnIleAspGluBelleuArgAsnIleAspGluBelleuArgAsnIleAspGluBelleuAsp	116
AGAATGTTACTAGGAAACAAATGTGATATGGACGATAAAAGAGTTGTACCTAAAGGAAAA	540
$\verb+ArgMetLeuLeuGly+ \verb+AspAspLys+ \verb+ArgMetAspAspLys+ \verb+ArgMetLeuLeuGly+ \verb+AspAspLys+ \verb+ArgMetLeuLeuGly+ \+ArgMetLeuLeuGly+ \verb+AspAspLys+ \+ArgMetLeuLeuGly+ \+ArgMetLeuGly+ \+ArgM$	136
GGAGAGCAGATTGCAAGGGAGCATGGTATTAGATTTTTTGAGACTAGTGCAAAAGTAAAT	600
${\tt GlyGluGlnIleAlaArgGluHisGlyIleArgPhePheGluThrSerAlaLysValAsn}$	156
ATAAACATCGAAAAGGCTTTCCTCACATTAGCTGAAGATATCCTTCGAAAGACCCCCTGTA	660
$\label{eq:linear} Ile {\tt AsnIleGluLysAlaPheLeuThrLeuAlaGluAspIleLeuArgLysThrProVal}$	176
AAAGAGCCCAACAGTGAAAATGTAGATATCAGCAGTGGAGGCGGCGTGACAGGCTGGAAG	720
LysGluProAsnSerGluAsnValAspIleSerSerGlyGlyGlyValThrGlyTrpLys	196
AGCAAATGTTGCTGAGCGTTCTCCTGTTCCGTCAGTTGCCATCCACCACCCTGTTTTTTC	780
SerLysCysCys *	200
CTCTTGCTGCAAAATAAACCACTCTGTCCATTTTAACTCTAAACAGATATTTTTGTTCCT	840
CATCTTAACTCTCCAATCCACCTGTTTTATTTGTTCTTTCATCCGTGA	888

amino acid sequences of the other proteins were aligned with those of YPT1, SEC4, human Rab3A, -3b, -4, -6, and human H-ras as shown in Fig. 3. Since most of the mammalian proteins belonging to this subfamily have been called Rab, to avoid further terminology problems we use the same nomenclature for the MDCK proteins. Therefore, proteins 2, 15, 32, 34, and 38 will be referred to as Rab8, Rab9, Rab10, Rab11, and Rab4b, respectively (see below). The recently identified *Schizosaccharomyces pombe* protein Ypt3 (24) equivalent to SP8 (11) was also included in this comparison.

All proteins display the typical structural features of Ras-like GTP-binding proteins. The four regions which have been shown to participate in the formation of the GTPbinding site in the case of H-ras (26) are highly conserved

34 = rab11

CTCCCCGGCCGCGCAATGGGCACCCGCGACGACGAGTACGACTATCTCTTCAAAGTTGTC	60
Me tGlyThrArgAspAspGluTyrAspTyrLeuPheLysValVal	15
CTTATTGGAGATTCTGGTGTTGGAAAGAGTAATCTCTTGTCTCGATTTACTCGAAATGAG	12^
LeuIleGlyAspSerGlyValGlyLysSerAsnLeuLeuSerArgPheThrArgAsnGlu	35
TTTAATCTCGAAAGTAAGAGCACCATTGGAGTAGAGTTTGCAACAAGAAGCATCCAGGTT	180
PheAsnLeuGluSerLysSerThrIleGlyValGluPheAlaThrArgSerIleGlnVal	55
GATGGGAAAACAATAAAGGCACAGATATGGGACACAGCAGGGCAGGAGCGATACCGAGCT	240
AspGlyLysThrIleLysAlaGlnIleTrpAspThrAlaGlyGlnGluArgTyrArgAla	75
ATAACATCAGCATATTATCGTGGAGCTGTAGGTGCCTTACTGGTTTATGACATTGCTAAG	300
$\label{eq:linear} IleThrSerAlaTyrTyrArgGlyAlaValGlyAlaLeuLeuValTyrAspIleAlaLys$	95
CATCTCACATATGAAAATGTAGAACGATGGCTGAAAGAACTGAGAGATCATGCTGATAGT	360
HisLeuThrTyrGluAsnValGluArgTrpLeuLysGluLeuArgAspHisAlaAspSer	115
AACATTGTTATCATGCTTGTGGGCAATAAGAGTGATTTGCGTCATCTCAGGGCAGTTCCT	420
AsnIleValIleMetLeuValGlyAsnLysSerAspLeuArgHisLeuArgAlaValPro	135
ACAGATGAAGCAAGAGCTTTTGCAGAAAAGAATGGTTTGTCATTCAT	480
$\label{eq:constraint} Thr {\tt AspGluAlaArgAlaPheAlaGluLysAsnGlyLeuSerPheIleGluThrSerAla} \\$	155
CTAGACTCTACAAATGTAGAAGCTGCTTTTCAGACAATTCTGACAGAGATATACCGCATT	540
eq:leuAspSerThrAsnValGluAlaAlaPheGlnThrIleLeuThrGluIleTyrArgIle	175
GTTTCCCAGAAACAAATGTCAGACAGACGTGAAAATGACATGTCTCCAAGCAACAATGTG	600
ValSerGlnLysGlnMetSerAspArgArgGluAsnAspMetSerProSerAsnAsnVal	195
GTTCCTATTCATGTTCCACCAACCACTGAAAACAAGCCAAAGGTGCAGTGCTGTCAGAAC	660
ValProIleHisValProProThrThrGluAsnLysProLysValGlnCysCysGlnAsn	215
ATATAAGGCATTTCTCTCTCCCCTAGAAGGCTGGGGATAGTCCATTCCCAGGTCTGAGA	720
Ile *	216
TTANATATATTGTAATTCTTGTGGTCACTTTGTGTTTTATTACTTCCTCATACTTATGA	780
ATTTTCCCATGTCTTAAGTCTTTTGATTTTAGCTTTATAAAATCATCCACTTGTCCCGAA	840
TGACTGCAGCTTTTTTTCATGCTATGGCTTCACTAGCCTTAGTTTAATAAACTGAATGTT	900
	926

41 = r h o 1

ATGGCTGCCATCCGGAAGAAACTGGTGATTGTTGGTGATGGAGCCTGTGGTAAGACTTGT	60
${\tt MetAlaAlaIleArgLysLysLeuValIleValGlyAspGlyAlaCysGlyLysThrCys}$	20
TTGCTCATCGTCTTTAGCAAGGACCAGTTCCCAGAGGTGTATGTA	120
${\tt LeuLeuIleValPheSerLysAspGlnPheProGluValTyrValProThrValPheGluValTyrValPheGluValVarValPheGluValVarValPheGluValVarValPheGluValVarVarVarVarVarVarVarVarVarVarVarVarVarV$	40
AACTATGTGGCAGATATTGAAGTTGATGGAAAGCAGGTAGAGTTGGCTTTGTGGGATACA	180
$\verb+AsnTyrValAlaAspIleGluValAspGlyLysGlnValGluLeuAlaLeuTrpAspThr+$	60
GCTGGGCAGGAAGATTATGATCGCTTGAGGCCTCTCTCCTATCCAGACACTGATGTTATA	240
AlaGlyGlnGluAspTyrAspArgLeuArgProLeuSerTyrProAspThrAspVallle	80
CTGATGTGTTTCTCTATTGACAGCCCTGATAGCTTAGAAAACATCCCAGAAAAATGGACC	300
LeuMetCysPheSerIleAspSerProAspSerLeuGluAsnIleProGluLysTrpThr	100
CCAGAAGTCAAGCACTTCTGTCCCAACGTGCCCATCATCCTGGTTGGGAACAAGAAGGAT	360
ProGluValLysHisPheCysProAsnValProIleIleLeuValGlyAsnLysLysAsp	120
CTTCGGAATGATGAGCACACAAGGCGGGGAGCTAGCCAAGATGAAGCAGGAGCCGGTGAAA	420
LeuArgAsnAspGluHisThrArgArgGluLeuAlaLysMetLysGlnGluProValLys	140
CCGACAGAAGGCAGAGATATGGCAAACAGGATTGGTGCTTTTGGGTACATGGAGTGTTCA	480
ProThrGluGlyArgAspMetAlaAsnArgIleGlyAlaPheGlyTyrMetGluCysSer	160
GCAAAGACCAAAGATGGAGTGAGGGAGGTTTTTGAAATGGCCACGAGAGCTGCTCTGCAA	540
AlaLysThrLysAspGlyValArgGluValPheGluMetAlaThrArgAlaAlaLeuGln	180
GCCAGACGTGGGAAGAAAAAATCTGGGTGCCTTGTCTTGTGAAACCCTGCTGCAAGCACA	600
AlaArgArgGlyLysLysLysSerGlyCysLeuValLeu *	193
GCCCTCATGCGGTTAATTTTGAAGTGCTGTTTATTAATCTTAGTGTATGATTACTGGCCT	660
TTTTCATTTATCTATAATTTACCTAAGATTACAAATC	697

and are as follows: (i) the GXXXXGKS/T sequence (positions 29 to 36 of the sequence alignment) constituting the phosphate-binding loop L1 (nomenclature according to Pai et al. [26]); (ii) the DTAG sequence on L4 (positions 77 to 80) in the highly conserved WDTAGQE motif shared by Rab and Rho proteins, which interacts with the γ phosphate; (iii) the NKXD sequence (positions 139 to 142) at the junction between beta-strand 5 and loop L8, called the guanine specificity region; (iv) the SAK/L sequence in L10 (positions 169 to 171) interacting with the D residue (position 142). The region spanning these four conserved domains contains other identical residues (shown in boldface type) as well as several conservative changes.

38 = rab4b

GAGTAGGAAGGAGCCGGGGCTGCAGCCGGAGTGGAGCGGCTGCCAGCCGAGCAGCAGGCG	60
CGGCCGCGCGCCATATTGCGGCCCCGAGCGGCCGCGACCGAGTCATGGCCGAGACCTAC	120
MetAlaGluThrTyr	5
GACTTCCTCTTCAAATTCCTGGTGATTGGCAGTGCAGGAACTGGCAAATCATGTCTCCTT	180
${\tt AspPheLeuPheLysPheLeuValIleGlySerAlaGlyThrGlyLysSerCysLeuLeu}$	25
CATCAGTTCATTGAGAATAAGTTCAAACAGGACTCCAACCACACAATCGGCGTGGAGTTT	240
${\tt HisGlnPheIleGluAsnLysPheLysGlnAspSerAsnHisThrIleGlyValGluPhe}$	45
GGATCTCGGGTAGTCAACGTGGGTGGGAAGACTGTGAAGCTCCAGATTTGGGACACAGCC	300
${\tt GlySerArgValValAsnValGlyGlyLysThrValLysLeuGlnIleTrpAspThrAla}$	65
GGCCAAGAGCGGTTTCGGTCGGTGACACGGAGTTACTACCGAGGGGCGGCTGGAGCCCTG	360
GlyGlnGluArgPheArgSerValThrArgSerTyrTyrArgGlyAlaAlaGlyAlaLeu	85
CTGGTGTACGACATCACCAGCCGGGAGACATACAACTCGTTGGCTGCCTGGCTGACGGAC	420
LeuValTyrAspIleThrSerArgGluThrTyrAsnSerLeuAlaAlaTrpLeuThrAsp	105
GCCCGCACGCTGGCTAGCCCCAACATCGTGGTCATCCTCTGTGGCAACAAGAAAGA	480
AlaArgThrLeuAlaSerProAsnIleValValIleLeuCysGlyAsnLysLysAspLeu	125
GACCCTGAGCGCGAGGTCACTTTCCTGGAGGCCTCCCGCTTTGCCCAGGAGAATGAGCTA	540
AspProGluArgGluValThrPheLeuGluAlaSerArgPheAlaGlnGluAsnGluLeu	145
ATGTTCCTGGAGACTAGTGCCCTCACGGGTGAGAACGTGGAAGAGGCTTTCCTGAAGTGT	600
MetPheLeuGluThrSerAlaLeuThrGlyGluAsnValGluGluAlaPheLeuLysCys	165
GCCCGCACCATCCTGAACAAGATCGACTCAGGTGAGCTGGACCCCGAGAGGATGGGCTCA	660
AlaArgThrIleLeuAsnLysIleAspSerGlyGluLeuAspProGluArgMetGlySer	185
GGCATTCAGTACGGGGATGCTTCCCTCCGCCAGCTGCGGCAGCCTCGGAGTGCCCAGGCC	720
GIYIIEGINTYrGIYASPAIASERLEUARGGINLEUARGGINProArgSerAlaGINAla	205
GTGGCCCCCCAGCCCTGTGGCTGCTGAGACATGTGGAGCCAGCTCACCTGTTCTCCAGGA	780
valalarroginrrocysglycys *	213
CCAGCCCTGCCCTTCTGGCCGGGGCCCAGACCCAGGCCC	819

FIG. 2. Nucleotide sequences of the MDCK YPT1/SEC4-like cDNAs and deduced primary sequences of the encoded proteins. Nucleotide and predicted amino acid (in single-letter amino acid code) sequences of cDNAs 2 (Rab8), 4 (Rac1), 15 (Rab9), 32 (Rab10), 34 (Rab11), 38 (Rab4b), and 41 (Rho2) are shown.

A less conserved region is the effector loop L2 (positions 51 to 59) corresponding to amino acids 32 to 40 in the H-ras sequence which are known to mediate the interaction of $p21^{ras}$ with the GTPase-activating protein (1, 6). All these proteins share a Thr in position 54, which in $p21^{ras}$ coordinates to the Mg²⁺ ion and to the γ phosphate. The rest of this region is clearly more divergent from $p21^{ras}$ and is more similar to the Ypt1p and Sec4p effector loops. In the case of proteins Rab8 and Rab10, this similarity is striking: the FISTIGIDFKIK sequence of Rab10 almost exactly matches that of SEC4 (FITTIGIDFKIK) besides a conservative change (Ser-Thr) in the third position. Rab8 contains the sequence FISTIGIDFKIR, also very similar to that of Ypt1p and Sec4p.

The sequence identity in the region spanning the four conserved domains ranging from alignment positions 23 and 187 (the last conserved hydrophobic amino acid) is shown in Fig. 1. On the basis of these data a phylogenetic-type tree was calculated (Fig. 4) which groups the sequences depending on their sequence similarity. Interestingly, this analysis revealed that the homology between Rab8 and Rab10 proteins and Ypt1 and Sec4 proteins is not limited to the effector loop. The four proteins constitute a group together with Rab1 and, possibly, Rab3a and Rab3b. Besides Rab1, of all mammalian proteins of this subfamily identified so far, Rab8 and Rab10 are the most closely related to the yeast proteins. Within the conserved region, these two proteins share 56 and 59% sequence identity with Ypt1p and 59 and 60% with Sec4p, respectively. The similarity between the two MDCK proteins is 77%, clearly lower than for the highly related Rab3a and Rab3b.

When a mammalian sequence and a yeast sequence have more than 70% identity, one may assume that they perform analogous functions in the two species. This is the case for YPT1 and Rab1 (78%; 19) and, possibly, also for the recently

10	20		30	40	50	60	70)	80	90		100	110	120	
123456789012	234567890	1234567	78 9 0123 4	56789012	345678901	23456789012	34567890	123456	5 789012 345	57890123	45678	89012	345678901	234567890	
		β1	L1	α1	L2	β2	L3	β 3	L4	α2	L5	β4	L6	α3	
MASATDSRYGQ MASVTDGKHGVI 	KESSDQNFD CDASDQNFD MSETVD ISGDFGNPL ISSNNPEYD 	YMFKILI YMFKILI FLFKFLV YLFKLLI YLFKLLI VLLKVII LLFKLLI YLFKVU FLFKFLV YLFKVU SIMKILI TEYKLVV	LICONSSVE LICONSSVE VICNAGTE LICONSVE LICONSVE LICONSVE LICONSVE LICONSVE LICONSVE LICONSVE LICONSVE LICONSVE LICONSVE LICONSVE LICONSVE LICONSVE LICONSVE	KTSFLFRYJ KTSFLRYJ KTSFLRYJ KTSLLRFF KTSLLLRFF KSSLLLGF KTSLVLFRF KTSLVLFRF KTSLVLFRF KSLLLRF KSCLLRF KSCLLRF KSCLLRF	ADDSFTPAFY ADDSFTPAFY IEKKFKDDS WTDSFDNTY; IDKRFQPVHI VKGQFHEFQU SEDAFNSTF VNKKFSNQUI NKFDTQLI SDDAFNTFF IRNEFNLESS SDDTYTNDY IENKFKQDSI SDDTYTNDY IENKFKQDSI SDDTYTNDY IQNHFVDEYI	/STVGIDFKVM /STVGIDFKVM /HTIGVEFGQP /ATIGJDFLSF /STIGJDFLSF /STIGJDFLSF /STIGJDFKIF /STIGJDFKIF /STIGJDFKIF /STIGVDFKIF /STIGVDFKIF /STIGVDFKIF /STIGVDFKIF /STIGJFKIF /STIGJFKIF	TTIYRNDKH TTYRHEKK TTYRHEKK TTYLEDRI TTYLEDRI TTELDGK TTELDGK TTELDGK TTELDGK SIQVDGK SIQVDGK SIQVDGK NIVLDNK TTVELDGK SQVVIDGE	TIKLQIM VKLQIM VKLQIM VKLQIM VKLQIM VKLQIM VKFEIM TIKLQIM VKLQIM VKLQIM VKLQIM VKLQIM VKLQIM VKLQIM	DDTAGQERYR DDTAGQERFR DDTAGQERFR DDTAGQERFR DDTAGQERFR DDTAGQERFR DDTAGQERFR DDTAGQERFR DDTAGQERFR IDTAGQERYR IDTAGQERYR IDTAGQERYR IDTAGQERYR IDTAGQERYR	TITTAYY TITTAYY SUTTSYY TITSYY SLIPSYI SLAPMYY SLAVAYY SLAVAYY TITTSYY AITSAYY TITSYY TITSYY TITSYY TITSYY TITSYY TITSYY TITSYY TITSYY TITSYY TITAYY	LGAMGE LGAAGA LGAAGA LGAAGA LGAAGA LGAAGA LGAAGA LGAMGI LGAMGI LGAMGI LGAMGI LGAMGI LGAMGI LGAMGI LGAMGI LGAMGI	FILMY FILMY ALLVY ALLVY ALLVY ALLVY CVLVF CLLTF IMLVY ALLVY IIIVY ALLVY IIIVY ALLVY IIIVY FLCVF	DITNEESFN. DITNEESFN. DITSRETYN. DITSRETYN. DITSRETYN. DITRESFN. DITRESFN. DITRESFN. DITRESFN. DITRESFN. DITRESFN. DITRESFN. DIAKHLTYE DIAKHLTYE DVTDQESFN. DITRESFN.	AVQDWSTQI ALTNWLTDA JTTKWIDDV YTKWIDDZ TTKWIDDY HLTTWLEDA RAKNWVKEL HLTTWLEDA RAKNWKEF NISNWIKKEF NISNWIKKEF NISKWIKEL SVKMWLQEI WVGRWIKEL SVKMUQEI	rab3a rab3b rab4 rab6 47=rab1 21=rab2 2=rab8 14=rab7 15=rab9 32=rab10 34=rab11 38=rab4b YPT1 YPT3 YPT3 KC4 H-ras
130 123456789012 a3 L7 KTYSWDNA KTYSWDNA RMLASQNI RTERSQNI DRYASPNI EEHASPNI DEVANEDI DCASPROPENI IYYADVKEPESI DEHASPNI DRYATSTT REHASNI NEHASNI	140 34567890 β5 VIILCONK VIILCONK VIILCONK VIILCONK VIILCONK VIILCONK VIILCONK VIILCONK VIILCONK VIILCONK VIILCONK VIILCONK VIILCONK VIILCONK	1234567 L8 CDMEDEF CDMEEEF KDLDADF TDLADKF CDLTTKK SDLESRF ADLANKF CDVNDKF IDLESRC CDMDDKF SDLRHLF SDLRHLF TDLLHLF SDMET-F	150 150 150 150 150 150 150 150	160 56789012: 44 L9 RQLADHLG QLLAEQLG SRFAQENE: ERKARELM: KEFADSLG EVIALDYG AWCYSKNN AWCYDKOL EQIAREHG RAFAEKNG SRFAQENE KEFADANKI QAFAAENN	170 3456789012 β6 l10 FEFFEASAKI LIFLETSAKI IFFLETSAKI IFFLETSAKI IFFLETSAKI IFFLETSAKI IFFLETSAKI LSFIETSAKI LSFIETSALI LSFIETSAKI LSFIETSAKI	180 3456789012 0 c5 NINVKQTFEF GENVEAJFC GENVEAJFC GENVEAJFC SNVVEJFI SNVVEJFI SNVVEJFI SNVVEJFI SINVEAJFC SSNVEAJFC SSNVEAJFC SSNVEAJFC SSNVEAJFC SSNVEAJFC	190 34567890 LUVDVICEP LUVDALCOP CARKILNY VAAALPG MAAEJKK TAKEIYE IAKKLPK LARDIKA TAKEIYE LITEIYR CARTILN MARQIKQ VLTEIFR	123456 MSESLD (IESGEL (IESGEL (IESGEL (IESGEL (IQEGVF (IDESD) (IDSGEL (ISSNE) (ISSNE) (ISSNE) (ISSNE)	200 7890123456 7DPSNLGSS DPERMGSGIG SREDMIDIKI SGREDMIDIKI GNSRGGSUG SNEFPEPIKI INSENVDISS ISDRENDMSS ISDRENDMSSGI DPERMGSGIG .NETTQKEDD JEAGDDGVHP' .VGVONGKEG	210 7890123 2700000000000000000000000000000000000	2 45678 PPLLC QLRSH VSEG QSGGC QSGGC QKRSS SSCC LSKCC HVPPT QLRDT QQSLT MCAPTM	220 99012: PHQDC QQNCS PRRTQ GCSC GCC AAGNQ CCSN FFFRC SCSC TTENK FFRSQ WTGGG KSSC	230 3456789012 AC C APSAQECGC GGQQAGGGC VLL PKVQCCQNI AVAPQPCGC CC KKSSSQCC	234567890	rab3a rab3b rab4 rab6 47=rab1 21=rab2 2=rab8 14=rab7 15=rab9 32=rab10 38=rab10 38=rab4b YPT1 YPT3 SEC4
	10 123456789012 MASATDSRYGQP MASVTDGKHGVP 	10 20 12345678901234567890 MASATDSRYGQKESSDQNFD MASATDSRYGQKESSDQNFD	10 20 123456789012345678901234567 β1 MASATDSRYGQKESSDQNFDYMFKLJ	10 20 30 1234567890123456789012345678901234 β1 L1 MASATDSRYGQKESSDQNFDYMFKLLIGNSVG 91 L1 MASATDSRYGQKESSDQNFDYMFKLLIGNSVG	10 20 30 40 12345678901234567890123456789012345678901234567890123 β1 L1 α1 MASATDSRYGQKESSDQNFDYMFKLL1IGNSVGKTSFLERY/ MASVTDGKHGVKDASDQNFDYMFKLL1IGNSVGKTSFLERY/ 	10 20 30 40 50 1234567890123456784000000000000000000000000000000000000	10 20 30 40 50 60 123456789012345678000000000000000000000000000000000000	10 20 30 40 50 60 72 1234567890123	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 20 30 40 50 60 70 80 12345678901	10 20 30 40 50 60 70 80 90 1234567890123	10 20 30 40 50 70 80 90 1234567890123	10 20 30 40 50 60 70 80 90 100 12345578901234	10 20 30 40 50 66 70 80 90 100 110 12345678901	10 20 30 40 55 60 70 80 90 100 110 120 1234567890123456

FIG. 3. Amino acid sequence alignment of MDCK proteins Rab1, -2, -5, -7, -8, -9, -10, -11, and -4b with human H-Ras, Rab3a, -3b, -4, -6, and yeast Ypt1p, Sec4p, and Ypt3p. Identical amino acids are shown in boldface type. The reference numbering is determined by the alignment. Alpha-helices, beta-strands, and loops for H-Ras taken from Pai et al. (26) are indicated.

FIG. 4. Evolutionary tree of MDCK proteins Rab1, -2, -5, -7, -8, -9, -10, -11, and -4b; human Rab3a, -3b, -4, and -6; and yeast Ypt1p, Ypt3p, and Sec4p. The tree is drawn such that the height of the branching points roughly indicates the sequence similarity between the most distant sequences in the cluster defined by the branching point. A scale with percent identical residues is given next to the tree. The C-terminal cysteine motifs are also shown for each protein.

identified YPT3=SP8 and Rab11 (80%). MDCK protein 38 shares 87% identical amino acids with human Rab4 in this conserved region. It is not clear whether this divergence is due to species heterogeneity or whether it accounts for distinct, although highly related, proteins. An example of the latter case is proteins Rab3a and Rab3b (85% identity). Until this issue is clarified, we refer to protein 38 as Rab4b. Since Rab2 also shares 59% identity with Rab4 and 58% with protein 38, the three proteins are joined into a subgroup.

Also, Rab7 and Rab9 are subgrouped together due to their 54% sequence identity; in addition, they both have a 4-amino-acid insertion in loop L7 (Fig. 3). There are also proteins in the tree which are clearly separated from the others, like Rab5 and Rab6.

All proteins share one or two cysteine residues at their C termini. In the case of Ras proteins, the cysteine is followed by two aliphatic amino acids and a terminal variable residue. This C-terminal motif, the so-called CAAX box (cysteinealiphatic-aliphatic-any amino acid), is modified posttranslationally and determines the membrane association of the Ras proteins (16, 17, 40). Analysis of the C termini of the different proteins reveals a sequence heterogeneity at the level of the cysteine motifs. Only Rab8, 4=rac2 and 41=rho1 (Fig. 2) contain the CAAX box. Rab1, Rab2, Rab9, and Rab10 have two consecutive C-terminal cysteines, similar to Ypt1p, Ypt3p, and Sec4p. In Rab5, the two cysteines are followed by serine and asparagine, while Rab11 has an unusual CCONI C-terminal motif. In Rab3a and Rab3b, Rab4 and Rab4b, and Rab6, and Rab7, the cysteines are separated by glycine, alanine, or serine, respectively.

FIG. 5. Northern blot analysis of YPT1/SEC4-like genes expressed in MDCK (M), NIH 3T3 (N), and BHK (B) cells. Polyadenylated RNAs (1 µg per lane) electrophoresed on 1% agarose gels and transferred to nylon filters were hybridized with ³²P-labeled 1, 2, 4, 14, 15, 21, 32, 34, and 38 cDNAs as probes. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as a control probe. Sizes (in kilobases) were determined by using RNA molecular size standards.

To determine whether the cysteine motifs correlate with the sequence conservation, they were included in the tree scheme of Fig. 4. Whenever sequences are more than 80% similar, they also share the same cysteine motif. This is the case for Rab3a and Rab3b, Rab4 and -4b, YPT1 and Rab1, and YPT3 and Rab11. When proteins show lower sequence similarity, even if grouped in the same branch, they can have different cysteine motifs, as in the case of Rab8 and Rab10.

Expression of YPT1/SEC4-related genes in epithelial and nonepithelial cell lines. We wanted to determine whether the sequences we have identified are also expressed in nonepithelial cells. Northern blots of polyadenylated RNA from MDCK, NIH 3T3, and BHK cells were hybridized with the various ³²P-labeled cDNAs as probes, and the result is shown in Fig. 5. Transcripts were detected in all three cell types. In most cases, with the exception of proteins 4 (Rac2), 15 (Rab9), and 38 (Rab4b), multiple transcripts were detected by the same probe. This observation is not unprecedented for Rab mRNAs (35, 42). However, in the case of cDNA 2 (Rab8), the mRNAs detected in MDCK cells have a different size compared with those in NIH 3T3 and BHK cells. We do not know whether these multiple transcripts correspond to differentially spliced mRNAs or to different gene products. Therefore, we cannot rule out the possibility that highly related mRNAs might cross-hybridize to the same probe.

DISCUSSION

In this paper, we report the isolation from an MDCK cell cDNA library of 11 clones encoding proteins highly homologous to the yeast Ypt1/Sec4 proteins. Amino acid sequence analysis of the encoded proteins indicate that they all share the conserved residues which have been shown in $p21^{ras}$ to constitute the GTP-binding site. Two of these, proteins 4 and 41, belong to the Rho subfamily, while the others are clearly Rab proteins: of these, proteins 2 (Rab8), 15 (Rab9), 32 (Rab10), and 34 (Rab11) are new members of the mammalian Rab subfamily. All these proteins have distinct effector regions and show a higher sequence similarity to Ypt1, Ypt3, and Sec4 than to Ras proteins. This difference reinforces the idea that they might perform a function similar to that of Ypt1p and Sec4p, probably interacting with distinct effector proteins.

Rab8 and Rab10 are highly related to Ypt1, Rab1, and Sec4 proteins. The overall sequence identity in the region excluding the variable N and C termini is around 60%. Most important is the fact that this identity is strikingly high in the effector domain. While a mammalian homolog of Ypt1p has been identified (Rab1=47) and shown to replace the Ypt1p functionally in S. cerevisiae, a mammalian counterpart of Sec4p has not been identified yet. Because of their high sequence similarity, Rab8 and Rab10 are possible candidates for such a protein. However, their sequence similarity with SEC4 is not as high as that between YPT1 and Rab1 (78%). It is possible that Sec4p, which functions at a later step of the secretory pathway than Ypt1p, has undergone a higher degree of specialization during evolution. For instance, the brain-specific Rab3a protein, which in our analysis is subgrouped together with Ypt1, Rab1, Sec4, Rab8, and Rab10, has recently been found associated to synaptic vesicles, a specialized organelle of the regulated pathway of secretion in neurons (38).

Rab11 is highly homologous to Ypt3p (24) and equivalent to SP8p (11) recently found in *S. pombe*. Deletion of the YPT3 gene causes a temperature-sensitive lethal phenotype (24), but its intracellular location and function are unknown at present. Rab9 shares significant sequence identity (54% within the most conserved region) with Rab7. Rab5 and Rab6, on the other hand, show weaker (\sim 40%) sequence similarity with the other identified mammalian and yeast proteins.

The data presented here demonstrate the complexity of this subfamily of GTP-binding proteins. The 11 cDNAs were isolated (mostly in single copy) by a limited library screening of 50,000 recombinant clones. A complete library screening would probably increase this number about threefold. Such complexity is entirely compatible with their proposed role in controlling membrane traffic at each specific step of the exocytic and endocytic pathways (4). Furthermore, our recent data on the localization of Rab2, Rab5, and Rab7 support this view (8). These three proteins are specifically located in distinct subcompartments on the exocytic or endocytic pathway. Rab2 is associated with an intermediate compartment between the rough endoplasmic reticulum and the Golgi complex, Rab5 is found on the cytosolic side of the plasma membrane and early endosomes, and Rab7 is found on late endosomes. Functional studies will hopefully elucidate their mode of action at each of these sites.

The cDNAs identified here are expressed in epithelial as well as nonepithelial cells. Multiple transcripts were detected on Northern blots with most of these probes. We do not know whether they encode the same proteins or highly related proteins, as in the case of Rab3a and Rab3b. If these GTP-binding proteins were involved in regulating intracellular protein traffic, we would expect to find epithelial-specific proteins that specify the routes required for polarized membrane traffic. We are continuing our search for such proteins.

ACKNOWLEDGMENTS

We gratefully acknowledge R. Jelinek for excellent technical assistance. We are indebted to N. Touchot, A. Zahraoui, and A. Tavitian for the generous gift of human Rab cDNAs and M. Yamamoto and J. Armstrong for sharing sequence information before publication. We thank A. Wittinghofer and I. Mather for critical reading of the manuscript.

P.C. was a recipient of a long-term European Molecular Biology Organization fellowship.

LITERATURE CITED

- Adari, H., D. R. Lowy, B. M. Willumsen, C. J. Der, and F. McCormick. 1988. Guanosine triphosphatase activating protein (GAP) interacts with the p21*ras* effector binding domain. Science 240:518-521.
- Baker, D., L. Wuestehube, R. Schekman, D. Botstein, and N. Segev. 1990. GTP-binding Ypt1 protein and Ca²⁺ function independently in a cell-free protein transport reaction. Proc. Natl. Acad. Sci. USA 87:355–359.
- Barbacid, M. 1987. ras genes. Annu. Rev. Biochem. 56:779– 827.
- 4. Bourne, H. R. 1988. Do GTPases direct membrane traffic in secretion? Cell 53:669-671.
- Bucci, C., R. Frunzio, L. Chiariotti, A. L. Brown, M. M. Rechler, and C. B. Bruni. 1988. A new member of the *ras* gene superfamily identified in a rat liver cell line. Nucleic Acids Res. 16:9979–9993.
- 6. Cales, C., J. F. Hancock, C. J. Marshall, and A. Hall. 1988. The cytoplasmic protein GAP is implicated as a target for regulation by the *ras* gene product. Nature (London) 332:548–551.
- 7. Chardin, P., and A. Tavitian. 1986. The *ral* gene: a new *ras* related gene isolated by the use of a synthetic probe. EMBO J. 5:2203-2208.
- Chavrier, P., R. G. Parton, H. P. Hauri, K. Simons, and M. Zerial. 1990. Localization of low molecular weight GTP-binding

proteins to exocytic and endocytic compartments. Cell 62:317-329.

- Chirgwin, J. M., A. E. Przylyl, R. J. Macdonald, and W. J. Rutter. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294– 5299.
- Didsbury, J., R. F. Weber, G. M. Bokoch, T. Evans, and R. Snyderman. 1989. *rac*, a novel *ras*-related family of proteins that are botulinum toxin substrates. J. Biol. Chem. 264:16378–16382.
- 11. Fawell, E., S. Hook, D. Sweet, and J. Armstrong. 1990. Novel YPT1-related genes from *Schizosaccharomyces pombe*. Nucleic Acids Res. 18:4264.
- 12. Felstenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791.
- Gallwitz, D., C. Donath, and C. Sander. 1983. A yeast gene encoding a protein homologous to the human c-has/bas protooncogene product. Nature (London) 306:704–707.
- 14. Goda, Y., and S. R. Pfeffer. 1988. Selective recycling of the mannose 6-phosphate/IGFII receptor to the *trans* Golgi network *in vitro*. Cell 55:309–320.
- Goud, B., A. Salminen, N. C. Walworth, and P. J. Novick. 1988. A GTP-binding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 53:753-768.
- Gutierrez, L., A. I. Magee, C. J. Marshall, and J. F. Hancock. 1989. Posttranslational processing of p21*ras* is two-step and involves carboxy-methylation and carboxy-terminal proteolysis. EMBO J. 8:1093-1098.
- Hancock, J. F., A. I. Magee, J. E. Childs, and C. J. Marshall. 1989. All ras proteins are polyisoprenilated but only some are palmitoylated. Cell 57:1167–1177.
- Haubruck, H., C. Disela, P. Wagner, and D. Gallwitz. 1987. The ras-related ypt protein is an ubiquitous eukaryotic protein: isolation and sequence analysis of mouse cDNA clones highly homologous to the yeast YPT1 gene. EMBO J. 6:4049–4053.
- 19. Haubruck, H., R. Prange, C. Vorgias, and D. Gallwitz. 1989. the ras-related mouse *ypt1* protein can functionally replace the YPT1 gene product in yeast. EMBO J. 8:1427–1432.
- Loh, E. Y., J. F. Elliott, S. Cwirla, L. L. Lanier, and M. M. Davis. 1989. Polymerase chain reaction with single-sided specificity: analysis of T cell receptor δ chain. Science 241:217-220.
- Matsui, Y., A. Kikuchi, J. Kondo, T. Hishida, Y. Teranishi, and Y. Takai. 1988. Nucleotide and deduced amino acid sequences of a GTP-binding protein family with molecular weight of 25,000 from bovine brain. J. Biol. Chem. 263:11071–11074.
- Mayorga, L. S., R. Diaz, and P. D. Stahl. 1989. Regulatory role for GTP-binding proteins in endocytosis. Science 244:1475– 1477.
- Melancon, P., B. S. Glick, V. Malhotra, P. J. Weidman, T. Serafini, M. L. Gleason, L. Orci, and J. E. Rothman. 1987. Involvement of GTP-binding "G" proteins in transport through the Golgi stack. Cell 51:1053–1062.
- 24. Miyake, S., and M. Yamamoto. 1990. Identification of rasrelated, YPT family genes in *Schizosaccharomyces pombe*. EMBO J. 9:1417-1422.
- Nakano, A., and M. Muramatsu. 1989. A novel GTP-binding protein, Sar1p, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J. Cell. Biol. 109:2677–2691.
- Pai, E. F., W. Kabsch, U. Krengel, K. C. Holmes, J. John, and A. Wittinghofer. 1989. Structure of the guanine-nucleotide-

binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature (London) **341:209–214**.

- Polakis, P. G., R. F. Weber, B. Nevins, J. R. Didsbury, T. Evans, and R. Snyderman. 1989. Identification of the *ral* and *rac1* gene products, low molecular mass GTP-binding proteins from human platelets. J. Biol. Chem. 264:16383–16389.
- Salminen, A., and P. J. Novick. 1987. A ras-like protein is required for a postGolgi event in yeast secretion. Cell 49:527– 538.
- Schmitt, H. D., M. Puzicha, and D. Gallwitz. 1988. Study of a temperature-sensitive mutant of the ras-related YPT1 gene product in yeast suggests a role in the regulation of intracellular calcium. Cell 53:635-647.
- 30. Schmitt, H. D., P. Wagner, E. Pfaff, and D. Gallwitz. 1986. The ras-related YPT1 gene product in yeast: a GTP-binding protein that might be involved in microtubule organization. Cell 47:401–412.
- Segev, N., and D. Botstein. 1987. The ras-like yeast YPT1 gene is itself essential for growth, sporulation, and starvation response. Mol. Cell. Biol. 7:2367-2377.
- Segev, N., J. Mulholland, and D. Botstein. 1988. The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery. Cell 52:915–924.
- Sewell, J. L., and R. A. Kahn. 1988. Sequences of the bovine and yeast ADP-ribosylation factor and comparison to other GTP-binding proteins. Proc. Natl. Acad. Sci. USA 85:4620– 4624.
- 34. Stearns, T., M. C. Willingham, D. Botstein, and R. A. Kahn. 1990. ADP-ribosylation factor is functionally and physically associated with the Golgi complex. Proc. Natl. Acad. Sci. USA 87:1234–1242.
- 35. Touchot, N., P. Chardin, and A. Tavitian. 1987. Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library. Proc. Natl. Acad. Sci. USA 84:8210–8214.
- Tuomikoski, T., M.-A. Felix, M. Dorée, and J. Gruenberg. 1989. The cell-cycle control protein kinase cdc2 inhibits endocytic vesicle fusion *in vitro*. Nature (London) 342:942–945.
- 37. Vingron, M., and P. Argos. 1989. A fast and sensitive multiple sequence alignment algorithm. CABIOS 5:115-121.
- 38. van Mollard, G. F., G. A. Mignery, M. Baumert, M. S. Perin, T. J. Hanson, P. M. Burger, R. Jahn, and T. Sudhof. 1990. Rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc. Natl. Acad. Sci. USA 87:1988–1992.
- Walworth, N. C., B. Goud, A. Kastan Kabcenell, and P. J. Novick. 1989. Mutational analysis of SEC4 suggests a cyclical mechanism for the regulation of vesicular traffic. EMBO J. 8:1685-1693.
- 40. Willumsen, B. M., K. Norris, A. G. Papageorge, N. L. Hubbert, and D. R. Lowy. 1984. Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus. EMBO J. 3:2581-2585.
- Yeramian, P., P. Chardin, P. Madaule, and A. Tavitian. 1987. Nucleotide sequence of human rho cDNA clone 12. Nucleic Acids Res. 15:1869.
- 42. Zahraoui, A., N. Touchot, P. Chardin, and A. Tavitian. 1989. The human Rab genes encode a family of GTP-binding proteins related to yeast YPT1 and SEC4 products involved in secretion. J. Biol. Chem. 264:12394–12401.