Design, Synthesis and Functional Activity of Labeled CD1d Glycolipid Agonists

Peter J. Jervis,^{†‡#} Paolo Polzella,^{§#} Justyna Wojno,^{†‡¶} John-Paul Jukes,[§] Hemza Ghadbane,[§] Yoel R. Garcia Diaz,^{†‡f} Gurdyal S. Besra, [‡]* Vincenzo Cerundolo, [§]* and Liam R. Cox[†]*

[†]School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U. K. [‡]School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U. K. [§]Medical Research Council Human Immunology Unit, Nuffield Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, U. K.

[#]These authors contributed equally to this work

vincenzo.cerundolo@imm.ox.ac.uk; g.besra@bham.ac.uk; l.r.cox@bham.ac.uk

Supporting Information I

$\mathbf{\Omega}$	•	
\mathbf{I} h	m	otru
	21111	SUV

General Experimental	S 5	
Experimental Procedures and compound characterization		
Synthesis of (2S, 3S, 4R)-2-azido-1-O-[2', 3'-O-isopropylidene-L-threitol]-		
3, 4-O-isopropylidene-octadecane-1, 3, 4-triol (25)	S 6	
Synthesis of (2S, 3S, 4R)-2-azido-1-O-[L-threitol]octadecane-1, 3, 4-triol (26)	S 7	
Synthesis of (2S, 3S, 4R)-2-amino-1-O-[L-threitol]octadecane-1, 3, 4-triol (16)	S 7	
Synthesis of $(2R, 5S)$ -2-isopropyl-3, 6-dimethoxy-5-tetracosanyl-2, 5-dihydropyrazine (13a)		
and $(2R, 5R)$ -2-isopropyl-3, 6-dimethoxy-5-tetracosanyl-2, 5-dihydropyrazine (13b)	S 8	
Synthesis of (2S)-methyl 2-aminohexacosanoate (14)	S 9	
Synthesis of (2S)-methyl 2-azidohexacosanoate	S10	
Synthesis of (2S)-2-azidohexacosanoic acid [(S)-15]	S 11	
Synthesis of (2S, 3S, 4R, 2''S)-2-[2''-azidohexacosanoylamino]-1-O-[L-threitol]		
octadecane-1, 3, 4-triol [(S)-17]	S 11	
Synthesis of 3-(2'-(2''-(2'''-amide-D-biotin-ethoxy)ethoxy)ethoxy)prop-1-yne (18)	S12	
Synthesis of (2''S)-biotinylated ThrCer [(S)-10]	S 13	
Synthesis of (rac)-2-azidohexacosanoic acid (rac-15)	S15	
Synthesis of (2S, 3S, 4R, 2"R,S)-2-[2"-azidohexacosanoylamino]-1-O-[L-threitol]		
octadecane-1, 3, 4-triol (17) (1:1 mixture of epimers, epimeric at C(2''))	S16	
Synthesis of biotinylated ThrCer (10) [1:1 mixture of epimers, epimeric at C(2'')]	S17	
Synthesis of labeled glycolipid 11	S19	
Synthesis of (2R, 5S, 9'Z, 12'Z)-isopropyl-3, 6-dimethoxy-5-(octadeca-9', 12'-dienyl)		
-2, 5-dihydropyrazine (27)	S20	

S5

Synthesis of (2S, 11Z, 14Z)-methyl 2-aminoeicosa-(11, 14)-dienoate (28)	S21
Synthesis of (2S, 11Z, 14Z)-methyl 2-azidoeicosa-(11, 14)-dienoate (29)	S22
Synthesis of (2S, 11Z, 14Z)-2-azidoeicosa-(11, 14)-dienoic acid (30)	S23
Synthesis of α -D-galactopyranosyl-1- <i>O</i> -phytosphingosine (20)	S24
Synthesis of (2S, 3S, 4R, 2'S, 11'Z, 14'Z)-2-[2'-azidoeicosa-(11', 14')-dienoylamino]-1-O-	
$[\alpha$ -D-galactopyranose]octadecane-1, 3, 4-triol (22)	S24
Synthesis of Fluor 488-labeled α -GalCer (11) [1:1, mixture of regioisomers in the label]	S26
References	S27
Statistical analysis of data summarized in Figure 3	S28
Supporting Information II Scanned Spectra	S29
Scanned NMR spectra for (2S, 3S, 4R)-2-azido-1-O-[2', 3'-O-isopropylidene-L-threitol]-	
3, 4-O-isopropylidene-octadecane-1, 3, 4-triol (25)	S 30
Scanned NMR spectra for $(2S, 3S, 4R)$ -2-azido-1- O -[L-threitol]	
octadecane-1, 3, 4-triol (26)	S32
Scanned NMR spectra for $(2R, 5S)$ -2-isopropyl-3, 6-dimethoxy-5-tetracosanyl-	
2, 5-dihydropyrazine (13a)	S 34
Scanned NMR spectra for $(2R, 5R)$ -2-isopropyl-3, 6-dimethoxy-5-tetracosanyl-	
2, 5-dihydropyrazine (13b)	S36
Scanned NMR spectra for (2S)-methyl 2-aminohexacosanoate (14)	S38
Scanned NMR spectra for (2S)-methyl 2-azidohexacosanoate	S40
Scanned NMR spectra for (2S)-2-azidohexacosanoic acid [(S)-15]	S42
Scanned NMR spectra for (rac)-2-bromohexacosanoic acid	S44

Scanned NMR spectra for (2 <i>S</i> , 3 <i>S</i> , 4 <i>R</i> , 2'' <i>S</i>)-2-[2''-azidohexacosanoylamino]-1- <i>O</i> -[L-threitol]	
octadecane-1, 3, 4-triol $[(S)-17]$ + comparison with epimeric mixture	S46
Supporting Information III Scanned Spectra	S48
Scanned NMR spectra for 3-(2'-(2''-(2'''-amide-D-biotin-ethoxy)ethoxy)ethoxy)	
prop-1-yne (18)	S49
Scanned NMR spectra for (2" <i>R</i>)-biotinylated ThrCer [(<i>R</i>)-10]	\$ 53
Scanned Mass Spectrum for (2"R)-biotinylated ThrCer [(R)-10]	S71
Supporting Information IV Scanned Spectra	S73
Scanned NMR spectra for (2''S)-biotinylated ThrCer [(S)-10] and	
comparison of $[(S)-10]$ with $[(R)-10]$ and epimeric mixture	S74
Scanned Mass Spectrum for (2''S)-biotinylated ThrCer [(S)-10]	S92
Supporting Information V Scanned Spectra	S94
Scanned NMR spectra for (2R, 5S, 9'Z, 12'Z)-isopropyl-3, 6-dimethoxy-5-	
(octadeca-9', 12'-dienyl)-2, 5-dihydropyrazine (27)	S 95
Scanned NMR spectra for (2S, 11Z, 14Z)-methyl 2-aminoeicosa-(11, 14)-dienoate (28)	S97
Scanned NMR spectra for (2S, 11Z, 14Z)-methyl 2-azidoeicosa-(11, 14)-dienoate (29)	S99
Scanned NMR spectra for (2S, 11Z, 14Z)-2-azidoeicosa-(11, 14)-dienoic acid (30)	S101
Scanned NMR spectra for (2S, 3S, 4R, 2'S, 11'Z, 14'Z)-2-[2'-azidoeicosa-	
(11', 14')-dienoylamino]-1- O -[α -D-galactopyranose]octadecane-1, 3, 4-triol (22)	S103
Scanned NMR spectra for Fluor 488-labeled α -GalCer (11)	
[1:1, mixture of regioisomers in the label]	S107

Chemistry

General Experimental

Melting points were determined using open capillaries and are uncorrected. Infrared spectra were recorded either neat or as thin films between NaCl discs. The intensity of each band is described as s (strong), m (medium) or w (weak), and with the prefix v (very) and suffix br (broad) where appropriate. ¹H-NMR spectra were recorded at 500 MHz, 400 MHz, or 300 MHz. ¹³C-NMR spectra were recorded at 125 MHz, 100 MHz, or 75 MHz. Chemical shifts are reported as δ values (ppm) referenced to the following solvent signals: CHCl₃, δ_{H} 7.26; CDCl₃, δ_{C} 77.0; CH₃OH, δ_{H} 3.34; CD₃OD, δ_{C} 49.9. The term "stack" is used to describe a region where resonances arising from non-equivalent nuclei are coincident, and multiplet, m, to describe a resonance arising from a single nucleus (or equivalent nuclei) but where coupling constants cannot be readily assigned. Mass spectra were recorded utilizing electrospray ionization (and a MeOH mobile phase), and are reported as (*m*/*z* (%)). HRMS were recorded using a lock mass incorporated into the mobile phase.

All reagents were obtained from commercial sources and used without further purification unless stated otherwise. Anhydrous solvents were stored over 4 Å molecular sieves and under an Ar atmosphere. All solutions are aqueous and saturated unless stated otherwise.

All reactions were monitored by TLC using pre-coated aluminum-backed ICN silica plates (60A F_{254}) and visualized by UV detection (at 254 nm) and staining with 5% phosphomolybdic acid in EtOH (MPA spray). Column chromatography was performed on silica gel (particle size 40-63 µm mesh).

Experimental Procedures and compound characterization

Synthesis of Amine 16:

(2S, 3S, 4R)-2-Azido-1-O-[2', 3'-O-isopropylidene-L-threitol]-3, 4-O-isopropylidene-octadecane-1, 3, 4-triol (25)

Bu₄NF (1.0 M solution in THF, 1.1 mL, 1.1 mmol) was added to a solution of silyl ether **24**^[1] (750 mg, 0.98 mmol) in THF (10 mL) at r.t. After 4 h, NH₄Cl solution (10 mL) was added. The phases were separated and the aqueous phase was extracted with CH₂Cl₂ (3 × 10 mL). The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (25% EtOAc in hexanes) to provide alcohol **25** as a colorless oil (490 mg, 95%); $R_f = 0.35$ (30% EtOAc in hexane); $[\alpha]_D^{21} = 22.0$ (*c* 1, CHCl₃); v_{max} (film) / cm⁻¹ 3487br (O–H), 2098s (N₃); δ_H (300 MHz, CDCl₃) 0.87 (t, *J* 6.2, 3H), 1.22–1.34 (stack, 25H), 1.40–1.45 (stack, 9H), 1.46–1.65 (stack, 4H), 1.99 (dd, *J* 7.8, 4.8, 1H), 3.51–4.18 (broad stack, 11H); δ_C (100 MHz, CDCl₃) 14.1 (CH₃), 22.7 (CH₂), 25.6 (CH₃), 26.4 (CH₂), 27.0 (CH₃, resonance overlap), 28.1 (CH₃), [29.4, 29.6 (CH₂, some resonance overlap)], 31.9

(CH₂), 59.9 (CH), 62.3 (CH₂), 71.9 (CH₂), 72.9 (CH₂), 75.6 (CH), 76.0 (CH), 77.8 (CH), 79.4 (CH), 108.3 (C), 109.4 (C); MS (TOF ES+) m/z 550.5 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for C₂₈H₅₃N₃O₆Na [M + Na]⁺ 550.3832, found 550.3853.

(2S, 3S, 4R)-2-Azido-1-O-[L-threitol]octadecane-1, 3, 4-triol (26)

TFA (2.00 mL) was added over 1 min to alcohol **25** (400 mg, 0.76 mmol). After stirring for 1 h at r.t., the reaction mixture was concentrated under reduced pressure and the residual TFA was removed by co-evaporation with Et₂O (3 × 10 mL) to provide crude pentaol **26** as a white solid (315 mg, quant.), which was sufficiently pure to be used in the next step without further purification; $R_f = 0.23$ (10% MeOH in CHCl₃); $[\alpha]_D^{21} = +29.2$ (*c* 1, CHCl₃); v_{max} (film) / cm⁻¹ 3306s br (O–H), 2095s (N₃); δ_H (300 MHz, CDCl₃) 0.85 (t, *J* 6.6, 3H), 1.13–1.41 (stack, 24H), 1.44–1.70 (stack, 2H), 3.52–3.70 (stack, 8H), 3.71–3.91 (stack, 3H), exchangeable hydrogens not observed; δ_C (100 MHz, CDCl₃) 14.3 (CH₃), 23.1 (CH₂), 26.2 (CH₂), [29.8, 30.1, 32.6, 32.7 (CH₂, some resonance overlap)], 62.6 (CH), 63.9 (CH₂), 70.7 (CH), 71.2 (CH₂), 72.2 (CH), 72.3 (CH), 73.0 (CH₂), 74.5 (CH); MS (TOF ES+) *m/z* 470.1 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for C₂₂H₄₅N₃NaO₆ [M + Na]⁺ 470.3206, found 470.3197.

(2S, 3S, 4R)-2-Amino-1-O-[L-threitol]octadecane-1, 3, 4-triol (16)

 PMe_3 (0.29 mL of a 1.0 M solution in THF, 0.29 mmol) was added dropwise over 5 min to a solution of azide **26** (100 mg, 0.24 mmol) in THF/H₂O (3 mL, 15:1). The reaction mixture was stirred at r.t. for 4 h and then concentrated under reduced pressure. The residual H₂O was removed by co-evaporation

with toluene $(3 \times 10 \text{ mL})$ to provide amine **16** as a white solid (88 mg, 94%), which was used directly in the next step without further purification.

(2*R*, 5*S*)-2-Isopropyl-3, 6-dimethoxy-5-tetracosanyl-2, 5-dihydropyrazine (13a) and (2*R*, 5*R*)-2isopropyl-3, 6-dimethoxy-5-tetracosanyl-2, 5-dihydropyrazine (13b)

A solution of BuLi (2.5 M in hexane, 52 µL, 0.13 mmol) was added dropwise over 1 min to a stirred solution of commercially available (2*R*)-2-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine **12** (23 µL, 0.13 mmol) in THF (1 mL) at –78 °C. Stirring was continued at this temperature for 45 min before a solution of 1-iodotetracosane^[2] (60 mg, 0.13 mmol) in THF (1 mL) was added over 5 min. The reaction mixture was then stirred for 24 h, slowly warming to r.t. The reaction was quenched by the addition of NH₄Cl solution (5 mL) and EtOAc (5 mL) and the phases were separated. The aqueous phase was extracted with EtOAc (3 × 5 mL) and the combined organic extracts were washed with brine (20 mL), dried (MgSO₄), filtered and concentrated under reduced pressure to afford a mixture of dihydropyrazine diastereoisomers ((2*R*, 5*S*)-diastereoisomer (**13a**) : (2*R*, 5*R*)-diastereoisomer (**13b**), 15:1). Purification of this mixture by flash column chromatography (3% EtOAc in hexane) afforded, in order of elution, the major (2*R*, 5*S*)-dihydropyrazine, **13a**, as a white solid (60 mg, 87%); *R_f* = 0.29 (3% EtOAc in hexane); $[\alpha]_D^{21} = -2.3$ (*c* 1, CHCl₃); mp 78 – 79 °C; v_{max} (film) / cm⁻¹ 1694s (C=N); δ_{H} (300 MHz, CDCl₃) 0.68 (d, *J* 6.9, 3H), 0.88 (t, *J* 6.8, 3H), 1.05 (d, *J* 6.9, 3H), 1.17–1.40 (stack, 44H), 1.61–

1.86 (stack, 2H), 2.27 (septet of doublets, *J* 6.9, 3.3, 1H), 3.68 (s, 3H), 3.69 (s, 3H), 3.93 (app. t, *J* 3.3, 1H), 4.03 (dt, *J* 5.7, 3.3, 1H); $\delta_{c}(100 \text{ MHz}, \text{CDCl}_{3})$ 14.1 (CH₃), 16.5 (CH₃), 19.1 (CH₃), 19.1 (CH₂), 22.7 (CH₂), 24.4 (CH₂), [29.4, 29.5, 29.6, 29.7, 31.9, 34.1 (CH₂, some resonance overlap)], 31.6 (CH), 52.28 (CH₃), 52.33 (CH₃), 55.5 (CH), 66.7 (CH), 163.4 (C), 164.0 (C); MS (TOF ES+) *m/z* 521.5 ([M + H]⁺, 100%); HRMS (TOF ES+) calcd for C₃₃H₆₅N₂O₂ [M + H]⁺ 521.5046, found 521.5050; and then the minor (2*R*, 5*R*)-dihydropyrazine, **13b**, as a white solid (4 mg, 6%); *R_f* = 0.24 (3% EtOAc in hexane); $[\alpha]_D^{21} = -12.7$ (*c* 1, CHCl₃); mp 74 – 75 °C; ν_{max} (film) / cm⁻¹ 1694s (C=N); δ_H (300 MHz, CDCl₃) 0.74 (d, *J* 6.9, 3H), 0.88 (t, *J* 6.8, 3H), 1.06 (d, *J* 6.9, 3H), 1.18–1.36 (stack, 42H), 1.37–1.52 (stack, 3H), 1.81–1.90 (m, 1H), 2.21 (septet of doublets, *J* 6.9, 3.0, 1H), 3.68 (s, 6H), 3.90–4.12 (stack, 2H); δ_c (100 MHz, CDCl₃) 14.1 (CH₃), 17.6 (CH₃), 19.6 (CH₃), 22.7 (CH₂), 26.1 (CH₂), [29.4, 29.5, 29.7, 31.9, 36.6 (CH₂, some resonance overlap)], 31.5 (CH), 52.4 (CH₃, resonance overlap), 55.8 (CH), 60.9 (CH), quaternary carbon resonances were not observed; MS (TOF ES+) *m/z* 521.5 ([M + H]⁺, 100%); HRMS (TOF ES+) calcd for C₃₃H₆₅N₂O₂ [M + H]⁺ 521.5048.

(2S)-Methyl 2-aminohexacosanoate (14)

Hydrochloric acid (0.64 mL, 1.0 M solution, 0.64 mmol) was added to a vigorously stirred solution of dihydropyrazine **13a** (55 mg, 0.105 mmol) in THF (2 mL) at r.t. After 4 h, the mixture was cooled to 0 °C and quenched with NaOH solution (0.32 mL, 2.0 M solution, 0.64 mmol). EtOAc (5 mL) and H₂O (5 mL) were added and the phases were separated. The aqueous phase was extracted with EtOAc (3 × 5 mL). The combined organic extracts were washed with brine (20 mL), dried (MgSO₄), filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (5% MeOH in CHCl₃) to afford amino ester **14** as a white solid (32 mg, 72%); $R_f = 0.22$ (5% MeOH in

CHCl₃); $[\alpha]_D^{21} = +24.3$ (*c* 1, CHCl₃); mp 95 – 97 °C; v_{max} (film) / cm⁻¹ 3370s br (NH₂), 1746s (C=O); δ_H (300 MHz, CDCl₃) 0.86 (t, *J* 6.6, 3H), 1.15–1.42 (stack, 44H), 1.49–1.62 (m, 1H), 1.51–1.78 (m, 1H), 3.43 (dd, *J* 7.2, 5.4, 1H), 3.71 (s, 3H); δ_C (100 MHz, CDCl₃) 14.1 (CH₃), 22.7 (CH₂), 25.6 (CH₂), [29.37, 29.44, 29.5, 29.7, 31.9, 35.0 (CH₂, some resonance overlap)], 51.8 (CH₃), 54.5 (CH), 176.7 (C); MS (TOF ES+) *m*/*z* 426.4 ([M + H]⁺, 100%); HRMS (TOF ES+) calcd for C₂₇H₅₆NO₂ [M + H]⁺ 426.4311, found 426.4313.

(2S)-Methyl 2-azidohexacosanoate

Amino ester **14** (32 mg, 0.075 mmol) was dissolved in MeOH/CH₂Cl₂/H₂O (4 mL, 2:1:1). K₂CO₃ (79 mg, 0.74 mmol), CuSO₄ (168 µg, 1.1 µmol) and imidazole-1-sulfonyl azide^[3] (88 mg, 0.42 mmol) were added sequentially. The reaction mixture was stirred overnight and then diluted with EtOAc (15 mL) and H₂O (15 mL). The phases were separated and the aqueous phase was extracted with EtOAc (3 × 15 mL). The combined organic extracts were washed with brine (60 mL), dried (MgSO₄), filtered and concentrated under reduced pressure. Purification of the residue by flash column chromatography (3% EtOAc in hexane) provided (2*S*)-methyl 2-azidohexacosanoate as a white solid (26 mg, 77%); R_f = 0.27 (3% EtOAc in hexane); $[\alpha]_D^{21}$ = +17.8 (*c* 1, CHCl₃); mp 69 – 70 °C; v_{max} (film) / cm⁻¹ 2106s (N₃), 1745s (C=O); δ_H (300 MHz, CDCl₃) 0.88 (t, *J* 6.6, 3H), 1.16–1.49 (stack, 44H), 1.68–1.90 (stack, 2H), 3.79 (s, 3H), 3.80–3.86 (m, 1H); δ_C (100 MHz, CDCl₃) 14.1 (CH₃), 22.7 (CH₂), 25.7 (CH₂), [29.0, 29.3, 29.5, 29.7, 31.4, 31.9 (CH₂, some resonance overlap)], 52.5 (CH₃), 62.0 (CH), 171.2 (C); MS (TOF ES+) *m/z* 474.4 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for C₂₇H₅₃N₃NaO₂ [M + Na]⁺ 474.4035, found 474.4031.

(2S)-2-Azidohexacosanoic acid [(S)-15]

LiOH·H₂O (9.2 mg, 0.22 mmol) was added to a vigorously stirred solution of (2S)-methyl 2azidohexacosanoate (25 mg, 0.055 mmol) in THF/H₂O (1:1, 2 mL) at r.t. After stirring for 1 h, the mixture was cooled to 0 °C and quenched by the addition of hydrochloric acid (10 mL, 0.5 M solution). EtOAc (10 mL) was added and the phases were separated. The aqueous phase was extracted with EtOAc (3 × 10 mL) and the combined organic phases were washed with brine (40 mL), dried (MgSO₄), filtered and concentrated under reduced pressure. Purification of the residue by flash column chromatography (60% EtOAc in hexane) afforded carboxylic acid (S)-15 as a white solid (22 mg, 93%); $R_f = 0.2$ (30% EtOAc in hexane); $[\alpha]_D^{21} = -15.5$ (*c* 1, CHCl₃); mp 77 – 78 °C; v_{max} (neat) / cm⁻¹ 3300-2600w v br (O–H), 2124m (N₃), 1717m (C=O); $\delta_{\rm H}$ (300 MHz, CDCl₃) 0.88 (t, *J* 6.9, 3H), 1.19– 1.40 (stack, 41H), 1.41–1.54 (stack, 3H), 1.72–1.96 (stack, 2H), 3.89 (dd, *J* 8.3, 5.2, 1H), OH resonance not observed; δ_C (100 MHz, CDCl₃) 14.1 (CH₃), 22.7 (CH₂), 25.7 (CH₂), 29.1 (CH₂), [29.4, 29.5, 29.7 (CH₂, significant resonance overlap)], 31.3 (CH₂), 32.0 (CH₂), 61.9 (CH), 176.6 (C); MS (TOF ES–) *m/z* 436.4 ([M – H]⁻, 100%); HRMS (TOF ES–) calcd for C₂₆H₅₀N₃O₂ [M – H]⁻ 436.3903, found 436.3920.

(2S, 3S, 4R, 2"S)-2-[2"-Azidohexacosanoylamino]-1-O-[L-threitol]octadecane-1, 3, 4-triol [(S)-17]

A solution of azido acid (S)-15 (20 mg, 0.046 mmol) in $(COCl)_2$ (1.00 mL) was stirred at 70 °C for 2 h, after which time, the solution was cooled to r.t, and the $(COCl)_2$ was removed under a stream of dry argon. The residual volatiles were removed under reduced pressure. The resulting crude acyl chloride was dissolved in THF (1 mL) and added, with vigorous stirring, to a solution of amine 16 (18 mg,

0.046 mmol) in THF / NaOAc_(aq) (8 M) (2 mL, 1:1). Vigorous stirring was maintained for 2 h, after which time, the mixture was left to stand and the phases were separated. The aqueous phase was extracted with THF (2 × 1 mL), and the combined organic phases were evaporated under reduced pressure. Purification of the residue by flash column chromatography (10% MeOH in CHCl₃) afforded amide (*S*)-17 as a white solid (29 mg, 74%); $R_f = 0.30$ (10% MeOH in CHCl₃); the poor solubility of this amphiphilic compound at r.t. prevented us from obtaining reliable optical rotation data; mp 109 – 111 °C; v_{max} (film) / cm⁻¹ 3305br m (O–H, N–H), 2103m (N₃), 1653m (C=O); δ_{H} (300 MHz, CDCl₃/CD₃OD, 2:1) 0.84 (t, *J* 6.9, 6H), 1.17–1.44 (stack, 70H), 1.71–1.89 (stack, 2H), 3.47–3.64 (stack, 8H), 3.68–3.83 (stack, 3H), 4.18 (app. q, *J* 4.4, 1H), 7.69 (d, *J* 9.0, 1H), OHs not observed; δ_{c} (100 MHz, CDCl₃/CD₃OD, 2:1) 14.2 (CH₃), 23.0 (CH₂), 25.9 (CH₂), 26.2 (CH₂), [29.6, 29.7, 29.8, 30.0, 32.2, 32.9 (CH₂, some resonance overlap)], 50.5 (CH), 63.8 (CH₂), 63.9 (CH), 70.5 (CH₂), 70.6 (CH), 72.2 (CH), 72.6 (CH), 73.2 (CH₂), 74.9 (CH), 170.8 (C); MS (TOF ES+) *m*/*z* 864.0 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for C₄₈H₉₆N₄NaO₇ [M + Na]⁺ 863.7177, found 863.7213.

3-(2'-(2''-(2'''-Amide-D-biotin-ethoxy)ethoxy)prop-1-yne (18)

PMe₃ (0.34 mL of a 1.0 M solution in THF, 0.34 mmol) was added dropwise over 5 min to a solution of $3-(2'-(2''-(2''-azidoethoxy)ethoxy)ethoxy)prop-1-yne^{[4]}$ (60 mg, 0.28 mmol) in THF/H₂O (3 mL, 15:1). The reaction mixture was stirred at r.t. for 4 h and then concentrated under reduced pressure.

The residual H_2O was removed by co-evaporation with toluene (3 x 10 mL) to provide the corresponding amine as a white solid. The crude amine was dissolved in DMF (3 mL) before (+)biotin N-hydroxysuccinimide ester (96 mg, 0.28 mmol) was added. The reaction mixture was stirred for 12 h at r.t. and then the volatiles were removed under reduced pressure. Purification of the residue by flash column chromatography (5% MeOH in CHCl₃) provided the amide **18** as a colorless paste (90 mg, 78%); $R_f = 0.36$ (5% MeOH in CHCl₃); v_{max} (film) / cm⁻¹ 3306s (N-H / \equiv C-H), 2251w (C \equiv C), 1701s (C=O), 1654m (C=O); $\delta_{\rm H}$ (500 MHz, CDCl₃) 1.38 (app. quintet, J 7.2, 2H, C(13)H₂), 1.57–1.73 (stack, 4H, C(14)H₂, C(12)H₂), 2.17 (t, J 7.6, 2H, C(11)H₂), 2.43 (t, J 2.2, 1H, C(1)H), 2.68 (app. d, J 12.7, 1H, C(18) H_aH_b), 2.84 (dd, J 12.7, 4.8, 1H, C(18) H_aH_b), 3.08–3.15 (m, 1H, C(15)H), 3.37–3.41 $(m, 2H, C(9)H_2), 3.51 (t, J 5.1, 2H, C(8)H_2), 3.56-3.59 (stack, 4H, C(6)H_2, C(7)H_2), 3.60-3.65 (stack, 4H, C(6)H_2), 3.60-3.65 (stack,$ 4H, C(5)H₂, C(4)H₂), 4.14 (d, J 2.2, 2H, C(3)H₂), 4.24–4.26 (m, 1H, C(16)H), 4.43–4.46 (m, 1H, C(17)H, 6.05 (s, 1H, C(17)NH), 6.81 (s, 1H, C(16)NH), 6.85 (t, J 5.4, 1H, C(9)NH); $\delta_{C}(125 \text{ MHz})$, CDCl₃) 25.5 (CH₂, C(12)), 28.0 (CH₂, C(14)), 28.2 (CH₂, C(13)), 35.8 (CH₂, C(11)), 39.0 (CH₂, C(9)), 40.4 (CH₂, C(18)), 55.6 (CH, C(15)), 58.2 (CH₂, C(3)), 60.1 (CH, C(17)), 61.6 (CH, C(16)), 68.9 (CH₂, *C*(4)), 69.8 (CH₂, *C*(8)), 69.9 (CH₂, *C*(7)), 70.1 (CH₂, *C*(5)), 70.2 (CH₂, *C*(6)), 74.6 (CH, *C*(1)), 79.4 (C, *C*(2)), 164.2 (C, NH*C*=ONH), 173.3 (C, *C*(10)); MS (TOF ES+) *m*/*z* 436.1 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for $C_{19}H_{31}N_3NaO_5S$ [M+Na]⁺ 436.1882, found 436.1869.

(2"S)-Biotinylated ThrCer [(S)-10]

CuSO₄ solution (12 μ L of a 0.5 M solution, 6 μ mol) and sodium ascorbate solution (26 μ L of a 1.0 M solution, 26 μ mol) were added to a solution of azide (*S*)-17 (25 mg, 0.029 mmol) and alkyne 18 (13 mg, 0.029 mmol) in *t*-BuOH/H₂O (1 mL, 1:1) at r.t. The reaction mixture was heated for 10 h at 50 °C

and then diluted with CHCl₃ (10 mL), and washed with brine (3 mL). The phases were separated and the aqueous layer was extracted with $CHCl_3$ (2 × 5 mL). The combined organic layers were dried over Na₂SO₄ and the volatiles were removed under reduced pressure. Purification of the residue by flash column chromatography (10% MeOH in CHCl₃) afforded triazole (S)-10 as a white paste (28 mg, 77%); $R_f = 0.20$ (10% CH₃OH in CHCl₃); the poor solubility of this amphiphilic compound at r.t. prevented us from obtaining reliable optical rotation data; v_{max} (film) / cm⁻¹ 3332br (O–H, N–H), 1672s (C=O); $\delta_{\rm H}(500 \text{ MHz}, \text{CDCl}_3/\text{CD}_3\text{OD}, 2:1) 0.84$ (t, J 6.9, 6H, 2 × CH₂CH₃), 1.17–1.36 (stack, 70H), 1.38–1.46 (stack, 2H), 1.52–1.75 (stack, 4H, C(12'') H_2 (middle of stack), C(14'') H_aH_b (LHS of stack), $C(14'')H_aH_b$ (RHS of stack)), 2.01–2.09 (stack, 1H, C(3'')H_aH_b), 2.10–2.22 (stack, 3H, C(3'')H_aH_b), $C(11'')H_2$, 2.71 (d, J 12.8, 1H, $C(18'')H_aH_b$), 2.89 (dd, J 12.8, 5.0, 1H, $C(18'')H_aH_b$), 3.13–3.19 (m, 1H, C(15'')H), 3.33–3.38 (stack, 2H, C(9'')H₂), 3.47–3.71 (stack, 18H, including C(1)H_aH_b, $C(4''')H_2$, 3.73 (dd, J 10.0, 5.0, 1H, $C(1)H_aH_b$), 3.75–3.79 (m, 1H), 4.17–4.22 (m, 1H, C(2)H), 4.30 (d, J 7.8, 4.3, 1H, C(16'")H), 4.48 (dd, J 7.8, 4.8, 1H, C(17'")H), 4.65 (s, 2H, C(3'")H₂), 5.27 (dd, J 8.5, 6.5, 1H, C(2")H), 7.99 (s, 1H, C(1")H), exchangeable hydrogens not observed; $\delta_{\rm C}(125 \text{ MHz})$, CDCl₃/CD₃OD, 2:1) 14.3 (CH₃, C(18), C(26") (resonance overlap)), 23.2 (CH₂), 26.1 (CH₂, C(12"")), 26.2 (CH₂), 26.4 (CH₂), 28.8 (CH₂, C(14''')), [29.1, 29.5, 29.87, 29.90, 30.1, 30.19, 30.22, 32.5 (CH₂, alkyl chain, some resonance overlap)], 36.2 (CH₂, C(11")), 39.8 (CH₂, C(9")), 40.8 (CH₂, C(18")), 51.3 (CH, C(2)), 56.3 (CH, C(15")), 60.9 (CH, C(17")), 62.6 (CH, C(16")), 63.9 (CH₂, C(4')), 64.7 (CH, C(2")), 64.8 (CH₂, C(3"")), 70.17 (CH₂, C(4"")), 70.24 (CH₂), 70.5 (CH₂), 70.6 (CH₂), 70.8 (CH), 70.99 (CH₂), 71.03 (CH₂), 72.5 (CH), 72.8 (CH), 73.4 (CH₂, C(1')), 75.0 (CH, C(3)), 123.3 (CH, C(1")), 145.3 (C, C(2")), 165.1 (C, NHC=ONH), 169.1 (C, C(1")), 175.2 (C, C(10")); MS (TOF ES+) m/z 1276.8 ([M + Na]⁺, 100%), 649.9 (7), 398.1 (5); HRMS (TOF ES+) calcd for $C_{67}H_{127}N_7O_{12}SNa [M + Na]^+ 1276.9161$, found 1276.9166.

(rac)-2-Azidohexacosanoic acid (rac-15)

A mixture of hexacosanoic acid (600 mg, 1.51 mmol) and red phosphorus (47 mg, 1.5 mmol) was heated to 95 °C and Br₂ (270 µL, 5.29 mmol) was added dropwise over 2 min at this temperature with stirring. The mixture was stirred for 6 h and then cooled to r.t., diluted with Et₂O (30 mL) and washed with H₂O (30 mL). The aqueous phase was extracted with Et₂O (2 × 30 mL), and the combined organic fractions were washed with brine (10 mL), dried with MgSO₄, filtered and the solvent was removed under reduced pressure to yield 2-bromohexacosanoic acid as a white solid, which was recrystallized from hexane (481 mg, 67%); $R_f = 0.35$ (30% EtOAc in hexane); mp 73 – 74 °C (from hexane); v_{max} (film) / cm⁻¹ 3300–2600w v br (O–H), 1715m (C=O), 1697s (C=O); δ_{H} (300 MHz, CDCl₃) 0.88 (t, *J* 6.8, 3H), 1.21–1.33 (stack, 44H), 1.95–2.21 (m, 2H), 4.24 (app t, *J* 7.6, 1H), O*H* not observed; δ_{C} (100 MHz, CDCl₃) 14.1 (CH₃), 22.7 (CH₂), 27.2 (CH₂), 28.8 (CH₂), [29.3, 29.4, 29.5, 29.7, 29.8 (CH₂, resonance overlap)], 32.0 (CH₂), 34.7 (CH₂), 45.4 (CH), 176.0 (C); MS (TOF ES–) *m/z* 475.3 ([M(⁸¹Br isotopomer) – H]⁻, 100%), 473.3 (100, [M(⁷⁹Br isotopomer) – H]⁻); HRMS (TOF ES–) calcd for C₇₀H₈₀⁷⁹BrO₂ [M – H]⁻ 473.2994, found 473.2989.

NaN₃ (690 mg, 10.6 mmol) was added to a solution of 2-bromohexacosanoic acid (481 mg, 1.01 mmol) in DMF (5 mL). The reaction mixture was stirred vigorously at 60 °C. After 48 h, the reaction mixture was cooled to r.t., diluted with Et₂O (20 mL) and washed with hydrochloric acid (50 mL, 1 M). The phases were separated and the aqueous phase was extracted with Et₂O (2 × 25 mL). The combined organic fractions were washed with brine (20 mL) and dried with MgSO₄. Removal of the volatiles under reduced pressure and purification of the residue by flash column chromatography (15% EtOAc in toluene) afforded racemic α -azido acid **15** as a white solid (394 mg, 60% over 2 steps from

hexacosanoic acid). The ¹H NMR, ¹³C NMR, IR spectroscopic and MS data were identical to those obtained for (2*S*)-2-azidohexacosanoic acid [(*S*)-15] (*vide supra*).

(2*S*, 3*S*, 4*R*, 2''*R*,*S*)-2-[2''-Azidohexacosanoylamino]-1-*O*-[L-threitol]octadecane-1, 3, 4-triol (17) (1:1 mixture of epimers, epimeric at C(2''))

A solution of rac-15 (61 mg, 0.14 mmol) in (COCl)₂ (2.00 mL) was stirred at 70 °C for 2 h, after which time, the solution was cooled to r.t., and the remaining (COCl)₂ was removed under a stream of dry argon. The residual volatiles were removed under reduced pressure. The resulting crude acyl chloride was dissolved in THF (1.5 mL) and added, with vigorous stirring, to a solution of amine 16 (54 mg, 0.14 mmol) in THF / NaOAc(aq) (8 M) (1:1, 3 mL). Vigorous stirring was maintained for 2 h, after which time, the mixture was left to stand and the phases were separated. The aqueous phase was extracted with THF (2×1.5 mL), and the combined organic phases were evaporated under reduced pressure. Purification of the residue by flash column chromatography (10% MeOH in CHCl₃) afforded amide 17 as a white solid (85 mg, 72%, 1:1 mixture of 2"-epimers). Data on mixture unless stated otherwise: $R_f = 0.30$ (10% MeOH in CHCl₃); mp 109 – 110 °C; v_{max} (film) / cm⁻¹ 3303br m (O–H, N– H), 2101m (N₃), 1655m (C=O); $\delta_{\rm H}$ (300 MHz, CDCl₃/CD₃OD, 2:1) 0.85 (t, *J* 6.9, 6H), 1.17–1.54 (stack, 70H), 1.71–1.89 (stack, 2H), 3.46–3.64 (stack, 8H), 3.67–3.88 (stack, 3H), 4.15–4.26 (m, 1H); $\delta_{C}(100)$ MHz, CDCl₃/CD₃OD, 2:1) 14.2 (CH₃), 23.0 (CH₂), 25.9 (CH₂), 26.0 (CH₂), 26.3 (CH₂), [29.6, 29.7, 29.8, 30.1, 32.3, 32.8 (CH₂, some resonance overlap)], 50.7 (CH), 63.8 (CH₂), [63.9 (CH of (2''S)epimer), 64.1 (CH of (2"R)-epimer)], 70.5 (CH₂), 70.6 (CH), 72.3 (CH), 72.6 (CH), [73.20 (CH₂ of (2''S)-epimer), 73.25 (CH₂ of (2''R)-epimer)], 74.9 (CH), 170.9 (C); MS (TOF ES-) m/z 839.7 ([M - $H^{-}_{,100\%}$, 812.0 (70); HRMS (TOF ES–) calcd for $C_{48}H_{95}N_4O_7$ [M – H]⁻ 839.7201, found 839.7195.

Biotinylated ThrCer (10) [1:1 mixture of epimers, epimeric at C(2'')]

CuSO₄ solution (12 µL of a 0.5 M solution, 6 µmol) and sodium ascorbate solution (26 µL of a 1.0 M solution, 26 µmol) were added to a solution of azide **17** (1:1 mixture of 2''-epimers, (55 mg, 0.065 mmol) and alkyne **18** (27 mg, 0.065 mmol) in *t*-BuOH/H₂O (1 mL, 1:1) at r.t. The reaction mixture was heated for 10 h at 50 °C and then diluted with CHCl₃ (10 mL), and washed with brine (3 mL). The phases were separated and the aqueous layer was extracted with CHCl₃ (2 × 5 mL). The combined organic layers were dried over Na₂SO₄ and the volatiles were removed under reduced pressure. Purification of the residue by flash column chromatography (10% CH₃OH in CHCl₃) afforded biotinylated ThrCer **10** (64 mg, 78%, 1:1 mixture of 2''-epimers). Careful re-purification of a small sample of this mixture by flash column chromatography (gradient 3 – 8% CH₃OH in CHCl₃) afforded, in order of elution, (**2''R)-10** as a white paste; $R_f = 0.30$ (10% CH₃OH in CHCl₃); v_{max} (film) / cm⁻¹ 3333br (O–H, N–H), 1672s (C=O); δ_{H} (500 MHz, CDCl₃/CD₃OD, 2:1) 0.84 (t, *J* 6.9, 6H, 2 × CH₂CH₃), 1.17–1.35 (stack, 70H), 1.36–1.45 (stack, 2H), 1.48–1.73 (stack, 4H, C(12''')H₂ (middle of stack),

 $C(14''')H_aH_b$ (LHS of stack), $C(14''')H_aH_b$ (RHS of stack)), 1.97–2.07 (stack, 1H, C(3'')H_aH_b), 2.09– 2.21 (stack, 3H, C(3") H_aH_b , C(11") H_2), 2.70 (d, J 12.8, 1H, C(18") H_aH_b), 2.89 (dd, J 12.8, 4.9, 1H, $C(18'')H_{a}H_{b}$, 3.12–3.18 (m, 1H, C(15'')H), 3.32–3.38 (m, 2H, $C(9'')H_{2}$), 3.43–3.74 (stack, 20H), 4.12–4.17 (m, 1H, C(2)H), 4.30 (dd, J 8.0, 4.8, 1H, C(16''')H), 4.48 (dd, J 8.0, 4.8, 1H, C(17''')H), 4.65 (s, 2H, C(3^{'''}) H_2), 5.27 (dd, J 8.5, 6.5, 1H, C(2^{''})H), 8.00 (s, 1H, C(1^{'''})H); $\delta_c(125 \text{ MHz})$, CDCl₃/CD₃OD, 2:1) 14.2 (CH₃, C(18), C(26") (resonance overlap)), 23.0 (CH₂), 25.9 (CH₂, C(12")), 25.9 (CH₂), 26.1 (CH₂), 26.3 (CH₂), 28.6 (CH₂, C(14''')), [28.9, 29.4, 29.73, 29.75, 30.05, 30.09, 30.18, 30.24, 32.3, 32.7, 33.4 (CH₂, alkyl chain, some resonance overlap)], 36.1 (CH₂, C(11"')), 39.7 (CH₂, C(9")), 40.6 (CH₂, C(18")), 51.1 (CH, C(2)), 56.1 (CH, C(15")), 60.8 (CH, C(17")), 62.5 (CH, *C*(16''')), 63.8 (CH₂, *C*(4')), 64.5 (CH, *C*(2'')), 64.6 (CH₂, *C*(3''')), 70.0 (CH₂, *C*(4''')), 70.1 (CH₂), 70.5 (2 × CH₂, resonance overlap), 70.7 (CH), 70.8 (CH₂), 70.9 (CH₂), 72.2 (CH), 72.7 (CH), 73.2 (CH₂, C(1')), 74.8 (CH, C(3)), 123.2 (CH, C(1''')), 145.2 (C, C(2''')), 164.8 (C, NHC=ONH), 168.7 (C, $C(1^{"})$, 175.2 (C, $C(10^{"})$) MS (TOF ES+) m/z 1277.1 ([M + Na]⁺, 100%), 650.0 (8); HRMS (TOF ES+) calcd for $C_{67}H_{127}N_7O_{12}SNa [M + Na]^+$ 1276.9161, found 1276.9182; and then (2''S)-10 as a white paste: $R_f = 0.20$ (10% CH₃OH in CHCl₃). The physical data obtained for (2''S)-10 isolated from this epimeric mixture were identical to those obtained for the (2"S)-10 obtained from the reaction of epimerically pure (S)-17 with alkyne 18.

Synthesis of labeled glycolipid 11:

(2R, 5S, 9'Z, 12'Z)-Isopropyl-3, 6-dimethoxy-5-(octadeca-9', 12'-dienyl)-2, 5-dihydropyrazine (27)

A solution of BuLi (2.5 M in hexane, 52 µL, 0.13 mmol) was added dropwise over 1 min to a stirred solution of commercially available (2R)-2-isopropyl-3,6-dimethoxy-2,5-dihydropyrazine 12 (23 μ L, 0.13 mmol) in THF (1 mL) at -78 °C. Stirring was continued at this temperature for 45 min before a solution of linoleyl bromide^[5] (42 mg, 0.13 mmol) in THF (1 mL) was added over 5 min. The reaction mixture was then stirred for 24 h, slowly warming to r.t. The reaction mixture was quenched by the addition of NH₄Cl solution (5 mL) and EtOAc (5 mL) and the phases were separated. The aqueous phase was extracted with EtOAc $(3 \times 5 \text{ mL})$ and then the combined organic extracts were washed with brine (20 mL), dried (MgSO₄), filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography to afford dihydropyrazine 27 as a colorless oil (51 mg, 91%); $R_f = 0.27$ (3% EtOAc in hexane); $[\alpha]_D^{20} - 15.3$ (c = 1 in CHCl₃); v_{max} (film) / cm⁻¹ 1693s (C=N), 1634m (C=C); $\delta_{\rm H}(300 \text{ MHz}, \text{CDCl}_3) 0.68 \text{ (d, } J 6.8, 3\text{H}), 0.88 \text{ (t, } J 6.8, 3\text{H}), 1.04 \text{ (d, } J 6.8, 3\text{H}), 1.14-1.43$ (stack, 18H), 1.60–1.90 (stack, 2H), 1.98–2.11 (stack, 4H), 2.26 (septet of doublets, J 6.9, 3.3, 1H), 2.76 (app t, J 6.0, 2H), 3.67 (s, 3H), 3.68 (s, 3H), 3.92 (dd, J 6.9, 3.3, 1H), 4.01 (dt, J 5.7, 4.2, 1H), 5.26–5.44 (stack, 4H); δ_c(100 MHz, CDCl₃) 14.0 (CH₃), 16.5 (CH₃), 19.0 (CH₃), 22.5 (CH₂), 24.4 (CH₂), 25.6 (CH₂), 27.2 (CH₂), [29.27, 29.32, 29.7, 31.5, 34.1 (CH₂, some resonance overlap)], 31.6 (CH), 52.2 (CH₃, resonance overlap), 55.5 (CH), 60.6 (CH), 127.9 (CH), 128.0 (CH), 129.99 (CH), 130.11 (CH), 163.3 (C), 164.0 (C); MS (TOF ES+) *m*/*z* 433.4 ([M + H]⁺, 100%); HRMS (TOF ES+) calcd for $C_{27}H_{49}N_2O_2$ [M + H]⁺ 433.3794, found 433.3791.

(2S, 11Z, 14Z)-Methyl 2-aminoeicosa-(11, 14)-dienoate (28)

Hydrochloric acid (0.71 mL, 1.0 M solution, 0.71 mmol) was added to a vigorously stirred solution of dihydropyrazine **27** (50 mg, 0.116 mmol) in THF (2 mL) at r.t. After 4 h, the mixture was cooled to 0 °C and quenched with NaOH solution (0.36 mL, 2.0 M solution, 0.72 mmol). EtOAc (5 mL) and H₂O (5 mL) were added and the phases were separated. The aqueous phase was extracted with EtOAc (3 × 5 mL). The combined organic extracts were washed with brine (20 mL), dried (MgSO₄), filtered and concentrated under reduced pressure. Purification of the residue by flash column chromatography afforded amine **28** as a colorless oil (31 mg, 78%); $R_f = 0.23$ (5% CHCl₃ in MeOH); $[\alpha]_D^{20} + 18.4$ (c = 1 in CHCl₃); ν_{max} (film) / cm⁻¹ 3372s br (NH₂), 1747s (C=O), 1635m (C=C); δ_{H} (300 MHz, CDCl₃) 0.87 (t, *J* 6.6, 3H), 1.19–1.40 (stack, 16H), 1.41–1.60 (stack, 3H), 1.60–1.75 (m, 1H), 2.01 (app. q, *J* 6.6, 4H), 2.73 (app. t, *J* 6.0, 2H), 3.40 (app. t, *J* 6.6, 1H), 3.68 (s, 3H), 5.21–5.42 (stack, 4H), exchangeable hydogens not observed; δ_c (100 MHz, CDCl₃) 13.9 (CH₃), 22.5 (CH₂), 25.5 (CH₂), 27.1 (CH₂), [29.2, 29.28, 29.33, 29.5, 31.4, 34.9 (CH₂, some resonance overlap)], 51.7 (CH₃), 54.4 (CH), 127.8 (CH), 127.9 (CH), 130.0 (CH), 130.1 (CH), 176.6 (C); MS (TOF ES+) m/z 338.3 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for C₂₁H₄₀NaNO₂ [M + Na]⁺ 338.3059, found 338.3063.

(2S, 11Z, 14Z)-Methyl 2-azidoeicosa-(11, 14)-dienoate (29)

Amine **28** (28 mg, 0.083 mmol) was dissolved in MeOH:CH₂Cl₂:H₂O (2:1:1, 4 mL). K₂CO₃ (62 mg, 0.58 mmol), CuSO₄ (133 µg, 0.87 µmol) and imidazole-1-sulfonyl azide hydrochloride^[3] (70 mg, 0.33 mmol) were added sequentially. The reaction mixture was stirred overnight and then diluted with EtOAc (15 mL) and H₂O (15 mL). The phases were separated and the aqueous phase was extracted with EtOAc (3 × 15 mL). The combined organic extracts were washed with brine (60 mmol), dried (MgSO₄), filtered and concentrated under reduced pressure. Purification of the residue by flash column chromatography (3% EtOAc in hexane) provided azide **29** as a colorless oil (27 mg, 88%); R_f = 0.24 (3% EtOAc in hexane); [α]_D²⁰-3.6 (c = 1 in CHCl₃); v_{max} (film) / cm⁻¹ 2108s (N₃), 1746s (C=O), 1632m (C=C); δ_{n} (300 MHz, CDCl₃) 0.88 (app. t, *J* 6.8, 3H), 1.21–1.49 (stack, 18H), 1.68–1.90 (stack, 2H), 2.00–2.10 (stack, 4H), 2.77 (app. t, *J* 6.0, 2H), 3.79 (s, 3H), 3.81 (dd, *J* 8.4, 5.4, 1H), 5.27–5.44 (stack, 4H); δ_{c} (100 MHz, CDCl₃) 14.0 (CH₃), 22.5 (CH₂), 25.6 (CH₂), 25.7 (CH₂), 27.2 (CH₂), [29.0, 29.2, 29.27, 29.33, 29.6, 31.3, 31.5 (CH₂, some overlapping resonances)], 52.5 (CH₃), 62.0 (CH), 127.9 (CH), 128.0 (CH), 130.0 (CH), 130.2 (CH), 171.2 (C); MS (TOF ES+) *m/z* 386.3 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for C₂₁H₃₇NaNaO₂ [M + Na]⁺ 386.2783, found 386.2778.

(2S, 11Z, 14Z)-2-Azidoeicosa-(11, 14)-dienoic acid (30)

LiOH·H₂O (11.5 mg, 0.28 mmol) was added to a vigorously stirred solution of azide **29** (25 mg, 0.069 mmol) in THF/H₂O (1:1, 2 mL) at r.t. After stirring for 1 h, the mixture was cooled to 0 °C and quenched by the addition of hydrochloric acid (10 mL, 0.5 M solution). EtOAc (10 mL) was added and the phases were separated. The aqueous phase was extracted with EtOAc (3 × 10 mL) and the combined organic extracts were washed with brine (40 mL), dried (MgSO₄), filtered and concentrated under reduced pressure. Purification of the residue by flash column chromatography (60% EtOAc in hexane) afforded carboxylic acid **30** as a colorless oil (22 mg, 91%); $R_f = 0.31$ (5% CHCl₃ in MeOH); $[\alpha]_D^{20}$ -17.6 (c = 1 in CHCl₃); v_{max} (film) / cm⁻¹ 3300–2600w v br (O–H), 2126m (N₃), 1716m (C=O), 1635m (C=C); $\delta_{\rm H}$ (300 MHz, CDCl₃) 0.89 (t, *J* 6.9, 3H), 1.23–1.57 (stack, 18H), 1.71–1.98 (stack, 2H), 2.05 (app. q, *J* 6.6, 4H), 2.78 (app. t, *J* 6.0, 2H), 3.89 (dd, *J* 8.4, 5.4, 1H), 5.27–5.45 (stack, 4H); δ_c (100 MHz, CDCl₃) 14.0 (CH₃), 22.5 (CH₂), 25.6 (CH₂), 25.7 (CH₂), 27.2 (CH₂), [29.0, 29.2, 29.3, 29.4, 29.6, 31.3, 31.5 (CH₂, some overlapping resonances)], 61.8 (CH), 127.9 (CH), 128.0 (CH), 130.0 (CH), 130.2 (CH), 176.7 (C); MS (TOF ES+) m/z 372.3 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for C₂₀H₃₅N₃NaO₂ [M + Na]⁺ 372.2627, found 372.2630.

α-D-Galactopyranosyl-1-O-phytosphingosine (20)

TFA (1.0 mL, 13.2 mmol) was added dropwise over 5 min to glycoside $31^{[6]}$ (80 mg, 0.072 mmol) at r.t. After 30 min, the reaction mixture was concentrated under reduced pressure to afford amine **20** as a colorless oil (32 mg, 91%). This material was used in the next step without further purification.

(2*S*, 3*S*, 4*R*, 2'*S*, 11'*Z*, 14'*Z*)-2-[2'-Azidoeicosa-(11', 14')-dienoylamino]-1-*O*-[α-Dgalactopyranose]octadecane-1, 3, 4-triol (22)

A solution of carboxylic acid **30** (10 mg, 0.029 mmol) and (COCl)₂ (7.4 μ L, 0.087 mmol) in CH₂Cl₂ (1.0 mL) was stirred at 70 °C for 3 h, after which time, the solution was cooled to r.t. and the CH₂Cl₂ and unreacted (COCl)₂ were removed under a stream of argon. The residual volatiles were removed under reduced pressure. The resulting crude acyl chloride **21** was dissolved in THF (1 mL) and added, with vigorous stirring, to a solution of amine **20** (13.7 mg, 0.029 mmol) in THF / NaOAc_(aq) (8 M) (2 mL, 1:1). Vigorous stirring was maintained for 2 h, after which time, the mixture was left to stand and

the phases were separated. The aqueous phase was extracted with THF $(2 \times 1 \text{ mL})$, and the combined organic phases were concentrated under reduced pressure. Purification of the residue by flash column chromatography (10% MeOH in CHCl₃) afforded amide **22** as a colorless paste (17.4 mg, 74%); $R_f =$ 0.23 (5% CHCl₃ in MeOH); the poor solubility of this amphiphilic compound at r.t. prevented us from obtaining reliable optical rotation data; v_{max} (film) / cm⁻¹ 3301br s (O–H), 2107 (N₃), 1698m (C=O), 1634s (C=C); $\delta_{\rm H}$ (400 MHz, CDCl₃/CD₃OD, 2:1) 0.86 (app. t, J 6.8, 6H, 2 × terminal CH₃), 1.20–1.45 (stack, 42H, alkyl chain), 1.47–1.88 (stack, 4H, alkyl chain), 2.02 (app. q, J 6.8, 4H), 2.74 (app. t, J 6.4, 2H,), 3.48–3.57 (stack, 2H), 3.63–3.74 (stack, 4H), 3.75–3.80 (stack, 3H), 3.87 (dd, J 10.8, 4.8, 1H), 3.89–3.92 (m, 1H), 4.20 (app. q, J 4.8, 1H), 4.88 (d, J 3.6, 1H, anomeric-H), 5.24–5.49 (stack, 4H, 2 × CH=CH), exchangeable protons not observed; $\delta_{\rm C}(100 \text{ MHz}, \text{CDCl}_3)$ 14.3 (CH₃, 2 × terminal CH₃), 23.0 (CH₂), 23.1 (CH₂), 26.0 (CH₂), 26.2 (CH₂), 26.3 (CH₂), 27.6 (CH₂), [29.6, 29.7, 29.8, 29.9, 30.2, 31.97, 32.04, 32.3, 32.4, 32.9 (CH₂, alkyl chain, some overlapping resonances)], 51.0 (CH), 62.3 (CH₂), 64.0 (CH), 67.6 (CH₂), 69.4 (CH), 70.3 (CH), 70.8 (CH), 71.4 (CH), 72.3 (CH), 74.9 (CH), 100.3 (CH, Canomeric), 128.4 (CH, CH=CH), 128.5 (CH, CH=CH), 130.4 (CH, CH=CH), 130.5 (CH, CH=CH), 171.0 (C, C=O); MS (TOF ES+) m/z 833.6 ([M + Na]⁺, 100%); HRMS (TOF ES+) calcd for $C_{44}H_{82}N_4NaO_9 [M + Na]^+ 833.5979$, found 833.5971.

Fluor 488-labeled α -GalCer (11) [1:1, mixture of regioisomers in the label]

CuSO₄ solution (6 µL of a 0.5 M solution, 3 µmol) and sodium ascorbate solution (13 µL of a 1.0 M solution, 13 µmol) were added to a solution of azide **22** (1.4 mg, 1.7 µmol) and alkyne **23** (1.0 mg, 1.7 µmol) in *t*-BuOH / H₂O (0.5 mL, 1:1) at r.t. The reaction mixture was heated for 10 h at 50 °C and then diluted with CHCl₃ (5 mL), and washed with brine (1.5 mL). The phases were separated and the aqueous layer was extracted with CHCl₃ (2 × 2.5 mL). The combined organic layers were dried over Na₂SO₄ and the volatiles were removed under reduced pressure. Purification of the residue by flash column chromatography (CHCl₃/MeOH/H₂O 65:25:4) afforded triazole **11** as a red solid (1.4 mg, 59%, 1:1, mixture of regioisomers in the label); $R_f = 0.32$ (CHCl₃/MeOH/H₂O, 65:25:4); $\delta_{\rm H}$ (400 MHz, CDCl₃/CD₃OD, 2:1) 0.83 (t, *J* 6.7, 3H), 0.84 (t, *J* 6.7, 3H), 1.10–1.39 (stack, 44H), 1.40–1.65 (m, 1H), 1.65–1.89 (m, 1H), 1.92–2.03 (stack, 5H), 2.12–2.30 (1H, m), 2.66–2.79 (stack, 2H), 3.46–3.79 (stack, 2H), 3.86 (dd, *J* 10.8, 4.8, 1H), 3.90 (br s, 1H), 4.12–4.22 (m, 1H), 4.55–4.67 (m, 2H), 4.88 (d, *J* 3.6, 1H), 5.21–5.41 (stack, 5H), 6.63–6.77 (stack, 4H), 6.96–7.09 (stack, 2H), 7.31 (d, *J* 9.0, 0.5H), 7.76 (br s, 0.5H), 7.92 (s, 1H), 8.13–8.24 (m, 1H), 8.31 (d, *J* 9.0, 0.5H), 8.72 (br s, 0.5H); MS (TOF ES–) *m*/*z*

1396.8 ([M – H]⁻, 10%), 1218.8 (5, [M – galactose]⁻), 1004.6 (15), 915.6 (25), 850.7 (65), 815.7 (35), 451.5 (95), 423.5 (100), 179.1 (20, [galactose]⁻).

References

- Wojno, J., Jukes, J.-P., Ghadbane, H., Shepherd, D., Besra, G. S., Cerundolo, V., and Cox, L. R.
 (2012) Amide analogues of CD1d agonists modulate iNKT-cell-mediated cytokine production. ACS Chem. Biol. 7, 847–855.
- Gensler, W. J., Alam, I., Prasad, R. S., Radhakrishna, A. I., and Chaudhuri, H. I. (1979) 3-Hydroxy-2-alkyl carboxylic acids related to mycolic acid. *Tetrahedron 35*, 2595–2680.
- 3. Goddard-Borger, E. D., and Stick, R. V. (2007) An efficient, inexpensive and shelf-stable diazotransfer reagent: Imidazole-1-sulfonyl azide hydrochloride. *Org. Lett. 9*, 3797–3800.
- Natarajan, A., Du, W., Xiong, C.-Y., DeNardo, G. L., DeNardo, S. J., and Gervay-Hague, J. (2007) Construction of di-scFv through a trivalent alkyne-azide 1,3-dipolar cycloaddition. *Chem. Commun.* 695–697.
- Kling, M. R., Easton, C. J., and Poulos, A. (1993) Synthesis of very long chain fatty acid methyl esters. J. Chem. Soc., Perkin Trans. 1, 1183–1189.
- Jervis, P. J., Cox, L. R., and Besra, G. S. (2011) Synthesis of a versatile building block for the preparation of 6-*N*-derivatized α-galactosyl ceramides: Rapid access to biologically active glycolipids. *J. Org. Chem.* 76, 320–323.

Statistical Analysis of Data Summarized in Figure 3

t-test used to compare ThrCer **5** with either (R)-**10**, (S)-**10** or ThrCer **10** at each concentration of lipids.

Figure 3a

$conc'n (ng mL^{-1})$	5 vs (R)- 10	5 vs (S)- 10	5 <i>vs</i> 10 (epimeric mixture)
1000	NS	0.0494	NS
500	0.027	NS	NS
250	0.0058	< 0.0001	0.0315
125	0.0159	NS	NS
64	0.0278	0.0083	0.0251
32	0.0046	0.0018	NS
16	0.0009	NS	NS
Figure 3b			
conc'n (ng m L^{-1})	5 vs (R)- 10	5 vs (S)- 10	5 <i>vs</i> 10 (epimeric mixture)
1000	0.0037	0.0485	0.0246
100	0.0325	0.0002	0.0002
10	NS	0.0005	0.0005
1	NS	NS	NS
0.1	NS	NS	NS
0.001	NS	NS	NS