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A Supplement to Numerical Implementation

A.1 Breaking ties for the centroid classifier

In cases where €(6) achieves its minimum at several values 6, we break the ties by choosing

6 to minimize

it ™
_m-—]\/[(@) ; So.—i1(Yi1) I{Sp.—1(Ya) <0}

1—m n2
—l—m Z Sp.—ia(Yia) I{Sp._ia(Yiz) > 0}

i=1
over 6 for which e(#) is tied at the least value it takes. Here, M (6) is a normalizing factor

defined by M () = max;_; 5 nj_l S D ’Zij;g(’f’) — Z](_i) (r; 0)|2.

A.2  Other choices of spread function wg,

Alternatives to the two-parameter family w,,. ¢ introduced in Section 2.3 include taking wq,
to have relatively narrow support, and choosing the weights wg,(r) to be small in number,
for example to equal 6; if ¢;_y < ||r|| < ¢; for 1 < j < gandr € Z% and to equal 0 otherwise.
Here, 7[> = > 1473, 0 = co < c1 < ... < ¢ are constants, 6, > ... > 60, > 0, and the

weights would usually be normalized so that ) ;4 wg,(r) = 1.

Remark 1. In some instances we may have in mind a choice of models for )y, potentially

with different values, ¢, of the length of . We can choose among models, including among
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Table 1: Values of o, 6 and signal to noise ratio for models (a) and (b)

Model (a)
PR 0.75 0.5 0.25 0.75 0.5 0.25 0.75 0.5 0.25
LR 3 3 3 2 2 2 1 1 1
o 5 1 1 2 1 1 1 1 .8

SNR (kz = 1) 0.5682 | 1.8097 | 1.2231 | 1.2600 | 1.6007 | 1.0687 | 1.9844 | 1.2450 | 1.0484
SNR (kz = 2) 0.4187 | 1.3304 | 0.8329 | 0.9278 | 1.1539 | 0.6645 | 1.4082 | 0.7867 | 0.5793

Model (b)
PR 0.75 0.5 0.25 0.75 0.5 0.25 0.75 0.5 0.25
lr 3 3 3 2 2 2 1 1 1
o 1 0.5 0.5 1 0.5 0.25 0.5 0.5 0.25

SNR (kz =1) 1.6122 | 2.0540 | 1.3882 | 1.4300 | 1.8167 | 2.4258 | 2.2523 | 1.4130 | 1.9039
SNR (kz = 2) 1.9603 | 2.4915 | 1.5599 | 1.7376 | 2.1610 | 2.4888 | 2.6372 | 1.4733 | 1.7359

values of ¢, by using crossvalidation to assess the impact that this choice has on classification

error, or by using Monte Carlo simulation from models that seem to mimic the data well.

A.3 Complements to numerical section
A.3.1 Signal to noise ratio

For each example, we calculated a signal to noise ratio SNR, which we defined as

SNR = max Tpalr) — ul(m}’. (A.1)
€0 Jvar(RE(r)

The values of SNR are shown in Tables 1 to 3 for each example considered in our numerical

work.

A.3.2 Additional figures for Section 4.3.3

Here we show additional results obtained when applying to inversion method to the centroid
classifier when the errors errors R, &;;(r) were non stationary. As in Section 4.3.3, we inverted
the data through Qg_clv. Figures 1 and 2 show boxplots of the percentage of missclassified
curves for the centroid classifier constructed from the data Qe:clvyij’ Y;; and TleZ-j, where
Y;; was generated as in (4.5), with, p; from model (a) and model (b), respectively, R, as in

(4.6) and « = 10.



Table 2: Values of o, 6 and signal to noise ratio for models (c¢) and (d)

Model (c)
PR 0.85 0.5 0.85 0.5 0.85 0.5
i 3 3 2 2 1 1
o 5 1 5 1 2 .5

SNR (kz =1) 1.5615 | 1.7838 | 1.2291 | 1.3955 | 1.9155 | 1.6884
SNR (kz = 2) 1.3669 | 1.5540 | 1.0758 | 1.1690 | 1.6344 | 1.0868

Model (d)
PR 0.85 0.5 0.85 0.5 0.85 0.5
lr 3 3 2 2 1 1
o 2 1 2 0.5 1 .5

SNR (kz =1) 0.6401 | 0.2925 | 0.5039 | 0.4577 | 0.6282 | 0.2769
SNR (kz = 2) 0.6101 | 0.2775 | 0.4802 | 0.4174 | 0.5836 | 0.1940

Table 3: Values of o, 6), and signal to noise ratio for models (c¢) and (d)

Model (c)
O 30 20 10
o 5 2.5 1

SNR (kz =1) 1.4531 | 1.9676 | 2.5689
SNR (kz =2) 0.3182 | 0.4311 | 0.5645

Model (d)
Onr 30 20 10
o 2.5 1 1

SNR (kz =1) 0.4766 | 0.8066 | 0.4213
SNR (kz =2) 0.1136 | 0.1924 | 0.1008

Figure 3 shows similar results for the bivariate examples (c) and (d), when the data were
generated according to (4.5) with R, as in (4.7) and a = 4. These results are similar to those

discussed in Section 4.3.3 of the paper.

A.3.3 Logistic classifier based on PLS projection

Let I;; = j — 1, where Y;; comes from population II;, with 7 = 1 or 2, and let D;; denote

one of the four versions of the observations that we use to construct our classifiers (i.e., D;;

~

denotes any of Y;;, T7Y;;, R7'Y;; or Q@ 'Y;;). The PLS logistic classifier assumes that the
regression

g9(z) = E(I;; | Dij = x)
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Figure 1: Boxplots of percentage of misclassified observations calculated from 100 simulated samples from
model (a) when 0r = (pr,r, ¢r), With pr, = pr + 0.1cos(r/10), pr = 0.75, 0.5 and 0.25 in rows 1, 2 and
3, respectively, and £ = 3, 2 and 1 in columns 1, 2 and 3, respectively. In each group of 9 boxes, the first
three are for ny = ny = 10 and kz = 2, the next three are for ny = ny = 25 and kz = 2, and the last three
are for n; = ny = 25 and kz = 1. In each group of three boxes, the data are transformed by Q= (first box),
T~ (second box), or untransformed (third box).

follows a logistic model,

g(z) = exp(ag + ay fD z3)
1+ exp(ao + oy fD 555)7
where o and «; € R and f is a function defined on D. With the PLS approach, g is taken

(A.2)

equal to the slope, 3, of the linear approximation [, + fD BD;; to the regression function
E(1L; | Dij). Then, g is estimated by the estimator B obtained by PLS (see Delaigle and
Hall (2012a,b) for details about the PLS estimator), and « and a4 are estimated by &y and
ay, obtained by a least-squares fit of I;; on [ D,-j//B\, using the logistic model (A.2) with
replaced by B .

The regression function g is then estimated by

_ exp(do + ay [, )
g(z) = — =,
1+ exp(ap + ay [ 20)

and the classifier assigns a new data function D to population II; if g(D) < 0.5 and to
population Il; otherwise. The partial least-squares slope estimator B depends on a smoothing
parameter m, which is the number of PLS basis functions employed to calculated E . This m

is chosen by crossvalidation, together with 6.
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Figure 2: Boxplots of percentage of misclassified observations calculated from 100 simulated samples from
model (b) when 0r = (pr.r,£r), with pr, = pr + 0.1cos(r/10), pr = 0.75, 0.5 and 0.25 in rows 1, 2 and
3, respectively, and £ = 3, 2 and 1 in columns 1, 2 and 3, respectively. In each group of 9 boxes, the first
three are for ny = ny = 10 and kz = 2, the next three are for ny = ny = 25 and kz = 2, and the last three
are for n; = ny = 25 and kz = 1. In each group of three boxes, the data are transformed by Q= (first box),
T~ (second box), or untransformed (third box).

A.3.4 Simulation results for unbalanced samples

We also applied the centroid classifier to unbalanced training samples. The results for models
(a) and (b), with ny = 10, ny = 25 and kzr = 1 or k7 = 2, are shown in Figures 4 and 5. We

can see that the results are similar to those we obtained when n; = na.

A.3.5 Simulation results for other classifiers

We applied the SVM classifier and the logistic PLS classifier to each of the four versions of
the data: the untransformed noisy data Y;¥°V, the data T-1Y,NV_ the data @_1}/;N°W and the
data R7'YN°". We used the same simulation settings as in Section 4 (same models, same
values of O and 67, same training and test sample sizes, etc), and as in Section 4 we report
the results of our simulations by showing boxplots of the number of observations misclassified
by each classifier, for each version of the data. In the case @_1YiNeW we chose 6 by minimizing
the crossvalidation criterion defined in (2.12), taking C to be the SVM classifier or the logistic
PLS classifier. In case of ties for the SVM classifier, we took the smallest value of p and 6
that minimize crossvalidation. For the logistic classifier, we broke the ties using the method
suggested in Delaigle and Hall (2012b).

Figures 6 to 9 show the results for the SVM classifier, for models (a) to (d), training
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Figure 3: Boxplots of percentage of misclassified observations calculated from 100 simulated
samples from models (¢) (row 1) and (d) (rows 2) when R, is of the form at (4.7), with
Ory;, = On + 2 - [4cos(rj/2)] and Oy = 30, 20 and 10 in columns 1, 2 and 3, respectively. In
each group of 9 boxes, the first three are for ny = ny = 10 and k7 = 2, the next three are for
n1 = ng = 25 and kz = 2, and the last three are for ny = no = 25 and kz = 1. In each group

of three boxes, the data are transformed by Q! (first box), 7! (second box), or untransformed
(third box).

sample sizes ny = ny = 10 or n; = ny = 25, and when the grid D has edge width kz = 1 or
kz = 2. Figures 10 and 11 show the results for the logistic classifier, for models (a) and (b)

for training samples of sizes n; = ny = 10 or n; = ny = 25, and when the grid D has edge
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Figure 4: Boxplots of percentage of misclassified observations calculated from 100 simulated samples from
model (a) when 0 = (pg,Lr), with pr = 0.75, 0.5 and 0.25 in rows 1, 2 and 3, respectively, and £ = 3, 2
and 1 in columns 1, 2 and 3, respectively. In each group of 8 boxes, the first four are for ny = 10, no = 25
and k7 = 2, and theAnext four are for n; = 10, no = 25 and kz = 1. In each group of four boxes, the data
are transformed by Q! (first box), R™! (second box), T~! (third box), or untransformed (fourth box).
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Figure 5: Boxplots of percentage of misclassified observations calculated from 100 simulated samples from
model (b) when 0r = (pgr,¢r), with pg = 0.75, 0.5 and 0.25 in rows 1, 2 and 3, respectively, and ¢ = 3, 2
and 1 in columns 1, 2 and 3, respectively. In each group of 8 boxes, the first four are for n; = 10, ny = 25
and kz = 2, and the next four are for n; = 10, na = 25 and kz = 1. In each group of four boxes, the data
are transformed by Q! (first box), R™! (second box), T~! (third box), or untransformed (fourth box).
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Figure 6: Boxplots of percentage of observations misclassified by the SVM classifier, calculated from 100
simulated samples from model (a) when 6 = (pg,£fr), with pr = 0.75, 0.5 and 0.25 in rows 1, 2 and 3,
respectively, and /g = 3, 2 and 1 in columns 1, 2 and 3, respectively. In each group of 12 boxes, the first
four are for n; = no = 10 and kz = 2, the next four are for n; = ny = 25 and kz = 2, aAnd the last four are
for n; = ny = 25 and kr = 1. In each group of four boxes, the data are transformed by Q! (first box), R~!
(second box), T—! (third box), or untransformed (fourth box).
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Figure 7: Boxplots of percentage of observations misclassified by the SVM classifier, calculated from 100
simulated samples from model (b) when 0r = (pgr,fr), with pg = 0.75, 0.5 and 0.25 in rows 1, 2 and 3,
respectively, and /g = 3, 2 and 1 in columns 1, 2 and 3, respectively. In each group of 12 boxes, the first
four are for n; = ny = 10 and kz = 2, the next four are for n; = ny = 25 and kz = 2, and the last four are
for n; = ny = 25 and kz = 1. In each group of four boxes, the data are transformed by Q! (first box), R~!
(second box), T~ (third box), or untransformed (fourth box).
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Figure 8: Boxplots of percentage of observations misclassified by the SVM classifier, calculated from
100 simulated samples from models (c) (rows 1 and 2) and (d) (rows 3 and 4) when 0r = (pg, {r),
with pp = 0.85 and 0.5 in rows 1,3 and 2,4 respectively, and £g = 3, 2 and 1 in columns 1, 2 and
3, respectively. In each group of 12 boxes, the first four are for n; = ny = 10 and kz = 2, the next
four are for n1 = no = 25 and kz = 2, and the last Afour are for n; = no = 25 and kz = 1. In each
group of four boxes, the data are transformed by Q~! (first box), R™! (second box), T~! (third
box), or untransformed (fourth box).
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Figure 9: Boxplots of percentage of observations misclassified by the SVM classifier, calculated
from 100 simulated samples from models (¢) (row 1) and (d) (rows 2) when R is of the form at
(4.3), with 8, = 30, 20 and 10 in columns 1, 2 and 3, respectively. In each group of 9 boxes, the
first three are for ny = ny = 10 and k7 = 2, the next three are for ny = ny = 25 and kz = 2,
and the last three are for n; = no = 25 and k7 = 1. In each group of three boxes, the data are

transformed by Q! (first box), T~ (second box), or untransformed (third box).
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Figure 10: Boxplots of percentage of observations misclassified by the logistic classifier, calculated from
100 simulated samples from model (a) when g = (pgr,fr), with pg = 0.75, 0.5 and 0.25 in rows 1, 2 and
3, respectively, and £ = 3, 2 and 1 in columns 1, 2 and 3, respectively. In each group of 8 boxes, the first
four are for n; = ny = 10 and/\kz = 2, and the next four are for n; = ny = 25. In each group of four boxes,
the data are transformed by Q1 (first box), R™! (second box), T~ (third box), or untransformed (fourth
box).
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Figure 11: Boxplots of percentage of observations misclassified by the logistic classifier, calculated from
100 simulated samples from model (b) when 6 = (pr,¢r), with pr = 0.75, 0.5 and 0.25 in rows 1, 2 and
3, respectively, and £g = 3, 2 and 1 in columns 1, 2 and 3, respectively. In each group of 8 boxes, the first
four are for n; = ny = 10 and kz = 2, and the next four are for n; = ny = 25. In each group of four boxes,
the data are transformed by Q~! (first box), R~! (second box), -1 (third box), or untransformed (fourth
box).
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B Technical Arguments

B.1 Regularity conditions

We define
q :/ |G|t sUD ’¢w%\_4, (B.1)
T EE)
where T denotes a general subset of (—m, 7)% We let ©, the class of values of the parameter
0 over which we search, be a compact set of vectors in a finite-dimensional Euclidean space.
Below, the notation Cy, (s, ... and ¢y, o, ... will denote positive constants, large in the first
instance and small in the second.

We assume that the white-noise variables &; in (2.3) are such that:

(a) &(r)/o, are independent and identically distributed with zero mean
and unit variance, for r € D, j = 1,2 and all n; (b) E|&(r)/0,|?" < oo, (B.2)
where C > 0 is chosen sufficiently large, depending on ¢y, ¢o and ¢;.
(The constants ¢y and ¢4 are introduced in (B.5)(b) and (B.6)(b), respectively.) Property
(B.2) requires that the noise variables be rescaled quantities with zero mean, unit variance
and sufficiently many finite moments.
We also assume that the training sample sizes n; and ny satisfy:

ny and ng are functions of n, and for some ¢; > 0, 1 < Ny, = min(ng, ng) (B.3)

for all n.
This condition is equivalent to asking that training sample sizes increase at least polynomially
fast as functions of the number of points in the grid D.
Recall that #D = (2n + 1)¢ denotes the number of vertices in the lattice D, defined
at (3.4). We model the distance between Ty and Tus by asking that:

Or(ui—ps) = O bup P, where |K(r)] < Cy for all + € D and

B4
o ()] < Cs #D forallt € T. (B.4)

To understand this condition, it is helpful to interpret K(r) as the value of a function, =
say, supported on [—1, 1], at the point r/n, where n diverges to infinity in our asymptotic
model. Let ¢, (¢) denote the continuous Fourier transform of v, where ¢t = (ty,...,t;) € R
For n large enough, we can expect |¢x| to be well approximated by (#D) |¢,|. The last part
of (B.4) reflects this property.
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We assume too that the linear transformations @)y and R have the following symmetry
and Holder continuity properties:

(a) the Fourier transforms ¢y, and ¢, are real-valued; (b) the func-

tional |gz5wQ0| satisfies sup,er Gy (t)? |gwa9 (t)2 — gwaB, ()72 < Cyns |0 —
¢'||2, uniformly in 6,0/ € ©; (c) for all sufficiently large n,

S 0] [ dup* |Pug, ™% > Cs(#D)*q; (d) for all sufficiently large n,

Jr 0k (bl |Gug, |72 = Cr oy (#D) q.
Property (B.5)(a) asks that the functions wg, and wgr be symmetric. A longer proof can deal
with cases of asymmetry, but symmetric models would almost always be used in practice.
Condition (B.5)(b) asks that @y and R satisfy a Holder continuity condition in 6; in view
of the factor n%, and since ¢, can be arbitrarily small, it is quite mild. Properties (B.5)(c)
and (B.5)(d) reflect the fact that |¢px| ~ (#D) |¢,|, as noted below (B.4).

We expect the transformation (Qy to be reasonably close to R, and the following assump-

tion responds to that property:

(a) SUP,cp SUPgeo |Wpe Q;” (r)] < C%; (b) the quantity ¢, at (B.1), satisfies (B.6)
n~® < g < n* for all sufficiently large n, where 0 < ¢35 < 2d, 0 < ¢4 < ¢4 '

and ¢ is as in (B.3).
Here wp. Q;> is the spread function associated with R? 9—27 that is

R2Q;%(r) =Y wpe 0;2 ()C(r +5).

SEZL
We conclude with an example illustrating (B.5) and (B.6). Let py be the probability

mass function at (2.5) and let @)y denote the corresponding transformation, with associated
Fourier transform ¢, at (2.9). Then there exists py € (0,1) and Dy € (0,1) such that
D¢ < Pug, (tp) < Dy for all t € (—m,7) and all |p| < po. Put © = [—pg, po], let Oy € O,
and let R be the transformation Qg,. Then |@, (t)||¢ug, (1) is bounded away from zero
and infinity uniformly in ¢t € (—m,7)% and in p € O, so (B.5)(c) and (B.5)(d) reduce to
the assumption that [ [¢x|* > C(#D)? for some constant C' > 0. That this condition
holds for general choices of K follows from the fact that, in such cases, ¢x ~ (#D) ¢., for
a conventional, continuous Fourier transform ¢.; see the argument below (3.4). Moreover,
by taking the inverse Fourier transform we deduce that (B.6)(a) holds. Note too that these

results are valid when 7 = (—, 7)? and no smoothing is used.
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B.2 Proof of Theorem 1

B.2.1 Step 1: Derivation of simpler criterion for classifier

The simpler criterion is at (B.8) below. To derive it, put Y; = nj_l S Yij and let Z;9(r) be
as defined immediately below (3.1). The Fourier transforms of Y and Y; are, by (2.6),

oy (t) = Z Y (r) exp (2 th) , (by Z Z Yy (r exp )

rezd k=1 rezd

Likewise, the Fourier transform of Zy(r) — Z;4(r) equals

{ov(t) = b7,(t) } bug, () It €T).

Therefore, since by (3.6) Zy is supported on D, then by Parseval’s identity,

> 120(6) = Zya)f” = 27 [ oy — 03, P long, I

reD
and so the classifier represented by (3.1) is given equivalently by the algorithm: Assign Y to
I1; if and only if

= [1ov = 0P l0ug, I = [ 1oy =05 log, |7 >0, (B
T T

Write E for the expectation operator, put v; = T'u;, write v for the expected value of
Y when the latter is drawn from one or other of II; and Ily, and put ¢o = (1 — E)¢y and
¢a; = (1 — E)dy,, for j =1,2. Then,

o) = | {ww\? vt 168 asf? — 65,
+2 {%qbll—llg %¢A—A2 + %d)I/—I/Q %¢A—A2

_%Qbu—m %¢A—A1 - %¢V—V1 %¢A—A1 }:| |¢UJQ9 |_2
= D1(0) + D2(0) +2{D32(0) — D31(0)} —2{Dy(6) — D41(0)}, (B.8)

where
D1(9) = /7_ QSV V2|2 Qbu V1| }|¢WQ0|_27
Do) = [ {lon sl = lon P long, I,

13



Dy(6) = [r [ R0\, Roa + S0, $08 } g, |72
D) = [ {Roves Ros, +96,00, 30 Flong, I

B.2.2 Step 2. Formula for D;(f) and bound for D,(0)

To simplify D;(0) take, for instance, v = v; and observe that, by (B.4),

/ Gininl 6 |2 = 02 / 68 B ? [ 6, |72 (B.9)
T T

To bound Ds(), in a slight modification of the notation at (2.3) we write Y; = v; + R(;)
and Y = v + R(£), where §; = nj_l > &i, and the random vectors &j; (for 1 < ¢ < n; and
j = 1,2) and ¢ are independent and identically distributed white noise; see (B.2). In this
notation, A = R(€), A; = R(§)),

P = G¢ Pup s PA; = g, P (B.10)

where, using (3.6),

Gelt) =D &(r) exp (ir"t), ¢g (t) =Y &(r) exp (irt) . (B.11)

reD reD
Also,
B@) = ’¢A*A2|2 - |¢A*A1|2
= Roa,—n, Ro2a-A—n, +S0a, -, SP2a-A,-A, - (B.12)
Defining
o) = I O 51 61, D1 519

we deduce from (B.10)-(B.12) that, uniformly in 6 € ©,
LD < 3 [ 16110, I
T
< [losaillonn-aial o,
[ e-allre o ala
i

1/2 1/2
{/ |¢£1—§2|2QO} {/ |¢2§—§1_§2|2QO} : (B.14)
T T

14
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and moreover,
sup E]¢gj(t)|2 < nj_l o2 #D, sup E|oe(t)]? < o2 #D. (B.15)
teT teT

Therefore, noting that ¢ at (B.1), and gy at (B.13), satisfy [ gy < {(2m)%¢}'/* where the

latter bound follows from the Cauchy-Schwarz inequality, we have:

sup | Do(8)| = O, (a2 nl? g #D) . (B.16)

06@ n mln
B.2.3 Step 3: Formula for Ds;(6)

As in step 2 we take v = vy, in which case D3; = 0 and

D32(9) = /7_ {%waﬂ/z %QbA + %Qﬁulfuz %¢A} ’waQe ‘72 . (Bl?)

Using the fact that ¢, is real-valued and letting a* denote the complex conjugate of a

complex number a, it can be deduced from (B.10), and the property ¢,,—,, = @, @up K in

(B.4), that

a;l [%{(bmfuz <t>} §R{¢A(t)} + %{¢V1*l/2 (t)} %{¢A<t>}:|
= R{Ox (1) G () ¢¢™(1) }

= Gunlt) HZK cos ( }{Zg cos ( H

+{ ; IT((T) sin (1 } {; 5’“ sin ( }
= s (t)* % ; K (r1) €(ra) cos {(ry —r2)'} .

['herefore,
(2m) ot / {3%@1_1,2 RoA + SOu, 0 %¢A} (b, |
’7—
(2m) ™4 E E K(r) /COS{ Ty —T3) t} Gup(t) ]ngWQe( )| 2 dt
T

ri1€D ro€D

- Z Z &(r2) Wr2 Q2 2 (11 — 1) = Z1(0), (B.18)

r1€D ro€D
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say. Note too that, defining A to be wp. 2 the spread function associated with the transform

R?2Q,?, we have:

r07 = var{Z(O)} =02 S {Z K(ry) A(ry — r2)}2
— (2n) o2 [F 0k [2 |Gl 16, |- (B.19)
Defining Z(8) = 7(6)/7(6), we deduce from (B.17) and (B.18) that, for all 0 € ©,
D3 () = (2m) o, Z(0) 7(6) . (B.20)
B.2.4 Step 4: Bound for Dy;(0)
Again we take v = vy, implying that Dy; = 0 and
Dyp(6) = (2m)% v, As(6) (B.21)
where
A,(0) = (27) 40! /T [RGB, + S0,y S0, |6 |7
= @ [ R dg) 10l e, I (B.22)

The arguments leading to (B.18) and (B.19) imply that

A;(0) = Z Z i(r2) Wh2 g2 2 (1 —1a), (B.23)
var{4;(0)} = (27)° /|¢K| ’¢wR’4‘¢wQ9| . (B.24)

Result (B.24) and assumption (B.4) imply that, with ¢ defined as at (B.1),
sup var{A;(0)} < Cioan;' q(#D)*. (B.25)
00
Rosenthal’s inequality implies that if &£ > 1 is an integer, and if By (k) = E|£(r)/o.|* (a
constant; see (B.2)(b)), then, for a constant By(k) depending only on k, and with Bs(k) =

By(k) {1+ Bi(k)},

E{&(r2)**} < By(k) o2F {n;* +ni™*" Bi(k)} < Bs(k) o2 n;". (B.26)
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The bound sup,cp |K(r)] < Cy in (B.4), and sup,.p suppeco |wge Q5> (r)] < C7 in (B.6)(a),
imply that
SN K () wps e (= 1) B{g(r2)*} < 2(Cy Cr) By(k) o 0", (B.27)
r1€D ro€D

Property (B.23) expresses A;(f) as a sum of independent random variables, and hence, for
any integer k € (1, 3 Cy] where C) is as in (B.2)(b), we can use Rosenthal’s inequality again,

together with (B.23) and (B.25)—(B.27), to show that
EIAOP < Bah) | {rard;(6))

+ 30 3T K ) wga g (= 1) [ E{gj(m%}}

r1 €D ro€D

VAN

k) [{a Lg (#D)2 ) + (#D)? (02 1)’1
< {0 Lq(#D) } (B.28)

where ¢ is as at (B.1) and the last inequality holds if £ (and hence C} in (B.2)(b)) is taken
sufficiently large. To obtain the last inequality in (B.28), we used the lower bound n= < ¢
(where ¢3 < 2d) in (B.6)(b) to ensure that (#D)?(o2n;")* = O[{o2n; " q(#D)*}*] for
sufficiently large k. The argument here requires c3 < 2d (1 — k1),

By (B.3) and (B.6)(b), nj_l (q+1) <n_l (g+1) = O(n~(e1=)) where ¢, is as in (B.6)(b)
and ¢ = ¢; — ¢4 > 0. Hence, by (B.28) and Markov’s inequality,

sup P{|A;()] > o, n i g2 #D} < Bg(k) (e nc)_k
for all € > 0. Therefore, if ©,, C © satisfies
#0,, = o(n™) (B.29)
then, for all € > 0,
P{ esugp |A;(0)] > eoy, n 1% g\ #D} — 0. (B.30)
€0n

Recall that © is a compact subset of a finite-dimensional Euclidean space. Given Bg > 0
we can choose By > 0, depending on Bg and on C5 and ¢, in (B.5)(b), so large that for all
sufficiently large n there exists a set ©,, C © such that (B.29) holds if k is chosen sufficiently
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large (i.e. if C in (B.2)(b) is taken sufficiently large), and the following property obtains: if

0 € ©,, denotes the value nearest to 8 € © then

SUD Guug (1)? [ g, (1) = dug,, (1) < 77

This bound, together with (B.22), implies that, with C3 as in (B.4),

sup |4;(0) — A,(0)] < (2m) 0P /T R (6x 02|

0cO
s Gr o ) w16
T
= Op{onn; " n P (#D)*?}, (B.31)
where the last identity follows from the bound [ |dg | = Op{on, nj_l/2 (#D)'/?}. Since #D =

O(n?) (see the definition (3.4) of D, and the first paragraph of this section) then, by taking
By sufficiently large, we can deduce from (B.30) and (B.31) that

sup |4;(6)| = Op(on i’ a'* #D) (B.32)
S

Together, (B.21) and (B.32) imply that

sup |Dys(0)] = O, (v 0 npt!” /> #D) . (B.33)
0cO

B.2.5 Step 5: Formula for classification error

Combining (B.8), (B.9), (B.16), (B.19), (B.20) and (B.33), and bearing in mind that these
properties were derived under the assumption that the new variable Y came from population

I1; (that is, v = 1), we deduce that when Y comes from II;,

1/2
D) = [ 100 00l e, 2+ v {20 [ forPloual 6,1} 200
+0 <a nmllf q#D + oo mllf q*? #D) , (B.34)
uniformly in 6 € ©.
The random variable Z(#) in (B.34) has, by construction (see (B.19) and the line above

(B.20)), zero mean and unit variance. We shall use Lindeberg’s central limit theorem to prove

that Z(0) is asymptotically normal N(0, 1). In view of (B.2), (B.18) and (B.19), to establish
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that Lindeberg’s condition (see e.g. Chung 1974, p. 205) holds uniformly in 6 € © it suffices

to prove that for some k > 0, and with P = wp. Q7%

ZTQED | ZrleD K(r) P(ri — 7“2)|kJr2
zu(g 2 4 _a (k+2)/2
€ {fT’¢K| ‘¢WR‘ ‘¢WQ9| }

— 0 (B.35)

as n — oco. Now,

2

IN

Z K(ry) P(ry —rg)

r1€D

(S xS por

reD rezd

< C2(#D) (2n)" /T Gl 9, I

2 (2m)  (#D) q = By (#D) - (#D)¢

< By (#D)" / 611?16, |7 (B.36)
T

where Cy is as in (B.4), Bg and By do not depend on 6, and the final inequality in (B.36) fol-
lows from (B.5)(c). Hence, the left-hand side of (B.35) is bounded above by By (#D)~*+2)/2,
which converges to zero if £ > 0. It can be proved from this property that the following uni-
form version of the central limit theorem holds:

sup sup |P{Z(0) <z} —®(z)] = 0. (B.37)

0O —oo<zr<o

Note that, in view of (B.5)(c), the multiplier of Z(#) on the right-hand side of (B.34)

is bounded below by a constant multiple of a,, o, ¢'/?

/2 4D) in (B.34); and, by (B.5)(d), the first term

#D, and so is of strictly larger order
than the remainder term O,(a, oy, nmm q
on the right-hand side of (B.34) is bounded below by a constant multiple of 62 ¢ #D, and so
is of strictly larger order than the remainder term O, (o2 m}f ¢#D) in (B.34). Combining

the results in the previous sentence with (B.34) and (B.37) we deduce that, uniformly in
0 €0,

DO) = {10, )0 [ onFlounl loug, I (B.33)
1/2
+{1+0,(1)} a0, {(QW)d/TWKP ||’ |Pug, |_4} Z(0).
Together, (B.37) and (B.38) imply that, with u,, defined as at (3.7), we have:
sup [P{D(0) <0|Y €Il } — ®(—u,)| =0
00
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as n — 0o, and similarly,
sup |P{D(0) > 0| Y €1y} — ®(—u,)| — 0.
0cO

This establishes (3.8).

B.3 Proof of Theorem 2

Formula (B.38), for D(0) defined at (B.7), remains correct if we interpret it as applying in the
case where Y is drawn from the training sample ), and if we regard Z(6) as being computed
from this particular Y. (Recall that Z(#) is calculated from Y alone; it has no dependence
on ).) Suppose we can extend (B.38) so that it applies not just to one such choice of Y, but
uniformly over all n; such choices, giving values (Djq(0), Z,(0)), for 1 < £ < ny, of the pairs

(D(0), Z(0)). Here ny is reduced to ny — 1, but ny remains unchanged, and we have
Duf) = {1+ 0,0l [ 10nF 16unl o, |

1/2
+{1+0p(1)}an0n{(27T)d/T|¢K|2|¢wRI4|¢WQ6|‘4} Z(0), (B.39)

where the 0,(1) remainders are of the stated orders uniformly in 1 < ¢ < ny as well as in
0 co.

Computing the indicator function I{Dy(#) > 0} on the left-hand side of (B.39), averaging
over ¢, and applying a law of large numbers for the sum over £ =1, ..., ny of the independent

random variables I{Z,(0) > w,}, we obtain:

nil Z I{D[g](g) > O} = q)(_un) + Op(l) )
(=1

uniformly in 6 € ©. Multiplying this by 71, computing its counterpart when Y is drawn from
Y, rather than ), and adding them together, we obtain exactly, on the left-hand side, €(6),
and on the right-hand side, 1 — ®(u,) 4 0,(1), uniformly in § € ©. This is equivalent to (3.9)
and so completes the proof of Theorem 2.

It remains to verify that (B.39) holds uniformly in 1 < ¢ < n; and 6 € ©. In describing
how this is done we refer to formula (B.8) for D(f), taking a subscript ¢ (given above in

square brackets, so as not to cause confusion with notation below (B.8)) to be understood.
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The quantity D;(6) does not alter, and the bound (B.14) for 5 |Ds(6)| remains valid

2
except that the pair (&,&;) now has n; different versions (&, &) say, each producing its
own Dy(6). (There is only one version of &.) However, using Parseval’s inequality to bound
E|¢e,|** and E|¢g,,|** for any k > 1, and noting that (B.2)(b) permits us to take k as large
as needed, we obtain:

/k

2{ s e (O} < HZ'% 'H =" {Blog, (0P} = 0(n """ 0 D).

uniformly in ¢ € 7. This bound replaces the first part of (B.15), and the second part of (B.15)

can similarly be replaced by O(n}/ * o2 #D). This argument shows that (B.16) continues to
~1/2

minon the

hold, this time uniformly over all leave-one-out cases, provided we replace n

right-hand side by nmml/ , where € > 0 can be made as small as we like by choosing (1,
e—=(1/2)

min

n (B.2)(a), sufficiently large. That change to (B.16) requires us to replace nmm by n:
in the O, (02 n 12y #D) term on the right-hand side of (B.34), but this alteration does not

min

influence any of the subsequent arguments in step 5.

The term D3;(#), which depends only on Y (or, in the present circumstance, on an
observation drawn from });) can be dealt with exactly as before. Moreover, an upper bound
to |D4;(0)| can be derived, uniformly over all leave-one-out choices, by following the argument

given in the previous paragraph for Dy(#). In this way it can be proved that the contribution

—1/2 1/2

min #D remainder term in

(1/2)

min

made by Dy;(#) to D(Q) can be accommodated in the o, o, n

(B.34), provided that n_, ? on the right-hand side is replaced by n_. /*, again for arbitrarily

mm

small € > 0 and uniformly over all leave-one-out cases; and that this has no bearing on later

arguments in step 5.
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