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Materials and Methods 

Materials 

All buffering salts, isopropyl-β-D-thiogalactopyranoside (IPTG), and N,N-diisopropylethylamine 

(DIPEA) were purchased from Fisher Scientific (Pittsburgh, PA). Ampicillin (Amp), kanamycin sulfate 

(Kan), β-Mercaptoethanol (BME), DL-dithiothreitol (DTT), sodium 2-mercaptoethanesulfonate 

(MESNa), Coomassie brilliant blue, N,N-dimethylformamide (DMF), triisopropylsilane (TIS), L-

cysteine, L-cysteine methyl ester hydrochloride, L-phenylalanine methyl ester hydrochloride, L-

phenylalanine amide hydrochloride, methylamine, 1-‐ethyl-‐3-‐(3-‐dimethylaminopropyl)carbodiimide)	  

(EDC), and diethyl ether were purchased from Sigma-Aldrich (St. Louis, MO). Tris(2-

carboxyethyl)phosphine hydrochloride (TCEP) was purchased from Thermo Scientific (Rockford, IL). 

Bis-L-cysteine amide disulfide hydrochloride (H-Cys-NH2)2-HCl was purchased from BACHEM 

(Bubendorf, Switzerland). Fmoc-Ala-OH, Fmoc-Phe-OH, Fmoc-Cys(Trt)-OH, Fmoc-Asn(Trt)-OH, 

Boc-Cys(Trt)-OH, and O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate 

(HBTU) were purchasd from Novabiochem (Läufelfingen, Switzerland). Piperidine was purchased from 

Alfa Aesar (Ward Hill, MA). Dichloromethane (DCM) and rink amide resin were purchased from EMD 

Chemicals (Billerica, MA). 1-Hydroxybenzotriazole hydrate (HOBt) was purchased from AnaSpec 

(Fremont, Ca). Trifluoroacetic acid (TFA) was purchased from Halocarbon (North Augusta, SC). 

Deuterated NMR solvents, 15NH4Cl, and 13C-glucose were purchased from Cambridge Isotope 

Laboratories (Andover, MA). 

Complete protease inhibitor tablets were purchased from Roche Diagnostics (Mannheim, 

Germany). Nickel-nitrilotriacetic acid (Ni-NTA) resin was from Novagen (Gibbstown, NJ). The 

QuikChange XL II site directed mutagenesis kit was from Agilent (La Jolla, CA). DpnI and the Phusion 

High-Fidelity PCR kit were from New England Biolabs (Ipswich, MA). DNA purification kits (QIAprep 

spin minikit, QIAquick gel extraction kit, QIAquick PCR purification kit) were from Qiagen (Valencia, 

CA). Sub-cloning efficiency DH5α competent cells and One Shot BL21(DE3) chemically competent E. 
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coli were purchased from Invitrogen (Carlsbad, CA) and used to generate “in-house” high-competency 

cell lines. Oligonucleotides were purchased from Integrated DNA Technologies (Coralville, IA). All 

plasmids used in this study were sequenced by GENEWIZ (South Plainfield, NJ). Criterion XT Bis-Tris 

gels (12%) and Mini-PROTEAN TGX gels (12%) were purchased from Bio-Rad (Hercules, CA). 20x 

MES-SDS running buffer was purchased from Boston Bioproducts (Ashland, MA). 

 

Equipment 

Size-exclusion chromatography was carried out on an ÄKTA FPLC system from GE Healthcare. 

Preparative FPLC were carried out on a Superdex 75 16/60 column (column volume, CV, = 125 mL). 

For all runs, proteins were eluted over 1.35 CV of buffer (flow rate: 1 mL/min). Analytical RP-HPLC 

was performed on Hewlett-Packard 1100 and 1200 series instruments equipped with a C18 Vydac 

column (5 µm, 4.6 x 150 mm) at a flow rate of 1 mL/min. Preparative RP-HPLC was performed on a 

Waters prep LC system comprised of a Waters 2545 Binary Gradient Module and a Waters 2489 UV 

detector. Purifications were carried out on a C18 Vydac 218TP1022 column (10 µM; 22 x 250 mm) at a 

flow rate of 18 mL/min. All runs used 0.1 % TFA (trifluoroacetic acid) in water (solvent A) and 90 % 

acetonitrile in water with 0.1% TFA (solvent B). For all analytical runs, a two minute isocratic period in 

initial conditions was followed by a 30 minute linear gradient with increasing solvent B concentration. 

Electrospray ionization mass spectrometric analysis (ESI-MS) was performed on a Bruker Daltonics 

MicrOTOF-Q II mass spectrometer. Gels were quantified on a LI-COR Odyssey Infrared Imager. NMR 

experiments were carried out at either Varian Inova (600MHz) or Bruker (600, 800, or 900MHz) 

spectrometers equipped with cryogenic probes that can apply pulse field gradients along the z-axis. 

 

Synthesis of C-extein molecules for expressed protein ligation 

 L-cysteine and L-cysteine methyl ester were used as purchased. Typically, these amino acids 

were dissolved in Milli-Q water to 1.2 M, then the solutions were neutralized to pH 7 with sodium 
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hydroxide, and finally the volumes were raised to achieve a cysteine concentration of 1 M. 

 
Preparation of L-Cys(NH2) 

L-Cysteine amide was purchased in a disulfide dimer hydrochloride salt form. Immediately prior 

to its use for thiolysis and ligation, a neutralized and reduced form was prepared as follows. First, (H-

Cys-NH2)2-HCl was dissolved in a pH 8.0 phosphate buffered saline to a final concentration of 1 M and 

a final volume of 0.8 mL. Next, 0.8mL of a 1.1 M TCEP solution was prepared by dissolving TCEP-

HCl in a 3:5 (v/v) mixture of 1 M Tris and 5 N NaOH to afford a solution with pH ~6.0. The two 

solutions were mixed and 300µL of 5N NaOH was added to raise the pH to 7. The mixture was 

incubated at room temperature for 10 minutes to reduce the cysteine amide. The resulting solution was 

directly used for thiolysis and ligation without any additional purification. 

 
Synthesis of L-Cys(NHCH3) 

Cysteine N-methyl amide was prepared in two steps from Boc-L-Cys(Trt)-OH. In the first step, 1 

g of Boc-L-Cys(Trt)-OH (2.16 mmol), 364 mg of HOBt•H2O (2.38 mmol), and 455mg of EDC•HCl 

(2.38 mmol) were dissolved in 35mL of DCM. The mixture was stirred under argon on ice until almost 

everything dissolved. 3.25 mL of 2 M methylamine in THF (6.48 mmol) was added, followed by 3 mL 

of DMF to help solubilize whatever was still left in solution. Finally, 413 µL of DIPEA were added to 

neutralize any excess HCl from the EDC. The reaction was warmed up to room temperature and stirred 

overnight. The next day, the solution was extracted with two 25 mL 5% citric acid washes, one water 

wash, then two 25 mL saturated bicarbonate washes. The organic phase was collected and dried by 

rotary evaporation. In the second step, 40 mL of deprotection cocktail (49:50:1 of DCM:TFA:TIS) was 

added to dissolve the residue, and the deprotection was carried out for 30 minutes at room temperature. 

The solvent was removed under vacuum, and the residue was resuspended in 20 mL of water then 

filtered. The filtrate was collected and analyzed by Ellman’s test to determine free thiol concentration, 

indicating a 74% yield. The solution was frozen and lyophilized to give an amorphous solid, which was 
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analyzed by 1H-NMR to confirm the product (Figure S3A). The product was dissolved in water and 

stored at -80 °C. 

 
Solution-phase synthesis of CF(OCH3) and CF(NH2)  

Boc-L-Cys(Trt) (0.575 mmol, 267 mg), HOBT (0.575 mmol, 78 mg), and EDC•HCl 

(0.575 mmol, 110 mg) were dissolved in DCM (9 mL) in a 25-mL flask under argon atmosphere at 0 °C. 

DIPEA (0.575 mmol, 100 µL) was added to the mixture slowly and it was stirred for 15 min at 0 °C. 

Then phenylalanine methyl ester HCl (0.46 mmol, 100 mg) was dissolved in 1mL of DMF and added to 

the mixture, followed by more DIPEA (0.575 mmol, 100 µL). After 20 minutes, the reaction was 

allowed to proceed overnight under argon and warm slowly to room temperature as the ice melted. The 

next morning, 25mL of ether was added to the reaction solution, and the solution was transferred to a 

separatory funnel. The reaction solution was extracted twice with 25 mL of 5% citric acid, then twice 

with 25 mL of saturated sodium bicarbonate. The organic phase was removed leaving a damp precipitate 

which was redissolved in 20 mL of DCM. 20 mL of TFA and 500 µL of TIS were added and the 

deprotection was carried out for 30 minutes. The DCM/TFA was rotovapped off, then the precipitated 

material was resuspended in 25mL of aqueous 0.1% TFA and filtered. The dissolved crude dipeptide 

was purified by preparative RP-HPLC over a 10-25% B gradient in 60 minutes, preceded by a 5 minute 

isocratic phase in 10% B. The pure HPLC fractions were lyophilized then redissolved in water. The 

concentration was determined by Ellman’s test and by phenylalanine absorbance at 257 nm (ε257 = 190 

1/M*cm), then the peptide was diluted to 100 mM and stored at -80 °C. The CF(NH2) peptide was 

prepared analogously to the CF(OCH3) peptide, with isolated yields of 55% and 50%, respectively. The 

products were confirmed by 1H-NMR (Figures S3B-C) and by ESI-MS (Table S1). 

 
Solid-phase synthesis of CFN(NH2), CFA(NH2), and CAN(NH2)  

 Fmoc-based solid phase peptide synthesis (SPPS) using standard Fmoc amino acids was used to 
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produce the three C-extein tripeptides. The peptides were synthesized on Rink amide resin at a 0.25 

mmol scale as follows. First, 20% piperidine in DMF was used for Fmoc deprotection of the resin using 

a one minute equilibration of the resin followed by a 20 minute incubation at room temperature with 

agitation by a stream of N2 gas. After Fmoc deprotection and DMF washes, amino acids were coupled 

using HOBt/HBTU as activating agents. First, the amino acid (1.25 mmol) was dissolved to 0.5 M in a 

DMF solution containing 0.45 M HOBt and 0.45 M HBTU (2.5 mL). DIPEA (2.5 mmol) was added to 

the amino acid/activating agent solution, and the mixture was immediately added to the resin. The 

coupling reaction was carried out for 30 minutes at room temperature with agitation by a stream of N2 

gas. After substantial washing with DMF, subsequent deprotections and couplings were carried out 

identically as the initial steps. 

 The peptides were cleaved off the resin using 95% TFA, 2.5% TIS and 2.5% H2O (4 mL) for two 

hours at room temperature. After cleavage, the crude peptides were precipitated with 45 mL of cold 

diethyl ether. The precipitates were redissolved in water with 0.1 % TFA and purified by preparative 

RP-HPLC on C18 prep column over a 0-15% B gradient in 60 minutes. The purified peptides were 

analyzed by analytical RP-HPLC, 1H-NMR (Figures S3D-F) and ESI-MS (Table S1) to confirm their 

identity and purity. Peptide concentrations were determined by the Ellman’s test for free thiols and 

phenylalanine absorbance when applicable. 

 

Cloning of N- and C-intein plasmids 

 The N-inteins were cloned into a pET vector with a His6-SUMO tag at the 5’ end of the multiple 

cloning site by overlap-extension PCR.1 First, the NpuN and SspN genes were amplified from our 

previously used expression vectors2 with an N-terminal AEY N-extein sequence and 5’ and 3’ 

overhangs complementary to appropriate regions of the pET-SUMO vector. Next, the resulting 

amplicons were inserted downstream of the SUMO gene by PCR using the Phusion polymerase. The 

new plasmids, pET-SUMO-AEY-NpuN and pET-SUMO-AEY-SspN, encoded for the following protein 
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sequences (the product of SUMO removal is shown in bold): 

 
H6-SUMO-AEY-NpuN 
MGSSHHHHHHGSGLVPRGSASMSDSEVNQEAKPEVKPEVKPETHINLKVSDGSSEIFFKI 
KKTTPLRRLMEAFAKRQGKEMDSLRFLYDGIRIQADQTPEDLDMEDNDIIEAHREQIGGA 
EYCLSYETEILTVEYGLLPIGKIVEKRIECTVYSVDNNGNIYTQPVAQWHDRGEQEVFEY 
CLEDGSLIRATKDHKFMTVDGQMLPIDEIFERELDLMRVDNLPN 
 
H6-SUMO-AEY-SspN 
MGSSHHHHHHGSGLVPRGSASMSDSEVNQEAKPEVKPEVKPETHINLKVSDGSSEIFFKI 
KKTTPLRRLMEAFAKRQGKEMDSLRFLYDGIRIQADQTPEDLDMEDNDIIEAHREQIGGA 
EYCLSFGTEILTVEYGPLPIGKIVSEEINCSVYSVDPEGRVYTQAIAQWHDRGEQEVLEY 
ELEDGSVIRATSDHRFLTTDYQLLAIEEIFARQLDLLTLENIKQTEEALDNHRLPFPLLD 
AGTIK 
 
 

The C1A mutation (red and underlined) was introduced into this plasmid using the QuikChange Site-

Directed Mutagenesis kit with the manufacturer’s recommended protocol. 

 The C-inteins were also cloned by overlap-extension PCR1 into a modified pTXB1 intein vector 

containing the GyrA intein mutated for EPL followed by a C-terminal His6-tag. First, the NpuC and 

SspC genes were amplified from previously used expression vectors2 with the appropriate overhangs. 

Then the resulting amplicons were inserted upstream of GyrA in the pTXB1 vector to yield the plasmids 

pTXB1-NpuC-GyrA-H6 and pTXB1-SspC-GyrA-H6, which encode for the following protein sequences: 

NpuC-GyrA-H6 
MIKIATRKYLGKQNVYDIGVERDHNFALKNGFIASNCITGDALVALPEGESVRIADIVPG 
ARPNSDNAIDLKVLDRHGNPVLADRLFHSGEHPVYTVRTVEGLRVTGTANHPLLCLVDVA 
GVPTLLWKLIDEIKPGDYAVIQRSAFSVDCAGFARGKPEFAPTTYTVGVPGLVRFLEAHH 
RDPDAQAIADELTDGRFYYAKVASVTDAGVQPVYSLRVDTADHAFITNGFVSHAHHHHHH 
 
SspC-GyrA-H6* 

MVKVIGRRSLGVQRIFDIGLPQDHNFLLANGAIAANCITGDALVALPEGESVRIADIVPG 
ARPNSDNAIDLKVLDRHGNPVLADRLFHSGEHPVYTVRTVEGLRVTGTANHPLLCLVDVA 
GVPTLLWKLIDEIKPGDYAVIQRSAFSVDCAGFARGKPEFAPTTYTVGVPGLVRFLEAHH 
RDPDAQAIADELTDGRFYYAKVASVTDAGVQPVYSLRVDTADHAFITNGFVSHAHHHHHH 
 
 

The D124Y, H125N, and N137A mutations (red and underlined) were introduced into this plasmid using 

the QuikChange Site-Directed Mutagenesis kit with the manufacturer’s recommended protocol. 

* Note that for the SspC fusion, the N-terminal methionine (italics and underlined) was removed 

>50% by endogenous methionine amino-peptidases when over-expressed in E. coli 

BL21(DE3) cells, whereas for NpuC it is only cleaved roughly 10-20%. 
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Semisynthesis and purification of C-intein constructs 

E. coli BL21(DE3) cells transformed with a C-intein plasmid were grown in 2 L of LB medium 

containing ampicillin (100 µg/mL) at 37 °C until OD600 = 0.6. Then, expression was induced by addition 

of 0.5 mM IPTG for 3 hours at 37 °C. After harvesting the cells by centrifugation (10,500 rcf, 30 min), 

the cell pellets were transferred to 50 mL conical tubes with 5 mL of lysis buffer (50 mM phosphate, 

300 mM NaCl, 5 mM imidazole, no thiols, pH 8.0) and stored at -80°C. The cell pellets were 

resuspended by adding an additional 35 mL of lysis buffer supplemented with Complete protease 

inhibitor cocktail. Cells were lysed by sonication (35% amplitude, 10x 20 second pulses separated by 30 

seconds on ice). The soluble fraction was recovered by centrifugation (35,000 rcf, 30 min). The soluble 

fraction was mixed with 4 mL of Ni-NTA resin and incubated at 4 °C for 30 minutes. After incubation, 

the slurry was loaded onto a fritted column. After discarding the flow-through, the column was washed 

with 5 column volumes (CV) of lysis buffer, 5 CV of wash buffer 1 (lysis buffer with 20 mM 

imidazole), and 3 CV of wash buffer 2 (lysis buffer with 50 mM imidazole). The protein was eluted with 

elution buffer (lysis buffer with 250 mM imidazole) in four 1.5 CV elution fractions. The wash and 

elution fractions were analyzed by SDS-PAGE on Mini-PROTEN TGX gels run in Tris/glycine/SDS 

running buffer (Figure S4). 

 The cleanest fractions containing the desired fusion protein were treated in one of two ways 

depending on the C-extein. For single amino acid C-exteins, the eluted protein from the Ni column 

(typically 20-30 mL at 50-100 µM) was treated with 10 mM TCEP and the Roche Complete protease 

inhibitor cocktail. Then the cysteine derivative (free carboxylate, methyl ester, carboxamide, or N-

methyl amide) was added to the solution to a final concentration of 100 mM. The direct 

thiolysis/ligation reaction solution was kept at room temperature for 15-20 hours. For the di- and tri-

peptide C-exteins, the eluted protein was first dialyzed at 4 °C against lysis buffer to remove excess 

imidazole. The dialyzed solution was then treated with 10 mM TCEP and the Roche Complete protease 

inhibitor cocktail. Next, 100 mM MESNa was added, followed immediately by 1-5 mM di- or tri-
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peptide. These one-pot thiolysis/ligation reaction solutions were kept at room temperature for 15-20 

hours. For both reaction types, if the pH dropped after addition of all reagents, it was raised to pH 7.5 by 

addition of sodium hydroxide. Note that if the MESNa thiolysis and ligation reaction were not done in 

one pot, the C-terminal asparagine thioester would cyclize, then hydrolyze, resulting in a dead-end side 

product carboxylic acid. 

After analysis by analytical RP-HPLC to confirm reaction completion, HPLC solvent B was 

added to achieve a final concentration of 10% B. Then, neat TFA was added to 0.5% to acidify the 

solution. Upon acidification, the cleaved GyrA-H6 protein typically precipitated, but no C-intein adduct 

was lost. This solution was centrifuged then filtered for purification by preparative RP-HPLC. All C-

intein constructs (typically 20-30 mL) were loaded on a C18 preparative column over a 10 minute 

isocratic phase in 10% B. Then the system was raised to the gradient starting conditions (20% or 25% B) 

over a 5 minute phase. Finally, the proteins were purified over a 20-35% B or 25-40% B gradient in 60 

minutes. Fractions were analyzed by analytical RP-HPLC, and the purest fractions were lyophilized, 

then redissolved in water and pooled. Concentrations (50-400 µM) were determined by A280 using a 

calculated extinction coefficient (ProtParam tool on the Expasy server).3 Purity of the constructs was 

assessed by analytical RP-HPLC (Figure S7), and their identities were confirmed by ESI-MS (Table S2). 

 

Purification of N-intein constructs 

 E. coli BL21(DE3) cells transformed with each N-intein plasmid were grown in 2 L of LB 

containing 50 µg/mL of kanamycin at 37°C until OD600 = 0.6. The cells were then cooled down to 18 

°C, and expression was induced by addition of 0.5 mM IPTG for 16 hours at 18 °C. After harvesting the 

cells by centrifugation (10,500 rcf, 30 min), the cell pellets were transferred to 50 mL conical tubes with 

5 mL of lysis buffer (50 mM phosphate, 300 mM NaCl, 5 mM imidazole, 2 mM BME, pH 8.0) and 

stored at -80°C. The cell pellets were resuspended by adding an additional 35 mL of lysis buffer 

supplemented with Complete protease inhibitor cocktail. Cells were lysed by sonication (35% 
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amplitude, 10x 20 second pulses separated by 30 seconds on ice). The soluble fraction was recovered by 

centrifugation (35,000 rcf, 30 min). The soluble fraction was mixed with 4 mL of Ni-NTA resin and 

incubated at 4°C for 30 minutes. After incubation, the slurry was loaded onto a fritted column. After 

discarding the flow-through, the column was washed with 5 column volumes (CV) of lysis buffer, 5 CV 

of wash buffer 1 (lysis buffer with 20 mM imidazole), and 3 CV of wash buffer 2 (lysis buffer with 50 

mM imidazole). The protein was eluted with elution buffer (lysis buffer with 250 mM imidazole) in four 

1.5 CV elution fractions. The wash and elution fractions were analyzed by SDS-PAGE on Mini-

PROTEN TGX gels run in Tris/glycine/SDS running buffer (Figure S5A). The purest fractions of eluted 

protein were dialyzed at 4 °C against lysis buffer to remove excess imidazole. 

 As an alternative, cleaner and higher-yielding enrichment method, the N-intein could be 

extracted from the insoluble E. coli inclusion bodies as follows. First, the lysate pellet was resuspended 

in 40 mL of Triton wash buffer (lysis buffer with 0.1% Triton X-100) and incubated at room 

temperature for 30 minutes. The Triton wash was centrifuged at 35,000 rcf for 30 minutes, and the 

supernatant was discarded. Next, the pellet was resuspended in 40 mL of lysis buffer containing 6 M 

urea, and the mixture was incubated overnight at 4°C. The mixture was centrifuged at 35,000 rcf for 30 

minutes, and then the supernatant was mixed with 4 mL of NiNTA resin. The Ni column was run 

identically as for the native purifications described above, except that every buffer had a background of 

6 M urea (Figure S5B). Following enrichment over a Ni-NTA column, the protein was refolded into 

lysis buffer (without urea) by step-wise dialysis removal of the urea and excess imidazole at 4°C. It is 

noteworthy that the flow-through from this denaturing Ni column could be reapplied to Ni resin to 

purify even more of the desired protein. 

After enrichment over the Ni-NTA columns, the native or refolded proteins were treated with 10 

mM TCEP and Ulp1 (SUMO-specific protease) overnight at room temperature. The cleavage was 

confirmed by RP-HPLC/MS, after which the reaction solution was incubated with Ni-NTA resin at 

room temperature for 30 min. The flow-through and two 1.5 CV washes with wash buffer 1 were 
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collected and pooled (Figure S6). The protein was then concentrated to 10 mL, treated with 10 mM 

TCEP, injected onto the S75 16/60 gel filtration column, and eluted over 1.35 CV in freshly prepared, 

degassed splicing assay buffer (100 mM sodium phosphate, 150 mM NaCl, 1 mM EDTA, pH 7.2) 

supplemented with 1mM DTT. FPLC fractions were analyzed by SDS-PAGE, and the purest fractions 

were pooled and analyzed by analytical RP-HPLC (Figure S7) and ESI-MS (Table S2). The 

concentration of pure protein was determined by UV A280nm using the calculated extinction coefficient.3 

The N-inteins could be stored at -80 °C after adding buffered glycerol to a final concentration of 20% 

and flash-freezing in liquid N2. 

 

RP-HPLC and ESI-MS analysis of protein trans-splicing 

Prior to any splicing assay, the N-intein solutions were dialyzed against splicing assay buffer 

(100 mM sodium phosphates, 150 mM NaCl, 1 mM EDTA, pH 7.2) containing no thiols overnight at 

4°C. If thiols were present, substantial N-extein cleavage could be observed for reactions with a slow k3, 

however 1 mM DTT had no impact on reactions with k3 > 1.5 x 10-3 s-1
. Note that for reaction 15, even 

in the absence of thiols, some N-extein cleavage was observed due to the extremely slow k3 (see Figure 

S12. N-extein cleavage is characterized by a re-emergence of the starting material, species 1). After 

removing thiols, N-inteins were diluted to 15 µM in assay buffer, C-inteins were diluted to 10 µM, and 

both solutions were treated with 2 mM TCEP. The solutions were incubated at 30 °C for 10 minutes, 

then reactions were initiated by mixing equal volumes of N- and C-inteins and continuing to incubate at 

30 °C. During the reaction, aliquots of the solution were removed and mixed 3:1 (v/v) with quenching 

solution (8 M guanidine hydrochloride and 4% trifluoroacetic acid). 

For RP-HPLC analysis, reactions were typically carried out on a 1.3-1.4 mL scale, where 100 µL 

were removed at each time point and mixed with 33 µL of quenching solution. 100 µL of the quenched 

solutions were separated 0-73% B gradient in 30 minutes on a C18 analytical column, recording 

absorbance at 214 nm (Figure S9). The major peaks were collected and identified by ESI-MS (Table 
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S3). For direct ESI-MS analyses, reactions were typically carried out on a 600 µL scale, where 30 µL 

were removed at each time point and mixed with 10 µL of quenching solution. 20 µL of the quenched 

solutions were desalted using Millipore C18 Zip-Tips as follows. First, the Zip-Tip was wetted by 

aspirating and ejecting 10 µL of dilution buffer (50% acetonitrile, 49.9% H2O, 0.1% formic acid) 5 

times. Next, the tip was equilibrated by aspirating and ejecting 10 µL of wash buffer (99.9% H2O, 0.1% 

formic acid) 5 times. Then, the quenched mixture was loaded onto the Zip-Tip by pipetting 10 µL up 

and down 10 times in a 20 µL aliquot of the time point solution. The salts were washed away by 

aspirating and ejecting 10 µL of wash buffer 7 times. Finally, the proteins were eluted by pipetting up 

and down 10 times in 10 µL of elution buffer (70% acetonitrile, 29.9% H2O, 0.1% formic acid). The 

eluates were diluted 20-fold in dilution buffer and loaded on the mass spectrometer by direct infusion. 

The complex mixture of multiply-charged states of each species were deconvoluted using the Maximum 

Entropy algorithm (Spectrum Square Associates, Ithaca, NY) into spectra depicting a well-defined 

mixture of singly-charged species (Figure S10 and Table S3).  

  

Kinetic analysis of trans-splicing reactions 

 The RP-HPLC and ESI-MS data were quantified to yield reaction progress curves. First, using 

the manufacturer’s analytical software, the peak areas for all relevant chromatographic or mass 

spectrometric peaks were calculated. For RP-HPLC, the relevant peaks came from species 1-5, and for 

ESI-MS, the relevant peaks came from species 1-4 (Figure S8). Then, for each time point in a reaction, 

the area of an individual peak was expressed as a fraction of the total peak area. Reaction progress 

curves for each species were generated by expressing this normalized intensity as a function of time 

(Figures S11 and S12). Note that species 3-5 are all products that irreversibly form after branched 

intermediate resolution (Figures 1 and S1). Since 3 and 5 are direct products of trans-splicing, and 3 

converts into 4 over time: 
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! 

d 3+ 4 + 5[ ]
dt

=
d 3+ 4[ ]
dt

=
d 5[ ]
dt

  

To account for changes in absorbance, in the RP-HPLC reactions, the peak area of the product is 

considered to be the total peak areas 3 + 4 + 5. On the other hand for ESI-MS, based on size and 

composition, we assume that species 1-4 all have similar ionization efficiencies by ESI-MS, whereas 5 

is a small molecule with dramatically different ionization properties. Thus the product from ESI-MS 

reactions is simply 3 + 4. Note that N-intein species (AEY-IntN and IntN) do not separate under any RP-

HPLC conditions tested (not shown), thus they were not used for any quantitative analysis. It is 

noteworthy that the two assay formats gave extremely similar quantitative results (Figure S13). 

 Our data were fit to the simplified three-state kinetic model shown in Figure 3C and below: 

       k1            k3  
Starting Mat. / Linear Int.  Branched Int.  Product  

       1     k2  2             3 + 4 (+ 5) 
 

For each reaction, the normalized reaction progress curves for 1, 2, and 3 + 4 (+ 5) were collectively fit 

to a system of equations that are the analytical solution to the coupled differential rate equations for 

those species: 

€ 

p = k1 + k2 + k3
q = p2 − 4 k1k3( )
a = 1

2 p + q( )
b = 1

2 p − q( )

S /L[ ]( t) = S /L[ ]0
k1 a − k3( )
a a − b( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ e−at +

k1 k3 − b( )
b a − b( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ e−bt
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⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

B[ ]( t) = S /L[ ]0
−k1a
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⎛ 

⎝ 
⎜ 
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⎠ 
⎟ e−at +

k1b
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⎣ 
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⎦ 
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⎠ 
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⎠ 
⎟ e−bt

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
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   (1) 

In these equations, p, q, a, and b are algebraic combinations of rate constants k1, k2, and k3 that simplify 

expression of the rate equations. [S/L] is the normalized intensity of the Starting Material / Linear 
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intermediate (1), [B] is the normalized intensity of the Branched Intermediate (2), and [P] is the 

normalized intensity of the Products (3 + 4 + 5 for RP-HPLC analysis and 3 + 4 for ESI-MS analysis). 

The variable t is the reaction time in seconds, and [S/L]0 can be considered a normalization factor that 

represents the extent of the reaction (the fraction of starting material that gets converted to product). 

The data were fit to equations (1) using the multiple fit function in the Pro Fit data analysis 

software (QuantumSoft, Switzerland). In these fits, k1, k2, k3, and [S/L]0 were allowed to vary, and best-

fit values were identified using the Levenberg-Marquardt algorithm. For all reactions except reaction 15 

(which had significant N-extein cleavage), [S/L]0 was between 0.81 and 0.95. This fitting process was 

independently carried out for individual replicates, and the best-fit values from three or more replicates 

were averaged. These averages and the standard deviation between these replicates are given in Table 1 

of the main text. Finally, the overall rate of splicing (ksplice) was determined by treating product 

formation, 3 + 4 (+ 5), as a single-step first order reaction and fitting those reaction progress curves to 

the following equation: 

€ 

P[ ] t( ) = P[ ]max ⋅ 1− e
−ksplice ⋅t( )        (2)	  

where [P]max is analogous to [S/L]0 from the previous equations. The average and standard deviation for 

ksplice from three independently fit reactions can be found in Table 1 of the main text. 

 There were five exceptions to our general curve-fitting protocol. For reactions 4 and 5, branched 

intermediate resolution was not observed (Figures S11 and S12). Thus, the reactions were treated as an 

equilibrium between two states and the curves for 1 and 2 were simultaneously fit to these equations: 

€ 

S /L[ ](t) =
1

k1 + k2( )
⋅ k2 + k1e

− k1 +k2( ) t( )

B[ ](t) =
k1

k1 + k2( )
⋅ 1− e− k1 +k2( )t( )

      (3) 

For reaction 15, N-extein cleavage caused a re-emergence of starting material 1 (Figure S12), thus the 

equations for the three-state model could not be readily applied for global fitting. Since BI resolution 
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was extraordinarily slow for this reaction, the reaction was comprised of an initial pre-equilibrium step 

and a product formation step that were de-coupled. Thus, the data for 1 and 2 from the first 10 minutes 

of the reaction curve (Figure S11) were fit to the two-state model described by equations (3) to extract k1 

and k2. The data for product accumulation (3 + 4) over the course of the entire reaction (Figure S12), 

were fit to equation (2) to extract ksplice, which we assumed to be equal to k3. The last two exceptions 

were reactions 3 and 13, reactions with the C1A mutation. For these reaction, only C-extein cleavage 

was observed, thus they were treated as a first-order reactions. For reaction 3 the curve for 3 + 4 + 

CFN(NH2) was fit to equation (2). For reaction 13, the curve for 3 + 4 was fit to equation (2). Since 

reaction 13 was extremely slow and did not plateau after a few days, [P]max was constrained to 0.95, 

which was the plateau value for the analogous reaction 3. 

 

Double-mutant cycle analysis of the His125 and Phe+2 interaction 

 Reactions 1, 12, 14, and 15 collectively make up a double-mutant cycle that probes the 

importance of Phe+2 in assisting His125 in intein chemistry. Both His125 and Phe+2 were shown to be 

important for catalysis. In reaction 12, the F+2A mutation demonstrates that the steric bulk of Phe+2 is 

necessary. In reaction 14, the H125N mutation demonstrates that His125 is a proton donor or acceptor 

involved in catalysis. Thus, if the effect of the double mutant in reaction 15 is energetically additive of 

the two individual mutations, the interaction of these two amino acids is not important for protein 

splicing. This can be expressed mathematically as follows. The change in activation energy upon 

mutating a system from state a to state b can be calculated by equation (4): 

    

€ 

ΔΔGa→ b
≠ = −RT ln kb

ka
        (4) 

As defined in Figure S14, state a contains the native His125 and Phe+2 (reaction 1), state b contains His125 

but Ala+2 (reaction 12), state c contains Asn125 and native Phe+2 (reaction 14), and state d is the double-

mutant with Asn125 and Ala+2 (reaction 15). Then, the coupling or interaction energy between His125 and 
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Phe+2  lost upon double mutation that pertains to BI resolution kinetics can be calculated by applying 

equation (4) with k3 for each reaction and equation (5) given below: 

   

€ 

ΔGcoup = ΔΔGa→ b
≠ − ΔΔGc→ d

≠ = ΔΔGa→ c
≠ − ΔΔGb→ d

≠     (5) 

This value is +1.07 kcal/mol for the double-mutant cycle presented herein (Figure S14). 

 

Preparation of complexes for NMR spectroscopy 

 13C,15N-labeled NpuCN137A was expressed analogously to its unlabeled counterpart, except that 

the expression cultures were grown in minimal M9 medium supplemented with 13C-glucose and 

15NH4Cl as the only carbon and nitrogen sources. After expression, the fusion protein was enriched over 

a Ni column, and the thiolysis/ligation to the unlabeled CFN(NH2) and CAN(NH2) peptides was carried 

out as written above. The C-intein constructs were purified and their identities were confirmed by RP-

HPLC and ESI-MS (Figure S7 and Table S2). 

 To prepare the complexes, 1.2 eq of C-intein were added to 10 mL of 35 µM N-intein. The 

complex was treated with 5 mM TCEP for 10 minute at room temperature then injected on a Superdex 

75 16/60 size exclusion column. The complex was eluted over 1.35 CV in NMR buffer (25 mM sodium 

phosphates, 100 mM NaCl, 1 mM DTT, pH 6.5) and separated from excess C-intein (Figure S15). 

Fractions from the size exclusion purification were analyzed by SDS-PAGE on a 12% Bis-Tris gel to 

determine what region of the major chromatographic peak had a constant N-intein to C-intein ration, and 

thus 1:1 stoichiometry (Figure S16). These fractions were pooled and concentrated for NMR analysis. 

 

NMR spectroscopy of split intein complexes 

Typically 250µM samples were used for all NMR experiments in NMR Buffer. NMR 

experiments were carried out at either Varian Inova (600MHz) or Bruker (600, 800 or 900MHz) 

spectrometers equipped with cryogenic probes that can apply pulse field gradients along the z-axis. The 

data were collected at 25 oC and processed by NMRPipe,4 and NMRViewJ was used for the analysis.5 In 
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all constructs the N-intein and N-extein were unlabeled. Only the C-intein was uniformly 15N, 13C 

labeled; the residues comprising the C-terminal extein, CFN(NH2) or CAN(NH2), were chemically 

synthesized using unlabeled amino-acids and ligated to the C-intein using expressed protein ligation. 

 
Resonance Assignments 

The backbone assignments of NpuCN137A with a CFN(NH2) C-extein and in complex with AEY-

NpuNC1A (Figure S17) were done with 15N, 13C labeled fully protonated samples using standard triple 

resonance experiment pairs: HNCO/HN(CA)CO, HNCA/HN(CO)CA, HNCACB/CBCA(CO)NH.6 The 

HNCO/HN(CA)CO pair employed 1024, 42 and 60 complex points recorded with 12.6 ppm, 34 ppm 

and 20 ppm sweep widths in 1H, 15N and 13C dimensions respectively; the HNCA/HN(CO)CA pair used 

1024, 42 and 60 complex points recorded with 12.6 ppm, 34 ppm and 32 ppm sweep widths in 1H, 15N 

and 13C dimensions respectively, and; the HNCACB/CBCA(CO)NH pair employed 1024, 42 and 60 

complex points recorded with 12.6 ppm, 34 ppm and 58 ppm sweep widths in 1H, 15N and 13C 

dimensions respectively.  

Both CFN and CAN constructs of NpuC possess only a single histidine (His125). The imidazole 

ring carbon resonances, Cδ2 and Cε1, were resolved by aromatic 13C,1H HSQC experiments7-9 which 

were run under the same buffer conditions at 25 oC using a 600MHz Bruker spectrometer; the 

experiment employed 1024 and 64 complex points recorded with 12.6 ppm and 30 ppm sweep widths in 

1H and 13C dimensions (Figure 5D in the main text). 

 
Chemical Shift Perturbations: CFN vs. CAN 

15N, 1H HSQC spectra of AEY-NpuNC1A : NpuCN137A(13C,15N)-CFN(NH2) and AEY-NpuNC1A : 

NpuCN137A(13C,15N)-CAN(NH2) complexes were recorded at 25 oC using a 900 MHz Bruker 

spectrometer. The chemical shift perturbations (Δδi) of each assigned residue were calculated using  

equation (6) and can be found in Figure 5C in the main text:  
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€ 

Δδ i = ΔδCFN ,H − ΔδCAN ,H( )i
2

+ 0.11 ΔδCFN ,N − ΔδCAN ,N( )i
2

   (6) 

 
Spin Relaxation Measurements 

Relaxation experiments were run at 900 MHz at 25 oC and the analyses were performed using 

NMRViewJ. Spin-lattice, spin-spin relaxation rates (R1, R2) and 15N-1H NOE measurements of both 

complexes were performed by using standard pulse sequences (Figure S18). R1 and R2 rates were 

measured using recycle delays of 1.5 s and the following relaxation delays were used:  

R1: 10.0, 160, 310, 610 (x2), 760, 910, and 1210 ms  
R2: 0, 16.3, 32.6, 48.9 65.2 (×2), 81.5, and 130.4 ms 

 

All-atom molecular dynamics simulations 

The simulations of DnaE intein from Nostoc punctiforme (NpuDnaE) were carried out using the 

molecular dynamics (MD) software package AMBER11.10,11 The first alternative NMR solution 

structure within PDB 2KEQ was selected.12 The selected fused structure was cut between Asn102 and 

Ile103 to mimic the split form of the intein. The sequence was modified in silico using Chimera13 to 

generate constructs of interest: native Npu with the canonical N-extein (A-3E-2Y-1) and C-extein 

(C+1F+2N+3) sequences, a C-extein variant (C+1A+2N+3), or a D124Y mutation combined with the same 

C-extein mutation. The C-terminal ends of the C-exteins were charge capped using a special C-terminal 

residue, NHE, defined in the AMBER ff99sb force field.14 

For each construct, identical all-atom molecular dynamics (MD) simulations were run. Each 

system was solvated in a box with sides measuring 74 Å, 61|62 Å and 71 Å, charge neutralized with 

sodium ions, and modeled using the AMBER ff99SB force field. The TIP3P force field was used to 

model water.15 We used the SHAKE algorithm to constrain all bonds involving hydrogen atoms.16 An 8 

Å cutoff radius was used for range-limited interactions, utilizing Particle Mesh Ewald electrostatics for 

long-range interactions.17 The initial structures were minimized to clear any steric clashes. Periodic 

boundary with constant volume was used. Harmonic positional restraints of strength 10 kcal/mol/Å2 



	   S19	  

were applied to backbone atoms. After the initial minimization step, each system was heated from 0 K to 

300 K as a function of time over the course of 50 ps using the Langevin thermostat18 with a collision 

frequency of 2 ps while the volume was kept constant. Harmonic positional restraints of strength 2 

kcal/mol/Å2 were used for backbone atoms. Following the heating step, a density equilibration step of 

50ps was performed for each system with constant isotropic pressure of 1 atm. Temperature was 

maintained at 300 K using the Langevin thermostat with 2 ps collision frequency. Harmonic positional 

restraints of strength 2 kcal/mol/Å2 were used for backbone atoms. Prior to the production run, a 

conventional equilibration step of 100 ps was run at 1 atm constant isotropic pressure and 300 K using 

Langevin thermostat with 2 ps collision frequency with relaxation time of 2 ps without any positional 

restraints. The conventional production run for each system was carried out at constant isotropic 

pressure of 1 atm at 300 K maintaining the temperature using a Langevin thermostat with 5 ps collision 

frequency. The relaxation times for barostat and thermostat were set to 2 ps. The simulation time step 

was 1 fs and snap shots were saved at every 5 ps. The distances and dihedral angles were extracted from 

these snap shots over the MD trajectories (Figures S19-S22 and Figure 6 and 7 in the main text). 
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Figures and Tables 
 

 
Figure S1. Mechanism of protein trans-splicing and associated side reactions. 
 
 

 
Figure S2. Sequence alignment of Npu and Ssp. Conserved residues are indicated by their one letter 
code in the middle row, and similar residues are indicated by a +. The key catalytic residues mutated in 
this study are shown in orange, the critical +2 residue is red, and other significant non-catalytic residues 
highlighted in this study are shown in green. For consistency with the NMR structure of Npu (PDB 
2KEQ), the N-terminal methionine of NpuC (shown in italics) is omitted from the numbering scheme. 
This methionine is absent from the SspC-CFN(NH2) construct used in this study (reaction 2). 
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Figure S3. 1H-NMR of synthetic C-extein molecules. A. C(NHCH3) in D2O, B. CF(OCH3) in DMSO-
d6, C. CF(NH2) in DMSO-d6, D. CFN(NH2) in DMSO-d6, E. CFA(NH2) in DMSO-d6, and F. 
CAN(NH2) in DMSO-d6. Note that resonances for residual DMF can be seen in panel A. 
 
Table S1. Expected and observed monoisotopic masses of C-extein peptides. 
Peptide Expected [M+H]+ (Da) Observed [M+H]+ (Da) 

CF(OCH3) 283.11 283.1 

CF(NH2) 268.11 268.1 

CFN(NH2) 382.15 382.2 

CFA(NH2) 339.14 339.1 

CAN(NH2) 306.12 306.1 
 

 
Figure S4. Representative SDS-PAGE of IntC-GyrA-H6 enrichment from cell lysates. The NpuC-
GyrA-H6 protein was expressed in E. coli, and cells were lysed by sonication. The lysates were clarified 
by centrifugation then the soluble fraction (“lysate super”) was loaded on a Ni-NTA column. The flow 
through was collected, then the column was washed with 5 CV of 5 mM imidazole buffer (Wash 1), 5 
CV of 20 mM imidazole buffer (Wash 2), and 3 CV of 50 mM imidazole buffer (Wash 3). The protein 
was eluted with four 1.5 CV washes with 250 mM imidazole buffer (Elutions 1-4), and the Ni resin was 
boiled in gel loading dye after the elution to visualize any residual protein (Beads). 
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Figure S5. Representative SDS-PAGE of H6-SUMO-AEY-IntN enrichment from cell lysates. The 
H6-SUMO-AEY-NpuN fusion was extracted from A. the soluble fraction or B. the insoluble fraction of 
the cell lysate. The indicated fractions were obtained identically as for the NpuC-GyrA-H6 fusion in 
Figure S4. Note that for the urea extraction, additional protein could be recovered by re-passing the 
flow-through over the Ni resin, washing, and eluting as before. 
 

 
Figure S6. Representative analytical RP-HPLC analysis of Ulp1 cleavage to yield AEY-IntN. The 
H6-SUMO-AEY-NpuN protein, extracted from inclusion bodies, was enriched over Ni-NTA resin and 
refolded to yield the “Pre-Ulp1” sample. This was treated with Ulp1 to yield the “Post-Ulp1 - 14hr” 
sample. Finally, this sample was passed over a Ni column, and the flow-through and washes with <20 
mM imidazole were collected to yield the “Post Ni Column” sample. These samples were analyzed on a 
C18 analytical RP-HPLC column at 1 mL/min over a 0-73% B linear gradient in 30 minutes, preceded by 
a 2 minute isocratic phase in 0% B (Solvent A: 99.9% H2O, 0.1% TFA & Solvent B: 90% acetonitrile, 
9.9% H2O, 0.1% TFA). 
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Figure S7. Analytical RP-HPLC analysis of purified proteins. Each purified protein was analyzed on 
a C18 analytical RP-HPLC column at 1 mL/min over a 0-73% B linear gradient in 30 minutes, preceded 
by a 2 minute isocratic phase in 0% B (Solvent A: 99.9% H2O, 0.1% TFA & Solvent B: 90% 
acetonitrile, 9.9% H2O, 0.1% TFA). Note that for the last three chromatographs, corresponding to AEY-
IntN constructs, peaks around 6.5 and 8 minutes correspond to a DTT monomer and disulfide dimer, 
respectively. Additionally, the last chromatograph, for AEY-SspN, shows that this protein smears on the 
C18 column. This was observed irrespective of gradient or sample loading conditions. The sharp peak 
and the trailing region were found to have the same mass by ESI-MS. 
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Table S2. Expected and observed masses of purified proteins. 
Peptide Expected Mass (Da) Observed Mass (Da) 

NpuCWT-C(OH) 4226.19 4226.2 

NpuCWT-C(OCH3) 4240.21 4240.2 

NpuCWT-C(NH2) 4225.21 4225.2 

NpuCWT-C(NHCH3) 4239.23 4239.2 

NpuCWT-CF(OCH3) 4387.28 4387.3 

NpuCWT-CF(NH2) 4372.28 4372.3 

NpuCWT-CFN(NH2) 4486.32 4486.4 

NpuCWT-CFA(NH2) 4443.32 4443.4 

NpuCWT-CAN(NH2) 4410.29 4410.4 

NpuCD124Y-CFN(NH2) 4534.36 4534.4 

NpuCD124Y-CAN(NH2) 4458.33 4458.3 

NpuCH125N-CFN(NH2) 4463.31 4463.3 

NpuCH125N-CAN(NH2) 4387.28 4387.3 

NpuCN137A-CFN(NH2) 4443.32 4443.4 

NpuCN137A(13C,15N)-CFN(NH2) a 4679.76 4675.8 

NpuCN137A(13C,15N)-CAN(NH2) a 4603.73 4599.7 

SspCWT-CFN(NH2) b  4135.25 4135.3 

AEY-NpuN c 12219.79 12219.5 

AEY-NpuNC1A
 c 12187.73 12187.4 

AEY-SspN c 14331.06 14330.6 
a Based on the difference in expected and observed masses, the 13C and 15N isotopic enrichment for these samples is >98%. 
b SspCWT was isolated without its N-terminal methionine due to significant in vivo processing during expression in E. coli. 
c
 The expected and observed masses for the N-intein constructs are the average mass. The expected and observed masses of 
C-intein constructs are the monoisotopic masses. 

 
 

 
Figure S8. Scheme of observable species (1-5) in kinetic assays. Molecule 1 is found before 
association of the split intein fragments, in the precursor complex, and in the linear thioester 
intermediate. Molecule 2 is unique to the branched intermediate state of the trans-splicing reaction. 
Molecules 3-5 are products of trans-splicing. Specifically, molecule 3 comes from the excised intein 
complex, however it slowly hydrolyzes to 4. Spliced product 5 initially exists in a thioester form 
immediately upon intein excision, however this is not detectable, as it rapidly isomerizes to the amide 
form sown in the scheme above. 
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Figure S9. Representative RP-HPLC chromatographs from splicing assays. Reactions 1, 3, 4, 5, 6, 
9, 10, 11, 14, and 16 were analyzed by RP-HPLC. Each time point was analyzed on a C18 analytical RP-
HPLC column at 1 mL/min over a 0-73% B linear gradient in 30 minutes, preceded by a 2 minute 
isocratic phase in 0% B (Solvent A: 99.9% H2O, 0.1% TFA & Solvent B: 90% acetonitrile, 9.9% H2O, 
0.1% TFA). Absorbance was measured at 214 nm. 
 

 
Figure S10. Representative deconvoluted ESI-MS spectra from splicing assays. Reactions 2, 7, 8, 
12, 13, 15, and 17 were analyzed by ESI-MS. Reaction 1 was also analyzed this way for comparison to 
the RP-HPLC assay. 
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Table S3. Expected and observed masses of intermediates and products in splicing assays. 
Molecule Species Relevant Rxns Expected Mass (Da) Observed Mass (Da) 

NpuCWT-CAEYFN(NH2) 2 1 4849.47 4849.7 
SspCWT-CAEYFN(NH2) a 2 2 4498.39 4498.3 

NpuCN137A-CAEYFN(NH2) 2 4 4806.46 4806.5 
NpuCWT-CAEY(OH) 2 5 4589.34 4589.2 

NpuCWT-CAEY(OCH3) 2 6 4603.35 4603.4 
NpuCWT-CAEY(NH2) 2 7 4588.35 4588.2 

NpuCWT-CAEY(NHCH3) 2 8 4602.37 4602.4 
NpuCWT-CAEYF(OCH3) 2 9 4750.42 4750.4 
NpuCWT-CAEYF(NH2) 2 10 4735.42 4735.5 

NpuCWT-CAEYFA(NH2) 2 11 4806.46 4806.5 
NpuCWT-CAEYAN(NH2) 2 12 4773.43 4773.5 

NpuCH125N-CAEYFN(NH2) 2 14 4826.45 4826.4 
NpuCH125N-CAEYAN(NH2) 2 15 4750.42 4750.4 
NpuCD124Y-CAEYFN(NH2) 2 16 4897.50 4897.5 
NpuCD124Y-CAEYAN(NH2) 2 17 4821.47 4821.5 

NpuCWT(succinimide) 3 1, 3, 6-13 4105.18 4105.3 
SspCWT(succinimide) a 3 2 3754.10 3754.1 

NpuCH125N(succinimide) 3 14, 15 4082.16 4082.1 
NpuCD124Y(succinimide) 3 16, 17 4153.21 4153.2 

NpuCWT(OH) 4 1, 3, 6-13 4123.19 4123.2 
SspCWT(OH) a 4 2 3772.11 3772.1 

NpuCH125N(OH) 4 14, 15 4100.17 4100.1 
NpuCD124Y(OH) 4 16, 17 4171.22 4171.3 

AEY-CFN(NH2) b 5 1, 2, 14, 16 745.30 745.3 
AEY-C(OCH3) b 5 6 499.19 499.2 
AEY-C(NH2) b 5 7 484.19  - c 

AEY-C(NHCH3) b 5 8 498.21 498.2 
AEY-CF(OCH3) b 5 9 646.25 646.3 
AEY-CF(NH2) b 5 10 631.25 631.3 

AEY-CFA(NH2) b 5 11 702.29 702.3 
AEY-CAN(NH2) b 5 12, 15, 17 669.27 669.3 

CFN(NH2) d - 3 382.15 382.2 
NpuN e - 1, 4-12, 14-17 11856.42 11856.0 
SspN e - 2 13967.69 13967.1 

a All SspCWT-based molecules do not contain an N-terminal methionine, whereas NpuC-based molecules do. 
b For all reactions, even if RP-HPLC analysis did not yield sufficient separation between species 1-4 for quantification, a 
peak corresponding to the spliced product, 5, was collected and identified by ESI-MS. The expected and observed 
monoisotopic masses for these species correspond to the [M+H]+ ion. 

c While an RP-HPLC peak consistent with the spliced product for reaction 8 was observed (based on rate of appearance and 
retention time), mass spectrometric data could not be obtained to unambiguously identify this peak. 

d This molecule corresponds to the cleaved C-extein in control reaction 3. The expected and observed monoisotopic masses 
for this molecule correspond to the [M+H]+ ion. 

e While the starting material AEY-IntN and the excised IntN species could not be separated by RP-HPLC, their combined 
peak could be collected and analyzed as a mixture by ESI-MS to confirm the presence of extein-free NpuN or SspN. The 
expected and observed masses for these molecules are the average masses. 
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Figure S11. Reaction progress curves for splicing assays: the first ten minutes. Error bars represent 
the standard deviation from three or four independent measurements. The solid lines are reaction 
progress curves generated by plotting the relevant rate equations (see methods section above) with the 
average best-fit values for all fitted kinetic parameters (Table 1, main text). 
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Figure S12. Reaction progress curves for splicing assays: the entire reaction. Error bars represent 
the standard deviation from three or four independent measurements. The solid lines are reaction 
progress curves generated by plotting the relevant rate equations (see methods section above) with the 
average best-fit values for all fitted kinetic parameters (Table 1, main text). Note that for reaction 13, the 
lines for species 1 (black) and 2 (purple) are not fitted curves (see methods section above for details). 
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Figure S13. Comparison of RP-HPLC and ESI-MS splicing assays for Reaction 1. A. Analysis and 
quantification of the same samples from one iteration of reaction 1 by RP-HPLC (first three reaction 
curves) and ESI-MS (second three reaction curves). B. Difference between the normalized peak 
intensities for the RP-HPLC and ESI-MS reactions for each species in the kinetic model. Note that the 
maximal error is roughly 3% and is only that large for the first few time points. 
 

 
Figure S14. Mutant cycle analysis of the His125-Phe+2 interaction’s contribution to splicing. The 
coupling free energy indicates a loss of favorable interaction energy for BI resolution upon mutation of 
His125 and Phe+2. 
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Figure S15. Preparative size-exclusion chromatography of complexes for NMR. Unlabeled AEY-
NpuNC1A was mixed with slight excess of A. NpuCN137A(13C,15N)-CFN(NH2) or B. NpuCN137A(13C,15N)-
CAN(NH2) and purified on a Superdex 75 16/60 preparative gel filtration column (CV = 125 mL). The 
sample was eluted with 1.35 CV of NMR buffer (25 mM sodium phosphates, 100 mM NaCl, 1 mM 
DTT, pH 6.5). 
 

 
Figure S16. SDS-PAGE analysis of complexes for NMR. Eight fractions, equally spaced throughout 
the entire major size-exclusion peak shown in Figure S15, were analyzed by SDS-PAGE. For the 
CFN(NH2) complex, fractions 2-7 had a roughly constant ratio of N- to C-intein (black and magenta, 
respectively). For the CAN(NH2) complex, fractions 1-6 had a roughly constant ratio of N- to C-intein. 
These fractions were pooled for NMR analysis. 
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Figure S17. C-extein dependence in 1H-15N HSQC spectra of labeled NpuC in complex with NpuN. 
C-intein resonances for the complex bearing a CFN(NH2) C-extein are shown in black, and C-intein 
resonances for the complex bearing a CAN(NH2) C-extein are shown in red. Cross-peaks assigned to 
specific backbone amide N-H groups are labeled with that residue number. Note that residues K104, I105, 
A106, and K130 show multiple distinct resonances per residue. This was also true but less dramatic for 
T107, R108, K109, and Y110. The backbone N-H resonances for the N-terminal methionine, along with 
residues D118, V121, E122, R123, N126, N131, S136, and A137 could not be assigned.  
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Figure S18. Relaxation data for complexed NpuC with different C-exteins. A. R1, B. R2, and C. 15N-
1H heteronuclear NOE data are shown for the two complexes. Data for the complex bearing a 
CFN(NH2) C-extein are shown in black, and data for the complex bearing a CAN(NH2) C-extein are 
shown in red. The secondary structure elements are depicted above the graphs as solid blue rectangles, 
and the empty pink rectangles represent residues in loop regions. 
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Figure S19. His125 φ , ψ , χ1, and χ2 dihedral angles in the WT CFN and CAN simulations. A. φ, B. 
ψ, C. χ1, and D. χ2. Trajectories from the simulation with the CFN(NH2) C-extein are shown in black, 
and trajectories from the simulation with the CAN(NH2) C-extein are shown in red. 
 
 
 

 
Figure S20. Distance between His125 and Phe+2/Ala+2 Cβ  atoms in the WT CFN and CAN 
simulations. The trajectory from the simulation with the CFN(NH2) C-extein is shown in black, and the 
trajectory from the simulation with the CAN(NH2) C-extein is shown in red. 
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Figure S21. His125 φ , ψ , χ1, and χ2 dihedral angles in the D124Y CAN simulations. A. φ, B. ψ, C. 
χ1, and D. χ2. 
 

 
Figure S22. Distances measurements in the D124Y CAN simulation. A. His125 Cβ to Asn137 Cβ, B. 
Ile119 NH to Cys+1 NH, and C. His125 Cβ to Ala+2 Cβ 


