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A Supplement to Numerical Implementation

A.1 Breaking ties for the centroid classifier

In cases where ê(θ) achieves its minimum at several values θ, we break the ties by choosing

θ to minimize

− π1

n1 ·M(θ)

n1∑
i=1

Sθ;−i1(Yi1) I{Sθ;−i1(Yi1) ≤ 0}

+
1− π1

n2 ·M(θ)

n2∑
i=1

Sθ;−i2(Yi2) I{Sθ;−i2(Yi2) > 0}

over θ for which ê(θ) is tied at the least value it takes. Here, M(θ) is a normalizing factor

defined by M(θ) = maxj=1,2 n−1
j

∑nj

i=1

∑
r∈D

∣∣Zij;θ(r)− Z̄
(−i)
j (r; θ)

∣∣2.
A.2 Other choices of spread function ωQθ

Alternatives to the two-parameter family ωp0; θ introduced in Section 2.3 include taking ωQθ

to have relatively narrow support, and choosing the weights ωQθ
(r) to be small in number,

for example to equal θj if cj−1 < ∥r∥ ≤ cj for 1 ≤ j ≤ q and r ∈ Zd, and to equal 0 otherwise.

Here, ∥r∥2 =
∑

1≤j≤d r2j , 0 = c0 < c1 < . . . < cq are constants, θ1 ≥ . . . ≥ θq > 0, and the

weights would usually be normalized so that
∑

r∈Zd ωQθ
(r) = 1.

Remark 1. In some instances we may have in mind a choice of models for Qθ, potentially

with different values, q, of the length of θ. We can choose among models, including among
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Table 1: Values of σ, θR and signal to noise ratio for models (a) and (b)

Model (a)

ρR 0.75 0.5 0.25 0.75 0.5 0.25 0.75 0.5 0.25

ℓR 3 3 3 2 2 2 1 1 1

σ 5 1 1 2 1 1 1 1 .8

SNR (kI = 1) 0.5682 1.8097 1.2231 1.2600 1.6007 1.0687 1.9844 1.2450 1.0484

SNR (kI = 2) 0.4187 1.3304 0.8329 0.9278 1.1539 0.6645 1.4082 0.7867 0.5793

Model (b)

ρR 0.75 0.5 0.25 0.75 0.5 0.25 0.75 0.5 0.25

ℓR 3 3 3 2 2 2 1 1 1

σ 1 0.5 0.5 1 0.5 0.25 0.5 0.5 0.25

SNR (kI = 1) 1.6122 2.0540 1.3882 1.4300 1.8167 2.4258 2.2523 1.4130 1.9039

SNR (kI = 2) 1.9603 2.4915 1.5599 1.7376 2.1610 2.4888 2.6372 1.4733 1.7359

values of q, by using crossvalidation to assess the impact that this choice has on classification

error, or by using Monte Carlo simulation from models that seem to mimic the data well.

A.3 Complements to numerical section

A.3.1 Signal to noise ratio

For each example, we calculated a signal to noise ratio SNR, which we defined as

SNR = max
r∈D

|T{µ2(r)− µ1(r)}|√
var{Rξ(r)}

. (A.1)

The values of SNR are shown in Tables 1 to 3 for each example considered in our numerical

work.

A.3.2 Additional figures for Section 4.3.3

Here we show additional results obtained when applying to inversion method to the centroid

classifier when the errors errors Rr ξij(r) were non stationary. As in Section 4.3.3, we inverted

the data through Q−1

θ̂CV
. Figures 1 and 2 show boxplots of the percentage of missclassified

curves for the centroid classifier constructed from the data Q−1

θ̂CV
Yij, Yij and T−1Yij, where

Yij was generated as in (4.5), with, µj from model (a) and model (b), respectively, Rr as in

(4.6) and α = 10.
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Table 2: Values of σ, θR and signal to noise ratio for models (c) and (d)

Model (c)

ρR 0.85 0.5 0.85 0.5 0.85 0.5

ℓR 3 3 2 2 1 1

σ 5 1 5 1 2 .5

SNR (kI = 1) 1.5615 1.7838 1.2291 1.3955 1.9155 1.6884

SNR (kI = 2) 1.3669 1.5540 1.0758 1.1690 1.6344 1.0868

Model (d)

ρR 0.85 0.5 0.85 0.5 0.85 0.5

ℓR 3 3 2 2 1 1

σ 2 1 2 0.5 1 .5

SNR (kI = 1) 0.6401 0.2925 0.5039 0.4577 0.6282 0.2769

SNR (kI = 2) 0.6101 0.2775 0.4802 0.4174 0.5836 0.1940

Table 3: Values of σ, θM and signal to noise ratio for models (c) and (d)

Model (c)

θM 30 20 10

σ 5 2.5 1

SNR (kI = 1) 1.4531 1.9676 2.5689

SNR (kI = 2) 0.3182 0.4311 0.5645

Model (d)

θM 30 20 10

σ 2.5 1 1

SNR (kI = 1) 0.4766 0.8066 0.4213

SNR (kI = 2) 0.1136 0.1924 0.1008

Figure 3 shows similar results for the bivariate examples (c) and (d), when the data were

generated according to (4.5) with Rr as in (4.7) and α = 4. These results are similar to those

discussed in Section 4.3.3 of the paper.

A.3.3 Logistic classifier based on PLS projection

Let Iij = j − 1, where Yij comes from population Πj, with j = 1 or 2, and let Dij denote

one of the four versions of the observations that we use to construct our classifiers (i.e., Dij

denotes any of Yij, T
−1Yij, R

−1Yij or Q̂−1Yij). The PLS logistic classifier assumes that the

regression

g(x) = E(Iij | Dij = x)
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Figure 1: Boxplots of percentage of misclassified observations calculated from 100 simulated samples from
model (a) when θR = (ρR,r, ℓR), with ρR,r = ρR + 0.1 cos(r/10), ρR = 0.75, 0.5 and 0.25 in rows 1, 2 and
3, respectively, and ℓR = 3, 2 and 1 in columns 1, 2 and 3, respectively. In each group of 9 boxes, the first
three are for n1 = n2 = 10 and kI = 2, the next three are for n1 = n2 = 25 and kI = 2, and the last three
are for n1 = n2 = 25 and kI = 1. In each group of three boxes, the data are transformed by Q̂−1 (first box),
T−1 (second box), or untransformed (third box).

follows a logistic model,

g(x) =
exp(α0 + α1

∫
D xβ)

1 + exp(α0 + α1

∫
D xβ)

, (A.2)

where α0 and α1 ∈ R and β is a function defined on D. With the PLS approach, β is taken

equal to the slope, β, of the linear approximation β0 +
∫
D βDij to the regression function

E(Iij | Dij). Then, β is estimated by the estimator β̂ obtained by PLS (see Delaigle and

Hall (2012a,b) for details about the PLS estimator), and α0 and α1 are estimated by α̂0 and

α̂1, obtained by a least-squares fit of Iij on
∫
D Dijβ̂, using the logistic model (A.2) with β

replaced by β̂.

The regression function g is then estimated by

ĝ(x) =
exp(α̂0 + α̂1

∫
D xβ̂)

1 + exp(α̂0 + α̂1

∫
D xβ̂)

,

and the classifier assigns a new data function D to population Π1 if ĝ(D) < 0.5 and to

population Π2 otherwise. The partial least-squares slope estimator β̂ depends on a smoothing

parameter m, which is the number of PLS basis functions employed to calculated β̂. This m

is chosen by crossvalidation, together with θ.
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Figure 2: Boxplots of percentage of misclassified observations calculated from 100 simulated samples from
model (b) when θR = (ρR,r, ℓR), with ρR,r = ρR + 0.1 cos(r/10), ρR = 0.75, 0.5 and 0.25 in rows 1, 2 and
3, respectively, and ℓR = 3, 2 and 1 in columns 1, 2 and 3, respectively. In each group of 9 boxes, the first
three are for n1 = n2 = 10 and kI = 2, the next three are for n1 = n2 = 25 and kI = 2, and the last three
are for n1 = n2 = 25 and kI = 1. In each group of three boxes, the data are transformed by Q̂−1 (first box),
T−1 (second box), or untransformed (third box).

A.3.4 Simulation results for unbalanced samples

We also applied the centroid classifier to unbalanced training samples. The results for models

(a) and (b), with n1 = 10, n2 = 25 and kI = 1 or kI = 2, are shown in Figures 4 and 5. We

can see that the results are similar to those we obtained when n1 = n2.

A.3.5 Simulation results for other classifiers

We applied the SVM classifier and the logistic PLS classifier to each of the four versions of

the data: the untransformed noisy data Y New
i , the data T−1Y New

i , the data Q̂−1Y New
i and the

data R−1Y New
i . We used the same simulation settings as in Section 4 (same models, same

values of θR and θT , same training and test sample sizes, etc), and as in Section 4 we report

the results of our simulations by showing boxplots of the number of observations misclassified

by each classifier, for each version of the data. In the case Q̂−1Y New
i we chose θ by minimizing

the crossvalidation criterion defined in (2.12), taking C to be the SVM classifier or the logistic

PLS classifier. In case of ties for the SVM classifier, we took the smallest value of ρ and θ

that minimize crossvalidation. For the logistic classifier, we broke the ties using the method

suggested in Delaigle and Hall (2012b).

Figures 6 to 9 show the results for the SVM classifier, for models (a) to (d), training
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Figure 3: Boxplots of percentage of misclassified observations calculated from 100 simulated
samples from models (c) (row 1) and (d) (rows 2) when Rr is of the form at (4.7), with
θM,rj = θM + 2 · [4 cos(rj/2)] and θM = 30, 20 and 10 in columns 1, 2 and 3, respectively. In
each group of 9 boxes, the first three are for n1 = n2 = 10 and kI = 2, the next three are for
n1 = n2 = 25 and kI = 2, and the last three are for n1 = n2 = 25 and kI = 1. In each group

of three boxes, the data are transformed by Q̂−1 (first box), T−1 (second box), or untransformed
(third box).

sample sizes n1 = n2 = 10 or n1 = n2 = 25, and when the grid D has edge width kI = 1 or

kI = 2. Figures 10 and 11 show the results for the logistic classifier, for models (a) and (b)

for training samples of sizes n1 = n2 = 10 or n1 = n2 = 25, and when the grid D has edge

width kI = 2.
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Figure 4: Boxplots of percentage of misclassified observations calculated from 100 simulated samples from
model (a) when θR = (ρR, ℓR), with ρR = 0.75, 0.5 and 0.25 in rows 1, 2 and 3, respectively, and ℓR = 3, 2
and 1 in columns 1, 2 and 3, respectively. In each group of 8 boxes, the first four are for n1 = 10, n2 = 25
and kI = 2, and the next four are for n1 = 10, n2 = 25 and kI = 1. In each group of four boxes, the data
are transformed by Q̂−1 (first box), R−1 (second box), T−1 (third box), or untransformed (fourth box).
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Figure 5: Boxplots of percentage of misclassified observations calculated from 100 simulated samples from
model (b) when θR = (ρR, ℓR), with ρR = 0.75, 0.5 and 0.25 in rows 1, 2 and 3, respectively, and ℓR = 3, 2
and 1 in columns 1, 2 and 3, respectively. In each group of 8 boxes, the first four are for n1 = 10, n2 = 25
and kI = 2, and the next four are for n1 = 10, n2 = 25 and kI = 1. In each group of four boxes, the data
are transformed by Q̂−1 (first box), R−1 (second box), T−1 (third box), or untransformed (fourth box).
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Figure 6: Boxplots of percentage of observations misclassified by the SVM classifier, calculated from 100
simulated samples from model (a) when θR = (ρR, ℓR), with ρR = 0.75, 0.5 and 0.25 in rows 1, 2 and 3,
respectively, and ℓR = 3, 2 and 1 in columns 1, 2 and 3, respectively. In each group of 12 boxes, the first
four are for n1 = n2 = 10 and kI = 2, the next four are for n1 = n2 = 25 and kI = 2, and the last four are
for n1 = n2 = 25 and kI = 1. In each group of four boxes, the data are transformed by Q̂−1 (first box), R−1

(second box), T−1 (third box), or untransformed (fourth box).
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Figure 7: Boxplots of percentage of observations misclassified by the SVM classifier, calculated from 100
simulated samples from model (b) when θR = (ρR, ℓR), with ρR = 0.75, 0.5 and 0.25 in rows 1, 2 and 3,
respectively, and ℓR = 3, 2 and 1 in columns 1, 2 and 3, respectively. In each group of 12 boxes, the first
four are for n1 = n2 = 10 and kI = 2, the next four are for n1 = n2 = 25 and kI = 2, and the last four are
for n1 = n2 = 25 and kI = 1. In each group of four boxes, the data are transformed by Q̂−1 (first box), R−1

(second box), T−1 (third box), or untransformed (fourth box).
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Figure 8: Boxplots of percentage of observations misclassified by the SVM classifier, calculated from
100 simulated samples from models (c) (rows 1 and 2) and (d) (rows 3 and 4) when θR = (ρR, ℓR),
with ρR = 0.85 and 0.5 in rows 1,3 and 2,4 respectively, and ℓR = 3, 2 and 1 in columns 1, 2 and
3, respectively. In each group of 12 boxes, the first four are for n1 = n2 = 10 and kI = 2, the next
four are for n1 = n2 = 25 and kI = 2, and the last four are for n1 = n2 = 25 and kI = 1. In each

group of four boxes, the data are transformed by Q̂−1 (first box), R−1 (second box), T−1 (third
box), or untransformed (fourth box).
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Figure 9: Boxplots of percentage of observations misclassified by the SVM classifier, calculated
from 100 simulated samples from models (c) (row 1) and (d) (rows 2) when R is of the form at
(4.3), with θM = 30, 20 and 10 in columns 1, 2 and 3, respectively. In each group of 9 boxes, the
first three are for n1 = n2 = 10 and kI = 2, the next three are for n1 = n2 = 25 and kI = 2,
and the last three are for n1 = n2 = 25 and kI = 1. In each group of three boxes, the data are

transformed by Q̂−1 (first box), T−1 (second box), or untransformed (third box).
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Figure 10: Boxplots of percentage of observations misclassified by the logistic classifier, calculated from
100 simulated samples from model (a) when θR = (ρR, ℓR), with ρR = 0.75, 0.5 and 0.25 in rows 1, 2 and
3, respectively, and ℓR = 3, 2 and 1 in columns 1, 2 and 3, respectively. In each group of 8 boxes, the first
four are for n1 = n2 = 10 and kI = 2, and the next four are for n1 = n2 = 25. In each group of four boxes,
the data are transformed by Q̂−1 (first box), R−1 (second box), T−1 (third box), or untransformed (fourth
box).
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Figure 11: Boxplots of percentage of observations misclassified by the logistic classifier, calculated from
100 simulated samples from model (b) when θR = (ρR, ℓR), with ρR = 0.75, 0.5 and 0.25 in rows 1, 2 and
3, respectively, and ℓR = 3, 2 and 1 in columns 1, 2 and 3, respectively. In each group of 8 boxes, the first
four are for n1 = n2 = 10 and kI = 2, and the next four are for n1 = n2 = 25. In each group of four boxes,
the data are transformed by Q̂−1 (first box), R−1 (second box), T−1 (third box), or untransformed (fourth
box).
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B Technical Arguments

B.1 Regularity conditions

We define

q =

∫
T
|ϕωR

|4 sup
θ∈Θ

|ϕωQθ
|−4 , (B.1)

where T denotes a general subset of (−π, π)d. We let Θ, the class of values of the parameter

θ over which we search, be a compact set of vectors in a finite-dimensional Euclidean space.

Below, the notation C2, C3, . . . and c1, c2, . . . will denote positive constants, large in the first

instance and small in the second.

We assume that the white-noise variables ξj in (2.3) are such that:

(a) ξj(r)/σn are independent and identically distributed with zero mean

and unit variance, for r ∈ D, j = 1, 2 and all n; (b) E|ξj(r)/σn|C1 < ∞,

where C1 > 0 is chosen sufficiently large, depending on c1, c2 and c4.

(B.2)

(The constants c2 and c4 are introduced in (B.5)(b) and (B.6)(b), respectively.) Property

(B.2) requires that the noise variables be rescaled quantities with zero mean, unit variance

and sufficiently many finite moments.

We also assume that the training sample sizes n1 and n2 satisfy:

n1 and n2 are functions of n, and for some c1 > 0, nc1 ≤ nmin ≡ min(n1, n2)

for all n.

(B.3)

This condition is equivalent to asking that training sample sizes increase at least polynomially

fast as functions of the number of points in the grid D.

Recall that #D = (2n + 1)d denotes the number of vertices in the lattice D, defined

at (3.4). We model the distance between Tµ1 and Tµ2 by asking that:

ϕT (µ1−µ2) = αn ϕωR
ϕK , where |K(r)| ≤ C2 for all r ∈ D and

|ϕK(t)| ≤ C3 #D for all t ∈ T .
(B.4)

To understand this condition, it is helpful to interpret K(r) as the value of a function, γ

say, supported on [−1, 1], at the point r/n, where n diverges to infinity in our asymptotic

model. Let ϕγ(t) denote the continuous Fourier transform of γ, where t = (t1, . . . , td) ∈ IRd.

For n large enough, we can expect |ϕK | to be well approximated by (#D) |ϕγ|. The last part

of (B.4) reflects this property.
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We assume too that the linear transformations Qθ and R have the following symmetry

and Hölder continuity properties:

(a) the Fourier transforms ϕωQθ
and ϕωR

are real-valued; (b) the func-

tional |ϕωQθ
| satisfies supt∈T ϕωR

(t)2 |ϕωQθ
(t)−2 − ϕωQθ′

(t)−2| ≤ C4 n
C5 ∥θ −

θ′∥c2 , uniformly in θ, θ′ ∈ Θ; (c) for all sufficiently large n,∫
T |ϕK |2 |ϕωR

|4 |ϕωQθ
|−4 ≥ C6 (#D)2 q; (d) for all sufficiently large n,∫

T |ϕK |2 |ϕωR
|2 |ϕωQθ

|−2 ≥ C7 σ
2
n (#D) q.

(B.5)

Property (B.5)(a) asks that the functions ωQθ
and ωR be symmetric. A longer proof can deal

with cases of asymmetry, but symmetric models would almost always be used in practice.

Condition (B.5)(b) asks that Qθ and R satisfy a Hölder continuity condition in θ; in view

of the factor nC5 , and since c2 can be arbitrarily small, it is quite mild. Properties (B.5)(c)

and (B.5)(d) reflect the fact that |ϕK | ≈ (#D) |ϕγ|, as noted below (B.4).

We expect the transformation Qθ to be reasonably close to R, and the following assump-

tion responds to that property:

(a) supr∈D supθ∈Θ |ωR2 Q−2
θ

(r)| ≤ C7; (b) the quantity q, at (B.1), satisfies

n−c3 ≤ q ≤ nc4 for all sufficiently large n, where 0 < c3 < 2d, 0 < c4 < c1

and c1 is as in (B.3).

(B.6)

Here ωR2 Q−2
θ

is the spread function associated with R2 Q−2
θ , that is

R2 Q−2
θ ζ(r) =

∑
s∈Z

ωR2 Q−2
θ

(s)ζ(r + s).

We conclude with an example illustrating (B.5) and (B.6). Let p0 be the probability

mass function at (2.5) and let Qθ denote the corresponding transformation, with associated

Fourier transform ϕωQθ
at (2.9). Then there exists ρ0 ∈ (0, 1) and D0 ∈ (0, 1) such that

Dd
0 ≤ ϕωQθ

(t; ρ) ≤ D−d
0 for all t ∈ (−π, π) and all |ρ| ≤ ρ0. Put Θ = [−ρ0, ρ0], let θ0 ∈ Θ,

and let R be the transformation Qθ0 . Then |ϕωR
(t)| |ϕωQθ

(t)|−1 is bounded away from zero

and infinity uniformly in t ∈ (−π, π)d and in ρ ∈ Θ, so (B.5)(c) and (B.5)(d) reduce to

the assumption that
∫
T |ϕK |2 ≥ C (#D)2, for some constant C > 0. That this condition

holds for general choices of K follows from the fact that, in such cases, ϕK ≈ (#D)ϕγ for

a conventional, continuous Fourier transform ϕγ ; see the argument below (3.4). Moreover,

by taking the inverse Fourier transform we deduce that (B.6)(a) holds. Note too that these

results are valid when T = (−π, π)d and no smoothing is used.
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B.2 Proof of Theorem 1

B.2.1 Step 1: Derivation of simpler criterion for classifier

The simpler criterion is at (B.8) below. To derive it, put Ȳj = n−1
j

∑
k Ykj and let Z̄j;θ(r) be

as defined immediately below (3.1). The Fourier transforms of Y and Ȳj are, by (2.6),

ϕY (t) =
∑
r∈Zd

Y (r) exp
(
i rTt

)
, ϕȲj

(t) = n−1
j

nj∑
k=1

∑
r∈Zd

Ykj(r) exp
(
i rTt

)
.

Likewise, the Fourier transform of Zθ(r)− Z̄j;θ(r) equals{
ϕY (t)− ϕȲj

(t)
}
ϕωQθ

(t)−1 I(t ∈ T ) .

Therefore, since by (3.6) Zθ is supported on D, then by Parseval’s identity,∑
r∈D

∣∣Zθ(r)− Z̄j;θ(r)
∣∣2 = (2π)−d

∫
T
|ϕY − ϕȲj

|2 |ϕωQθ
|−2 ,

and so the classifier represented by (3.1) is given equivalently by the algorithm: Assign Y to

Π1 if and only if

D(θ) ≡
∫
T
|ϕY − ϕȲ2

|2 |ϕωQθ
|−2 −

∫
T
|ϕY − ϕȲ1

|2 |ϕωQθ
|−2 > 0 . (B.7)

Write E for the expectation operator, put νj = Tµj, write ν for the expected value of

Y when the latter is drawn from one or other of Π1 and Π2, and put ϕ∆ = (1 − E)ϕY and

ϕ∆j
= (1− E)ϕȲj

, for j = 1, 2. Then,

D(θ) =

∫
T

[
|ϕν−ν2 |2 − |ϕν−ν1 |2 + |ϕ∆−∆2 |2 − |ϕ∆−∆1 |2

+2
{
ℜϕν−ν2 ℜϕ∆−∆2 + ℑϕν−ν2 ℑϕ∆−∆2

−ℜϕν−ν1 ℜϕ∆−∆1 −ℑϕν−ν1 ℑϕ∆−∆1

}]
|ϕωQθ

|−2

= D1(θ) +D2(θ) + 2 {D32(θ)−D31(θ)} − 2 {D42(θ)−D41(θ)} , (B.8)

where

D1(θ) =

∫
T

{
|ϕν−ν2 |2 − |ϕν−ν1 |2

}
|ϕωQθ

|−2 ,

D2(θ) =

∫
T

{
|ϕ∆−∆2 |2 − |ϕ∆−∆1 |2

}
|ϕωQθ

|−2 ,
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D3j(θ) =

∫
T

{
ℜϕν−νj ℜϕ∆ + ℑϕν−νj ℑϕ∆

}
|ϕωQθ

|−2 ,

D4j(θ) =

∫
T

{
ℜϕν−νj ℜϕ∆j

+ ℑϕν−νj ℑϕ∆j

}
|ϕωQθ

|−2 .

B.2.2 Step 2. Formula for D1(θ) and bound for D2(θ)

To simplify D1(θ) take, for instance, ν = ν1 and observe that, by (B.4),∫
T
|ϕν1−ν2 |2 |ϕωQθ

|−2 = α2
n

∫
T
|ϕK |2 |ϕωR

|2 |ϕωQθ
|−2 . (B.9)

To bound D2(θ), in a slight modification of the notation at (2.3) we write Ȳj = νj + R(ξ̄j)

and Y = ν + R(ξ), where ξ̄j = n−1
j

∑
i ξji, and the random vectors ξji (for 1 ≤ i ≤ nj and

j = 1, 2) and ξ are independent and identically distributed white noise; see (B.2). In this

notation, ∆ = R(ξ), ∆j = R(ξ̄j),

ϕ∆ = ϕξ ϕωR
, ϕ∆j

= ϕξ̄j ϕωR
, (B.10)

where, using (3.6),

ϕξ(t) =
∑
r∈D

ξ(r) exp
(
irTt

)
, ϕξ̄j(t) =

∑
r∈D

ξ̄j(r) exp
(
i rTt

)
. (B.11)

Also,

β(t) ≡ |ϕ∆−∆2 |2 − |ϕ∆−∆1 |2

= ℜϕ∆1−∆2 ℜϕ2∆−∆1−∆2 + ℑϕ∆1−∆2 ℑϕ2∆−∆1−∆2 . (B.12)

Defining

q0(t) = |ϕωR
(t)|2 sup

θ∈Θ
|ϕωQθ

(t)|−2 , (B.13)

we deduce from (B.10)–(B.12) that, uniformly in θ ∈ Θ,

1
2
|D2(θ)| ≤ 1

2

∫
T
|β| |ϕωQθ

|−2

≤
∫
T
|ϕ∆1−∆2 | |ϕ2∆−∆1−∆2 | |ϕωQθ

|−2

≤
∫
T
|ϕξ̄1−ξ̄2 | |ϕ2 ξ−ξ̄1−ξ̄2 | q0

≤
{∫

T
|ϕξ̄1−ξ̄2 |

2 q0

}1/2 {∫
T
|ϕ2 ξ−ξ̄1−ξ̄2 |

2 q0

}1/2

, (B.14)
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and moreover,

sup
t∈T

E|ϕξ̄j(t)|
2 ≤ n−1

j σ2
n #D , sup

t∈T
E|ϕξ(t)|2 ≤ σ2

n #D . (B.15)

Therefore, noting that q at (B.1), and q0 at (B.13), satisfy
∫
T q0 ≤ {(2π)d q}1/2 where the

latter bound follows from the Cauchy-Schwarz inequality, we have:

sup
θ∈Θ

|D2(θ)| = Op

(
σ2
n n

−1/2
min q#D

)
. (B.16)

B.2.3 Step 3: Formula for D3j(θ)

As in step 2 we take ν = ν1, in which case D31 ≡ 0 and

D32(θ) =

∫
T

{
ℜϕν1−ν2 ℜϕ∆ + ℑϕν1−ν2 ℑϕ∆

}
|ϕωQθ

|−2 . (B.17)

Using the fact that ϕωR
is real-valued and letting a∗ denote the complex conjugate of a

complex number a, it can be deduced from (B.10), and the property ϕν1−ν2 = αn ϕωR
ϕK in

(B.4), that

α−1
n

[
ℜ
{
ϕν1−ν2(t)

}
ℜ
{
ϕ∆(t)

}
+ ℑ

{
ϕν1−ν2(t)

}
ℑ
{
ϕ∆(t)

}]
= ℜ

{
ϕK(t)ϕωR

(t)2 ϕξ
∗(t)

}
= ϕωR

(t)2
[{∑

r∈D

K(r) cos
(
rTt

)}{∑
r∈D

ξ(r) cos
(
rTt

)}]
+

{∑
r∈D

K(r) sin
(
rTt

)}{∑
r∈D

ξ(r) sin
(
rTt

)}
= ϕωR

(t)2
∑
r1∈D

∑
r2∈D

K(r1) ξ(r2) cos
{
(r1 − r2)

Tt
}
.

Therefore,

(2π)−d α−1
n

∫
T

{
ℜϕν1−ν2 ℜϕ∆ + ℑϕν1−ν2 ℑϕ∆

}
|ϕωQθ

|−2

= (2π)−d
∑
r1∈D

∑
r2∈D

K(r1) ξ(r2)

∫
T
cos

{
(r1 − r2)

Tt
}
ϕωR

(t)2 |ϕωQθ
(t)|−2 dt

=
∑
r1∈D

∑
r2∈D

K(r1) ξ(r2)ωR2 Q−2
θ

(r1 − r2) ≡ Z1(θ) , (B.18)
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say. Note too that, defining A to be ωR2 Q−2
θ
, the spread function associated with the transform

R2Q−2
θ , we have:

τ(θ)2 ≡ var{Z1(θ)} = σ2
n

∑
r2

{∑
r1

K(r1)A(r1 − r2)
}2

= (2π)−d σ2
n

∫
T
|ϕK |2 |ϕωR

|4 |ϕωQθ
|−4 . (B.19)

Defining Z(θ) = Z1(θ)/τ(θ), we deduce from (B.17) and (B.18) that, for all θ ∈ Θ,

D32(θ) = (2π)d αn Z(θ) τ(θ) . (B.20)

B.2.4 Step 4: Bound for D4j(θ)

Again we take ν = ν1, implying that D41 ≡ 0 and

D42(θ) = (2π)d αn A2(θ) (B.21)

where

Aj(θ) = (2π)−d α−1
n

∫
T

{
ℜϕν1−ν2 ℜϕ∆j

+ ℑϕν1−ν2 ℑϕ∆j

}
|ϕωQθ

|−2

= (2π)−d

∫
T
ℜ
(
ϕK ϕ∗

ξ̄j

)
|ϕωR

|2 |ϕωQθ
|−2 . (B.22)

The arguments leading to (B.18) and (B.19) imply that

Aj(θ) =
∑
r1∈D

∑
r2∈D

K(r1) ξ̄j(r2)ωR2 Q−2
θ

(r1 − r2) , (B.23)

var{Aj(θ)} = (2π)−d σ2
n n

−1
j

∫
T
|ϕK |2 |ϕωR

|4 |ϕωQθ
|−4 . (B.24)

Result (B.24) and assumption (B.4) imply that, with q defined as at (B.1),

sup
θ∈Θ

var{Aj(θ)} ≤ C2
3 σ

2
n n

−1
j q (#D)2 . (B.25)

Rosenthal’s inequality implies that if k ≥ 1 is an integer, and if B1(k) = E|ξ(r)/σn|2k (a

constant; see (B.2)(b)), then, for a constant B2(k) depending only on k, and with B3(k) =

B2(k) {1 +B1(k)},

E
{
ξ̄j(r2)

2k
}
≤ B2(k)σ

2k
n

{
n−k
j + n1−2k

j B1(k)
}
≤ B3(k) σ

2k
n n−k

j . (B.26)
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The bound supr∈D |K(r)| ≤ C2 in (B.4), and supr∈D supθ∈Θ |ωR2 Q−2
θ

(r)| ≤ C7 in (B.6)(a),

imply that

∑
r1∈D

∑
r2∈D

∣∣K(r1)ωR2 Q−2
θ

(r1 − r2)
∣∣2k E{

ξ̄j(r2)
2k
}
≤ (#D)2 (C2C7)

2k B3(k) σ
2k
n n−k

j . (B.27)

Property (B.23) expresses Aj(θ) as a sum of independent random variables, and hence, for

any integer k ∈ (1, 1
2
C1] where C1 is as in (B.2)(b), we can use Rosenthal’s inequality again,

together with (B.23) and (B.25)–(B.27), to show that

E|Aj(θ)|2k ≤ B2(k)

[
{varAj(θ)}k

+
∑
r1∈D

∑
r2∈D

∣∣K(r1)ωR2 Q−2
θ

(r1 − r2)
∣∣2k E{

ξ̄j(r2)
2k
}]

≤ B4(k)
[{

σ2
n n

−1
j q (#D)2

}k
+ (#D)2

(
σ2
n n

−1
j

)k]
≤ B5(k)

{
σ2
n n

−1
j q (#D)2

}k
, (B.28)

where q is as at (B.1) and the last inequality holds if k (and hence C1 in (B.2)(b)) is taken

sufficiently large. To obtain the last inequality in (B.28), we used the lower bound n−c3 ≤ q

(where c3 < 2d) in (B.6)(b) to ensure that (#D)2 (σ2
n n

−1
j )k = O[{σ2

n n
−1
j q (#D)2}k] for

sufficiently large k. The argument here requires c3 ≤ 2d (1− k−1).

By (B.3) and (B.6)(b), n−1
j (q+1) ≤ n−1

min (q+1) = O(n−(c1−c4)), where c4 is as in (B.6)(b)

and c ≡ c1 − c4 > 0. Hence, by (B.28) and Markov’s inequality,

sup
θ∈Θ

P
{
|Aj(θ)| > ϵσn n

−1/2
min q1/2#D

}
≤ B6(k) (ϵ n

c
)−k

for all ϵ > 0. Therefore, if Θn ⊆ Θ satisfies

#Θn = o(nkc) (B.29)

then, for all ϵ > 0,

P

{
sup
θ∈Θn

|Aj(θ)| > ϵσn n
−1/2
min q1/2 #D

}
→ 0 . (B.30)

Recall that Θ is a compact subset of a finite-dimensional Euclidean space. Given B6 > 0

we can choose B7 > 0, depending on B6 and on C5 and c2 in (B.5)(b), so large that for all

sufficiently large n there exists a set Θn ⊆ Θ such that (B.29) holds if k is chosen sufficiently
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large (i.e. if C1 in (B.2)(b) is taken sufficiently large), and the following property obtains: if

θ′ ∈ Θn denotes the value nearest to θ ∈ Θ then

sup
t∈T

ϕωR
(t)2 |ϕωQθ

(t)−2 − ϕωQθ′
(t)−2| ≤ n−B7 .

This bound, together with (B.22), implies that, with C3 as in (B.4),

sup
θ∈Θ

|Aj(θ)− Aj(θ
′)| ≤ (2π)−d n−B7

∫
T

∣∣ℜ(ϕK ϕ∗
ξ̄j

)∣∣
≤ (2π)−d C3 (#D)n−B7

∫
T
|ϕξ̄j |

= Op

{
σn n

−1/2
j n−B7 (#D)3/2

}
, (B.31)

where the last identity follows from the bound
∫
T |ϕξ̄j | = Op{σn n

−1/2
j (#D)1/2}. Since #D =

O(nd) (see the definition (3.4) of D, and the first paragraph of this section) then, by taking

B7 sufficiently large, we can deduce from (B.30) and (B.31) that

sup
θ∈Θ

|Aj(θ)| = Op

(
σn n

−1/2
min q1/2 #D

)
. (B.32)

Together, (B.21) and (B.32) imply that

sup
θ∈Θ

|D42(θ)| = Op

(
αn σn n

−1/2
min q1/2 #D

)
. (B.33)

B.2.5 Step 5: Formula for classification error

Combining (B.8), (B.9), (B.16), (B.19), (B.20) and (B.33), and bearing in mind that these

properties were derived under the assumption that the new variable Y came from population

Π1 (that is, ν = ν1), we deduce that when Y comes from Π1,

D(θ) =α2
n

∫
T
|ϕK |2 |ϕωR

|2 |ϕωQθ
|−2 + αn σn

{
(2π)d

∫
T
|ϕK |2 |ϕωR

|4 |ϕωQθ
|−4

}1/2

Z(θ)

+Op

(
σ2
n n

−1/2
min q#D + αn σn n

−1/2
min q1/2#D

)
, (B.34)

uniformly in θ ∈ Θ.

The random variable Z(θ) in (B.34) has, by construction (see (B.19) and the line above

(B.20)), zero mean and unit variance. We shall use Lindeberg’s central limit theorem to prove

that Z(θ) is asymptotically normal N(0, 1). In view of (B.2), (B.18) and (B.19), to establish
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that Lindeberg’s condition (see e.g. Chung 1974, p. 205) holds uniformly in θ ∈ Θ it suffices

to prove that for some k > 0, and with P = ωR2 Q−2
θ
,

sup
θ∈Θ

∑
r2∈D |

∑
r1∈D K(r1)P (r1 − r2)|k+2{ ∫

T |ϕK |2 |ϕωR
|4 |ϕωQθ

|−4
}(k+2)/2

→ 0 (B.35)

as n → ∞. Now,∣∣∣∣ ∑
r1∈D

K(r1)P (r1 − r2)

∣∣∣∣2 ≤
{∑

r∈D

K(r)2
}{ ∑

r∈Zd

P (r)2
}

≤ C2
2 (#D) (2π)d

∫
T
|ϕωR

|4 |ϕωQθ
|−4

= C2
2 (2π)

d (#D) q = B8 (#D)−1 · (#D)2 q

≤ B9 (#D)−1

∫
T
|ϕK |2 |ϕωR

|4 |ϕωQθ
|−4 , (B.36)

where C2 is as in (B.4), B8 and B9 do not depend on θ, and the final inequality in (B.36) fol-

lows from (B.5)(c). Hence, the left-hand side of (B.35) is bounded above by B9 (#D)1−(k+2)/2,

which converges to zero if k > 0. It can be proved from this property that the following uni-

form version of the central limit theorem holds:

sup
θ∈Θ

sup
−∞<x<∞

∣∣P{Z(θ) ≤ x} − Φ(x)
∣∣ → 0 . (B.37)

Note that, in view of (B.5)(c), the multiplier of Z(θ) on the right-hand side of (B.34)

is bounded below by a constant multiple of αn σn q
1/2 #D, and so is of strictly larger order

than the remainder term Op(αn σn n
−1/2
min q1/2#D) in (B.34); and, by (B.5)(d), the first term

on the right-hand side of (B.34) is bounded below by a constant multiple of σ2
n q#D, and so

is of strictly larger order than the remainder term Op(σ
2
n n

−1/2
min q#D) in (B.34). Combining

the results in the previous sentence with (B.34) and (B.37) we deduce that, uniformly in

θ ∈ Θ,

D(θ) = {1 + op(1)}α2
n

∫
T
|ϕK |2 |ϕωR

|2 |ϕωQθ
|−2 (B.38)

+{1 + op(1)}αn σn

{
(2π)d

∫
T
|ϕK |2 |ϕωR

|4 |ϕωQθ
|−4

}1/2

Z(θ) .

Together, (B.37) and (B.38) imply that, with un defined as at (3.7), we have:

sup
θ∈Θ

∣∣P{D(θ) < 0
∣∣ Y ∈ Π1

}
− Φ(−un)

∣∣ → 0
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as n → ∞, and similarly,

sup
θ∈Θ

∣∣P{D(θ) > 0
∣∣ Y ∈ Π2

}
− Φ(−un)

∣∣ → 0 .

This establishes (3.8).

B.3 Proof of Theorem 2

Formula (B.38), for D(θ) defined at (B.7), remains correct if we interpret it as applying in the

case where Y is drawn from the training sample Y1, and if we regard Z(θ) as being computed

from this particular Y . (Recall that Z(θ) is calculated from Y alone; it has no dependence

on Y .) Suppose we can extend (B.38) so that it applies not just to one such choice of Y , but

uniformly over all n1 such choices, giving values (D[ℓ](θ), Zℓ(θ)), for 1 ≤ ℓ ≤ n1, of the pairs

(D(θ), Z(θ)). Here n1 is reduced to n1 − 1, but n2 remains unchanged, and we have

D[ℓ](θ) = {1 + op(1)}α2
n

∫
T
|ϕK |2 |ϕωR

|2 |ϕωQθ
|−2

+{1 + op(1)}αn σn

{
(2π)d

∫
T
|ϕK |2 |ϕωR

|4 |ϕωQθ
|−4

}1/2

Zℓ(θ) , (B.39)

where the op(1) remainders are of the stated orders uniformly in 1 ≤ ℓ ≤ n1 as well as in

θ ∈ Θ.

Computing the indicator function I{D[ℓ](θ) > 0} on the left-hand side of (B.39), averaging

over ℓ, and applying a law of large numbers for the sum over ℓ = 1, . . . , n1 of the independent

random variables I{Zℓ(θ) > un}, we obtain:

1

n1

n1∑
ℓ=1

I{D[ℓ](θ) > 0} = Φ(−un) + op(1) ,

uniformly in θ ∈ Θ. Multiplying this by π1, computing its counterpart when Y is drawn from

Y2 rather than Y1, and adding them together, we obtain exactly, on the left-hand side, ê(θ),

and on the right-hand side, 1−Φ(un)+ op(1), uniformly in θ ∈ Θ. This is equivalent to (3.9)

and so completes the proof of Theorem 2.

It remains to verify that (B.39) holds uniformly in 1 ≤ ℓ ≤ n1 and θ ∈ Θ. In describing

how this is done we refer to formula (B.8) for D(θ), taking a subscript ℓ (given above in

square brackets, so as not to cause confusion with notation below (B.8)) to be understood.
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The quantity D1(θ) does not alter, and the bound (B.14) for 1
2
|D2(θ)| remains valid

except that the pair (ξ, ξ̄1) now has n1 different versions (ξℓ, ξ̄1ℓ) say, each producing its

own D2(θ). (There is only one version of ξ̄2.) However, using Parseval’s inequality to bound

E|ϕξℓ|2k and E|ϕξ̄1ℓ |
2k for any k ≥ 1, and noting that (B.2)(b) permits us to take k as large

as needed, we obtain:

E
{

max
1≤ℓ≤n1

|ϕξ̄1ℓ(t)|
2
}
≤

[
E

{ n1∑
ℓ=1

|ϕξ̄1ℓ(t)|
2k

}]1/k
= n

1/k
1

{
E|ϕξ̄11(t)|

2k
}1/k

= O
(
n
−(k−1)/k
1 σ2

n #D
)
,

uniformly in t ∈ T . This bound replaces the first part of (B.15), and the second part of (B.15)

can similarly be replaced by O(n
1/k
1 σ2

n #D). This argument shows that (B.16) continues to

hold, this time uniformly over all leave-one-out cases, provided we replace n
−1/2
min on the

right-hand side by n
ϵ−(1/2)
min , where ϵ > 0 can be made as small as we like by choosing C1,

in (B.2)(a), sufficiently large. That change to (B.16) requires us to replace n
−1/2
min by n

ϵ−(1/2)
min

in the Op(σ
2
n n

−1/2
min q#D) term on the right-hand side of (B.34), but this alteration does not

influence any of the subsequent arguments in step 5.

The term D3j(θ), which depends only on Y (or, in the present circumstance, on an

observation drawn from Y1) can be dealt with exactly as before. Moreover, an upper bound

to |D4j(θ)| can be derived, uniformly over all leave-one-out choices, by following the argument

given in the previous paragraph for D2(θ). In this way it can be proved that the contribution

made by D4j(θ) to D(θ) can be accommodated in the αn σn n
−1/2
min q1/2#D remainder term in

(B.34), provided that n
−1/2
min on the right-hand side is replaced by n

ϵ−(1/2)
min , again for arbitrarily

small ϵ > 0 and uniformly over all leave-one-out cases; and that this has no bearing on later

arguments in step 5.
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