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Accurate DNA replication is a fundamental requirement for genomic stability. 
Replicative DNA polymerases achieve remarkably high-fidelity with just one error 
occurring in ten billion base pairs duplicated. Such high fidelity is achieved in three 
distinct steps: accurate base selection; proofreading of errors generated; and 
post-replicative mismatch repair 1, 2.

Correct base selection provides the largest single contribution to polymerase 
fidelity, with only one incorrect base incorporated in the region of every 100,000 
base pairs replicated.  The molecular structures of a number of polymerases and 
their complexes have been determined and these structures reveal that the 
polymerases include three subdomains that are associated with binding of the 
DNA primer template and an incoming dNTP, termed ‘palm,’ ‘finger’, and ‘thumb’ 
subdomains because of their resemblance to a right hand 3 (Fig. 2).  The palm 
domain contains two conserved carboxylate residues that are required for the 
phosphoryl transfer reaction. High fidelity base selection is achieved through 
movement of the ‘finger’ domain. In the absence of nucleotide, the ‘finger’ are in a 
so-called ‘open’ conformation. Binding of a correct dNTP induces large changes in 
the position of the ‘fingers’ domain, as well as subtle changes in amino acid side 
chains and in DNA conformation. These dNTP-induced changes result in a ‘closed’ 
ternary complex containing a binding pocket that snugly surrounds the 
newly-formed base pair and an active site that is poised for catalysis.  A wrong 
incoming dNTP generates a mismatched base pair that significantly inhibits both of 
these steps.

 Misincorporations nevertheless occur, with the most frequent being the ‘wobble’ 
base, dG, opposite template T 4. High-fidelity DNA polymerases contain another 
sub-domain that encodes a 3ʹ-5ʹ exonuclease and rapid shuttling of the mispaired 
primer-template between the polymerase and exonuclease active sites leads to the 
efficient removal of the misincorporated base 5.  It is estimated that such 
‘proofreading’ contributes another 100-fold to the accuracy of replication 
fidelity1, 2.

Last, but not least, any remaining errors are further ‘sanitized’ through 
post-replicative mismatch repair 6, with the latter adding yet another 1000-fold to 
the overall accuracy of genome duplication 1, 2.
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