Supplemental Material

to

Expression of Fusion Proteins of Aspergillus terreus Reveals a Novel Allene Oxide Synthase

by

Inga Hoffmann, Fredrik Jernerén, and Ernst H. Oliw

From the Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala Biomedical Center, Uppsala University, SE-75124, Uppsala, Sweden

1. FIGURE LEGENDS

Fig. S1. LC-MS/MS analysis of the apparent D-KIE of 9*R*-DOX. The first and second chromatograms show the signal intensities of the internal standard (13-HOTrE) and 9*R*-HODE, respectively. The latter was obtained after incubation with $[{}^{13}C_{18}]18:2n-6$ and reduction to the alcohol. The third and fourth chromatograms show the signal intensities of the internal standard and 9*R*-HODE obtained after oxygenation of [11,11-2H2]18:2n-6, respectively and reduction to the alcohol. The signal intensities suggest a D-KIE of ~4.1.

Fig. S2. Western blot analysis of recombinant ATEG. A, ATEG_04755, 03171, and 03992 were obtained from expression in insect cells (*Sf21*), ATEG_02036 from expression in insect cells (*Sf9*), and ATEG_03992_sv, 00985, and 03580 from expression in *E. coli* (BL21). B, Western blot analysis of AOS·C1073S, AOS·N964D, and AOS·N964V, all obtained from expression in *E. coli* (BL21). The position of the protein size ladder was approximately as indicated.

Fig. S3. HPLC-MS/MS analysis of alcohols obtained from recombinant ATEG_03171, 04755, and 00985 after incubations with 18:2n-6 and reduction. Left, Analysis of 10-HODE obtained from incubation of recombinant ATEG_03171 and 18:2n-6. The top and bottom chromatograms show chiral separation of the characteristic ions (MS² m/z 295 \rightarrow 183 and 155, respectively, demonstrating that the *R*-stereoisomer is mostly formed). Middle, RP-HPLC-MS/MS analysis of 10-HODE formed by ATEG_04755. Right, Chiral separation of 8-HODE (MS² m/z 295 \rightarrow 157) formed from 18:2n-6 by recombinant ATEG_00985 indicating that the *R*-stereoisomer predominated.

Fig. S4. LC-MS analysis of trapped allene oxide. A, NP-HPLC-MS/MS analysis of 9-hydroxy-10methoxy-octadecadecenoic acid obtained after short time incubation of AOS with 9*R*-HPODE, yielding 9(10)-EODE, which was trapped with methanol. B, MS/MS spectrum of 9-hydroxy-10methoxy-octadecadecenoic acid (MS² m/z 325 \rightarrow full scan) with characteristic ions, m/z 307 (A⁻ -18), 293 (A⁻ -32, loss of methanol), and 275 (293-18).

Fig. S5. Fatty acid composition of *A. terreus* grown in liquid medium (2% malt extract). The MS spectrum shows the total scan of fatty acid carboxylate anions from nitrogen powder of mycelia after alkali treatment and extractive isolation analyzed by direct injection.

Fig. S6. Alignment of AOS (ATEG_02036) with 5,8-LDS (ATEG_03992) by ClustalW. This alignment shifts the relative positions of the Thr-Xxx-Xxx-Gly-Xxx-Val-Ala-Asn-Xxx-Xxx-Gln sequences (Fig. 5) six positions (see VANxxQ in line AOS 896 and in line 5,8-LDS 876).

Fig. S7. NP-HPLC-MS/MS analysis of oxidation products of AOS N964D and AOS Q967L. The top and bottom chromatograms show the TICs of MS² analyses (m/z 311 \rightarrow full scan) obtained after incubations of 9*R*-HPODE with AOS N964D and AOS Q967L, respectively.

2. FIGURES

Fig. S1

В

AOS	299	SEEARKKALAKQDEDLFQVARLVVNGLYVNISLHDYLRGLTNTHHSASDWTLDPRIAVGR
5,8-LDS	284	-SESNDKEYAKYDNNLFQTGRLVTCGLYINIILKDYVRTILNINRTNSTWSLDPRMDMKD
AOS	359	TFDPDCVPRCIGNQISAEFNLLYRFHSVISRRDEKWTNBFLKSLFPDLNKPLDQLTPQEF
5,8-LDS	343	GLLGDAAPLATGNQVSAEFNLIYRMHSCISQRDEKWTTDLYNDIFSDKGQBDIPLNEF
AOS	419	MMGLMRYEQSIDKDPSKREFGGLKRSPDGKFNDADLVQILKDSMEDPAGLFGPRNVPKAL
5,8-LDS	401	MMGVGKWEAGLPQQPAERPFAGLKRKPNGLFDDDDLVTIFKESVEDCAGAFGASHVPTIF
AOS	479	RMIEIAGIMSARKWDLGSLNEMRDFFKLKRHATFEDINPDPEIADLLRKLYDHPDMVEMY
5,8-LDS	461	KSIESLGIKQARAWNLATLNELRQYFGLTPHKTFEDINSDPYISEQLRRLYDHPDQVEIY
AOS	539	PGMFLEDAKPRLDPGCGGCPPYTVGRAVFSDAVTLVRSDRFLTLDYTASNLTNWGFREVQ
5,8-LDS	521	PGVIVEDTKESMLPGSGLCTNFTISRAILSDAVALVRGDRFYTVDYTPKQLTNWAFTEIQ
AOS	599	QDYDILG <mark>GSMFHKLIQRALP</mark> GWFPYNSLHATQPMFTRKMNEQIAREIGTIDHYSLADPAP
5,8-LDS	581	PKDSVDQ <mark>GHMFHKLVYRAFPNYF</mark> KGNSVYAHFPMVVPSENQKILTALGSAEKYSWDKPCF
AOS	659	PPRKIVLTDYATNIKVLKDQASFRVPWARYLNDMFPGKTYNDYMLGGDDPANAAQKK
5,8-LDS	641	IHPPQFINSHSTCVSILADQETFKVSWGDKIEFLMS <mark>NHD</mark> KIYGKDFMLSGDRLPNAESRK
AOS	716	LVHSILFSPDQFLDLLSETTTKLGSELLKANTLWLTKDLHQVDIIRDVAIPLNARIMADL
5,8-LDS	701	MMGAALYT-DQWEEEVKKFYEKITLKLLKKHSYKIAG-VNQVDIVRDVANLAQVNFCANV
AOS	776	FCLDMKTPENPTGSMNAATVYRHIMNVRIWGENNNDPALMLQRRKWAIESAEALIETTRK
5,8-LDS	759	FSLPIKTEASPRGIFTESEIYMIMAAVFAAIFYDADPANSFALNQAAREVTQQLGQVTMA
AOS	836	LVNEQAQ <mark>PAQSGVLKNLMTRR</mark> QATGTLRWYGNNVAKEMMEMGMSAEEVADICWLTAIGGV
5,8-LDS	819	NVELIHKTGFISNLVNGLQRHDVLSNYGIHMIQRLLASGLPASEIVWTHLLPTAGGM
AOS	896	GTPSG-VVANVMQYYFRYENIGHWEEIQKLVTQPDTPAADRTLRQYVLBANRLTSMECTV
5,8-LDS	876	VANQGQLFSQCLDYYLSEEGSVHLPEINRLAKEN-TPEADELLLRYFMEGARLRSSVGLP
AOS	955	RVCARPVTVDGHDFKPGEVIVNHLGLACRDPHNIPDADKFRLDRPASAYIQWGYGA
5,8-LDS	935	RVVAKPTVIDDNGTKLTLKEGQHILCNLVAASHDPVSFPEPEKVRLDRDMDLYVHFGSGP
AOS	1011	HE <mark>CLG</mark> KEIAITFAVSMIRILAGIKYLRPAPGEMGVLKSVMADGRQAFLNDSWSWLTQD
5,8-LDS	995	HK <mark>C</mark> LGFGLCKLGLTIMLKVVGGLDN <mark>LR</mark> RAPGPQGQLKRLAGPGGISKYMTADQSGFFPFP

AOS 1069 PTSKSNMHGKASAVD--5,8-LDS 1055 TTMKI WDGDLPEPASD

3. METHODS - CLONING AND EXPRESSION IN INSECT CELLS

ATEG_00985, 02036, 04755, and 03580 – All genes were amplified in two pieces from cDNA by PCR or semi-nested PCR technology. Primers F1 and R1 yielded the 5'-fragments and primers F2 and R2 the 3' fragments, respectively. F1 and R2 primers introduced unique restriction sites needed for further cloning steps, and R2 primers also disrupted the native stop codons. Fragments were cloned into pJET1.2/blunt and all genes were assembled by using unique restriction sites (00985: AsisI, 02036: XcmI, 04755: SacII, 03580: XbaI) in their overlapping regions. Subcloning to expression vector pIZ/V5-His was performed using SpeI and XbaI (for 03580: KpnI/SacII) so that all constructs were in frame with the V5 and 6xHis-tag.

 $ATEG_{03171}$ – An 1806-bp 5'-fragment including introns 1-3 was amplified using primer 03171F₁ and 03171R₁ from genomic DNA. A smaller fragment of 784-bp was amplified from cDNA using the same forward primer as above, along with primer 03171R_{E1}. Both amplicons were subcloned into pJET1.2/blunt and were subsequently combined into a 1657-bp 5'-fragment of cDNA lacking intron 1-3 using SpeI/EcoRI. A 1796-bp 3'-fragment was amplified from cDNA using primer 03171F₂ and 03171R₂ and ligated into pJET1.2. The reverse primer disrupted the stop codon and

introduced a downstream XbaI site. Full-length cDNA was generated using EcoRI and XbaI in pJET1.2, and ligated into pIZ/V5-His using SpeI/XbaI in-frame with the V5 epitope and 6xHis-tag, yielding pIZ/V5-His_03171.

ATEG_03992 – ATEG_03992 was cloned from cDNA in two pieces. The 1738-bp 5'fragment was generated by PCR with primers 03992F1 and 03992R1. 03992F1 introduced a SpeI site. PCR with F2 and R2 yielded in addition to the expected amplicon of 1607-bp an amplicon of 1672-bp. The latter was a splice variant of fragment two and is designated fragment 2sv. Primer R2 disrupted the stop codon and introduced EcoRV sites. All three amplicons were cloned into pJET1.2/blunt. Fragment 1 was combined with fragment 2 and fragment 2sv, respectively, by PCR technology. Subcloning of ATEG_03992 and ATEG_03992sv to expression vector pIZ/V5-His was performed using SpeI and EcoRV restriction sites.

4. RESULTS - CLONING AND EXPRESSION

ATEG_03171 (10R-DOX activity) – The deduced amino acid sequence of ATEG_03171 (GenBank, AFB71132) of the strain IBT1948 differed from the deduced protein (EAU36445) at 17 positions (K63E, H67R, L194W, S205T, K291R, P349R, M702T, V708I, T758I, S761G, D850N, G983A, N987H, K1016N, I1017V, V1072A, M1091K, and M1110T).

ATEG_03171 converted 18:2n-6 to small amounts of 10-HODE, and CP-HPLC-MS/MS analysis revealed that the R stereoisomer dominated (Fig. S4). The enzyme activity was two orders of magnitude lower than obtained with recombinant 10R-DOX. It is therefore possible that ATEG_03171 oxidizes other substrates than fatty acids more efficiently.

ATEG_00985 (orphan) – Cloning of ATEG_00985 revealed a cDNA fragment of 3183bp that differed in several nucleotides from the predicted sequence (GenBank, EAU37742.1). We observed the following amino acid exchanges: M116S, S117N, Q118N, and N184D. The residues TLLARKGPAKEHPTRVSSTLFYLATIIIH and VTCS follow residues D145 and L300, respectively, and derive from different exon-intron borders compared to the predicted sequence. An additional intron including genomic nt 3321-3374 (gta...cag) leads to loss of V845-Q862 in the predicted amino acid sequence.

Sequence alignment showed 5,8-LDS as its closest relatives (Fig 2A). The recombinant protein did not transform 9R- or 8R-HPODE, but oxidized 18:2n-6 to small amounts of 8-HODE and the *R* stereoisomer dominated (Fig. S4). Since this protein did not have AOS or 9R-DOX activities, it was not further investigated.

 $ATEG_{03580}$ (orphan; DOX domain) – Cloning of ATEG_{03580} yielded a cDNA fragment of 1851-bp with four introns as predicted (GenBank, EAU35382.1) and no amino acid substitutions. This protein thus lacked the CYP domain. We could not detect significant oxidation of C₁₈ fatty acids by the recombinant protein, and it was not further investigated.

5. TABLES

Table S1. Oligonucleotides used for real-time PCR analysis.

Sequences
5'-gctccggtgttaaccacttt
5'-aaataccctggtgaaagggc
5'-tgaagetetettecageeta
5'-tgacetteatggaagagga
5'-ctggcacggaaagacttcaa
5'-ttgctcgagaagcaatctgg
5'-gaggeteagacegaetteae
5'-ccgagaccgaactggatgta
5'-aactgatcgatctctacctgtcc
5'-atggtagaatcettegttacete
5'-gtttaacctcgcccgtga

ATEG_03171-R	5'-accetetecgtagtggaggt
ATEG_02036-F	5'-gccaaccgtctgaccagtat
ATEG 02036-R	5'-gtccagccggaatttatcg

 Table S2. List of cloning primers.

Primer pairs	Sequences
00985F1	5'-ACTAGTatgacgtacaacgatagaagg
$00985R_1$	5'-gttagattgaccgggccatag
00985F ₂	5'-gtggccatactgtcagatgcag
00985R ₂	5'-TCTAGATaaatactatcaaatagtgccttc
02036 F ₁	5'-ACTAGTatgtcctctgtcatcgttgc
02036 R ₁	5'-caagcgtgacagcatcactg
02036 F ₂	5'-agacatggtcgaaatgtatcc
02036 R ₂	5'-GTTCTAGAAagtccactgcgcttgc
04755 F ₁	5'-ACTAGTatgttgcggaggttttctacc
04755 R ₁	5'-ttgtagtcgatcgtgtaatgacg
04755 F ₂	5'-ctgttctatcggatgcagtggc
04755 R ₂	5'-TCTAGATacgcggaggcgattccgcgct
03580 F ₁	5'-GGTACCatggagccacccaatttc
03580 R ₁	5'-tggatteccagegttateacg
03580 F ₂	5'-gcgcaccaaacacaaggatg
03580 R ₂	5'-CCGCGGtcccttgtatgctgcagac
03171 F ₁	5'-ActAGTatgaaattcaaccagaccacag
03171 R ₁	5'-gcttcaatttgaagaacttgcg
03171 R _{E1}	5'-ggtggccggtttggaagatat
03171 F ₂	5'-atagagcaggcacgcaagtg
03171 R ₂	5'-TCTAGAtaaaccggtccatcgaaatg
03992 F ₁	5'-ACTAGTatgcaggaattggaaaagc
03992 R ₁	5'-ccgtgaaagcccaattggtaag
03992 F ₂	5'-tetgeaceaactteacaateteg
03992 R ₂	5'-GATATCatccgaggcaggttcaggc

Table S3. Oligonucleotides used for subcloning into pET101D-TOPO

Primer pairs	Sequences
Cham04755F	5'-CACCatgttgcggaggttttctac
Cham04755R	5'-cgcggaggcgattccgcgcttcttc
Cham03580F	5'-CACCatggagccacccaatttcc
Cham03580R	5'-tcccttgtatgctgcagactcagg
Champ_03992fl_F	5'-CACCatgcagggaattggaaaag
Champ_03992fl_R	5'-atccgaggcaggttcaggcaaatc
Cham03992_svR	5'-tgtacttggaaatcccaccaggcc
Champ_00985_F	5'-CACCatgacgtacaacgataga
Champ_00985_R	5'-aatactatcaaatagtgccttctt
Cham_02036_F	5'-CACCatgtcctctgtcatcgttg
Cham_02036_R	5'-gtccactgcgcttgctttgccatg
F-champ_03171	5'-CACCatgaaattcaaccagaccac
R-champ_03171	5'-aaccggtccatcgaaat
Champ_00985_R Cham_02036_F Cham_02036_R F-champ_03171 R-champ_03171	5'-cACCatgacgacaatgataga 5'-aatactatcaaatagtgccttctt 5'-CACCatgtcctctgtcatcgttg 5'-gtccactgcgcttgctttgccatg 5'-CACCatgaaattcaaccagaccac 5'-aaccggtccatcgaaat

Enzyme	5'- Forward primer	5' -Reverse primer
7 0 1 D C		
5,8-LDS N878L	cggctggcgggatggtagcgCTccaaggacaactcttttc gc	gcgaaaagagttgtccttggAGcgctaccatcccgccagccg
Q879L	ctggcgggatggtagcgaaccTaggacaactcttttcgca atgc	gcattgcgaaaagagttgtcctAggttcgctaccatcccgccag
Q881L	gatggtagcgaaccaaggacTactcttttcgcaatgccttg ac	gt caagg cattg cg aa aag agt Agt ccttg gt tcg ctaccatc
Q881E	gatggtagcgaaccaaggaGaactcttttcgcaatgccttg ac	gtcaaggcattgcgaaaagagttCtccttggttcgctaccatc
Q881K	gatggtagcgaaccaagga <u>Aaa</u> ctcttttcgcaatgccttg ac	gtcaaggcattgcgaaaagagttTtccttggttcgctaccatc
Q881D	gatggtagcgaaccaagga <u>GaC</u> ctcttttcgcaatgccttg ac	gt caagg cattg cg aa aag ag Gt Ct ccttg gt t cg ct accatc
Q881N	$gatggtagcgaaccaagga \underline{AaC} ctcttttcgcaatgccttg ac$	gtcaaggcattgcgaaaagagGtTtccttggttcgctaccatc
AOS		
T957A	cgccattggggggcgttggaGcgccctctggagttgttgcca atg	cattggcaacaactccagagggcgCtccaacgcccccaatggcg
S959A	cattggggggggttggaacgcccGctggagttgttgccaatg tgc	gcacattggcaacaactccagCgggcgttccaacgcccccaatg
N964V	gccctctggagttgttgccGTtgtgctgcagtactacttccg c	gcggaagtagtactgcagcacaACggcaacaactccagagggc
N964D	gccctctggagttgttgccGatgtgctgcagtactacttccg c	gcggaagtagtactgcagcacatCggcaacaactccagagggc
Q967L	gagttgttgccaatgtgctgTTgtactacttccgctatgaaa ac	gttttcatagcggaagtagtacAAcagcacattggcaacaactc

 Table S4. Oligonucleotides used for site-directed mutagenesis.