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SUPPORTING INFORMATION 

 

RESULTS 

GC content is a strong predictor of intrinsic disorder 

 

Disordered amino acids have higher frequencies of certain bases and viruses show strong biases in base 

composition. Therefore it is important to check whether base composition is correlated with viral genome 

size. Any such correlations could potentially explain the observed association (see main text) between 

disorder and genome size. While in host genomes, base composition can be represented by G+C 

content, the asymmetric replication of viral strands frequently gives rise to biases in base composition in 

which G and C are not at equal frequencies. Intrinsically disordered proteins are less complex and are 

dominated by certain residues (E, K, R, G, Q, S, P, A) [1,2,3,4]. Mutational pressure has been the 

dominant evolution driving force in determining the different codon usage preferences in ssRNA viruses 

[5]. For example, coding sequences of all negative-stranded RNA viruses are biased toward high A in the 

coding sequences and high T in genomes suggesting that RNA viruses with different genome polarity are 

under different mutational pressure [6].  

 

We investigated whether intrinsic disorder is determined by GC content in these viral sequences. Indeed, 

intrinsic disorder shows an overall significant positive correlation ( = 0.36, p < 2.2 x 10
-16

) with the GC 

content; however, it is only a partial determinant (the proportion of variance explained, R
2 

= 0.13). Within 

families too, this trend is seen i.e. all families show a positive correlation of intrinsic disorder with GC 

content, with the exceptions of Tombusviridae, Betaflexiviridae, Circoviridae and Nodaviridae which show 

negative correlations; however none of these are significant (p > 0.05).  

 

GC content and experimentally observed disorder 

 

We wished to check if the relationship between GC content and predicted disorder in viral sequences is 

reflected in a similar relationship between GC content and experimentally determined disorder. A number 

of viral proteins with an appreciable extent of disorder have been structurally investigated. We 

investigated 17 viral proteins from the DISPROT [7] database of disordered proteins of known structure 

(Table S6). We anticipated that there would be a higher GC content among those viral proteins for which 

a greater proportion of the residues are observed to be disordered. We noted that IUPred strongly under-

predicted the extent of disorder in the shorter proteins (Table S3). Among the longer proteins, the one 
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whose gene had the highest GC content (HHV2 alpha trans-inducing protein), had an IUPred prediction 

that matched the DISPROT observation exactly, suggesting that GC content does not necessarily bias 

IUPred predictions upwards. Selecting the nine proteins that are more than 250 residues long, there is a 

positive correlation between observed disorder and GC content (Pearson’s correlation coefficient of 0.38), 

but the sample size is too small to draw any general inference. However, we note that this correlation is 

similar to that seen for predicted disorder. Thus, we have no reason to believe that IUPred is over-

predicting disorder in GC rich proteins, since the observed disorder in this small dataset of larger proteins 

shows a similar level of correlation.  

 

Base composition is a partial predictor of genome size in families  

 

We explored the individual correlations between genome size and base composition. Genome size in 

viral genomes is positively correlated with the proportion of A (ρ = 0.09) and G (ρ = 0.0001) and 

negatively correlated with T (ρ = -0.068) and C (ρ = -0.064). However, the p-value associated with G was 

not significant (p = 0.99). We did a multiple linear regression to determine the relationship between 

genome size and base composition. Overall only 0.3% of the overall variance in genome size could be 

explained by base composition. However, within 19 families with ten or more viral genomes, between 

15% (Podoviridae) and 76% (Microviridae) of the variance in genome size could be explained by base 

composition (p < 0.01; Table 2). Some of the families such as Microviridae (76%), Calciviridae (74%), 

Togaviridae (72%), Secoviridae (71%), Nodaviridae (66%), Parvoviridae (58%), Retroviridae (54%), 

Anelloviridae (54%), Virgaviridae (53%) and Rhabdoviridae (52%) have more than 50% variance in 

genome size associated with base composition. Poxviridae and Herpesviridae have bigger genomes but 

the variance explained by base composition is 15% and 3% respectively. Geminiviridae (N = 254) is the 

biggest family of viruses but only 3% of variance in genome size is explained by base composition. Thus, 

we conclude that base composition could be a partial predictor of genome size within viral families. 

Therefore, since disorder is also related to base composition, we need to account for this when 

investigating the relationship between disorder and genome size.  

 

Smaller genomes with greater disorder often have more overlapping 

genes in ssRNAp and the ssDNA viruses.  

Disordered regions are often found in overlapping regions of viral proteins [8]. This may arise in part 

because the constraints on out of frame proteins alter the amino acid preferences, in part because many 

overlapping proteins are short. Shorter proteins tend to be more disordered, and may be in part because 

overlapping proteins may be accessory proteins, without a key conserved structural role. The negative 
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correlation seen for most viral types may in some instances relate to family specific effects within the type. 

Among the ssRNAp, the negative correlation can largely be accounted for by the large size and low 

disorder of the Coronaviridae (with large non-segmented RNA genomes; Figure S4), contrasted with the 

high disorder of a subset of the smaller families, primarily the Luteoviridae, the Tymoviridae, and the 

Alphaflexiviridae (Figure S5). In terms of understanding the biology of these proteins, the latter three 

families have a greater degree of overlap in their genomes, in contrast with the Coronaviridae. 

Overlapping proteins may in some circumstances be more disordered [8]. Among the ssDNA, the 

Annelloviridae are short and disordered, while the Nanoviridae and the Inoviridae are longer and ordered 

(Figure S6). For this group, as for the ssRNAp, the short and disordered families appear to have more 

overlapping open reading frames (Figure S7). There is a very large number of dsDNA viruses, but the 

negative correlation in part reflects a very small genome size and high disorder for the Papillomaviridae 

(Figure S8). Again these viruses exhibit a large degree of viral gene overlap. Among the dsDNA-RT, the 

shorter Hepadnaviridae have more disorder than the longer Caulimoviridae (Figure S9). Again, it is 

striking that the Hepadnaviridae display more overlapping open reading frames than any other. 

Greater disorder among larger genomes of ssRNAn viruses unlikely 

to reflect differences in extent of overlapping genes.  

We were interested as to why ssRNAn viruses should show an opposite (positive) correlation between 

genome size and disorder compared to the relationship seen among the other viral types. One feature 

that distinguishes this type is that it has the lowest mean disorder (µD = 7.4%; Table 1). A second feature 

of this type is that it has a low variability in genome size (Table 1). However, there could be other 

explanations. One question is whether the individual families within this type show very different patterns. 

While indeed, the correlation could be explained to some degree by the fact that the Paramyxoviridae 

have larger genomes and more disorder than the Bunyaviridae, Rhabdoviridiae and Arenaviridae, there 

was still a positive correlation among the Paramyxoviridae (Table 2; Figure S10). In this type, overlapping 

sequences are found within both the more disordered Paramyxoviridae and in the less disordered smaller 

Bunyaviridae (Figure S11). Thus, the trend is likely to reflect other aspects of viral function. This may 

relate to additional proteins, or in the case of Filoviridae to the addition of a disordered region to the 

NCAP protein [9], which may partly explain the observation.  

 

Thus, overall we see a general pattern emerging within each major type. Typically, the more disordered 

viral proteomes have more overlapping proteins. Strikingly, in one viral type, the larger genomes are more 

disordered, but there is no relationship between disorder and overlapping genes. If we put this one 

unusual type to one side, we are left with a general trend that the viruses with more disorder have smaller 

genomes with more overlapping genes. There are two potential explanations for this association. The first 

is that the overlapping segments are themselves more disordered. The second is that the solution of 
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overlapping proteins, and of more disorder, are both independent responses to the problem of how to fit 

more coding functionality into the viral proteome encoded by a spatially constrained genome.  

 

To address this, we plotted the predicted disorder across some representative proteins containing 

overlapping segments. For Hepatitis B, some of the overlapping gene regions of protein P appear 

disordered, either in protein P, or in protein S. A more systematic analysis of this relationship is 

complicated, since many overlapping proteins are very short, and very short proteins are often very 

disordered simply because they are too short to support an ordered structure. Thus, it is difficult to 

determine whether the overlapping regions have a much higher disorder than expected, given their short 

length, compared with other similarly short regions. 

Considering cleaved polypeptides produced similar results 

We also investigated the effect of polyproteins that are cleaved to produce a number of polypeptides. A 

total of 545 polyproteins were present in the dataset. Percent disorder for each polyprotein (Dp) was 

compared with the resultant disorder (Dc) of all corresponding cleaved polypeptides (Figure S3). The 

percent disorder values obtained from both methods were significantly correlated (ρ = 0.85, p < 2.2 x 10
-

16
). When we incorporated these to the prediction of percent disorder for the whole genome, we found 

that both methods produced almost similar values of percent disorder (ρ = 0.87, p < 2.2 x 10
-16

; Figure 

S3). 

 

We repeated the complete analyses by substituting percent disorder with the new percent disorder 

obtained from cleaved peptides and found similar results. Thus, while for individual proteins, investigators 

need to consider carefully whether they are interested in the disorder in the precursor polyprotein, or as is 

more usually of interest, in the mature post-cleavage products, it is important to ensure that the 

predictions are carried out on the appropriate state, since disorder is greater at protein termini. However, 

for this overall survey it is unlikely that the true cleavage states of all protein products are known. Our 

overall analysis will tend towards under-predicting the disorder of proteins found within poloyproteins, 

since in general incomplete viral genome analysis under-predicts cleavage. However, the overall analysis 

appears insensitive to the minor biases introduced by this under-prediction.  

 

Effect of alternative approaches to estimating disorder 

We noted that short and long disorder predictions from IUPRED gave highly correlated results 

(Supplementary Figure S13). There was a reasonable correlation of predictions using an alternative 

method, E-spritz[10], which is a machine learning predictor trained on known datasets, in contrast to the 

biophysical prediction of IUPRED (Supplementary Fig. S13). The results were broadly similar. For 

example, with ESPRITZ_X,  base composition, family and genome size accounted for 72% of variance, 
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with base composition alone accounting for 28%, and family alone for 64%. These contributions are 

broadly similar to the trends seen with IUPRED (Supplementary Table S3), suggesting that the precise 

method of prediction does not greatly alter the conclusions drawn. 

While we focused on predictions for individual residues, it must be noted that disorder predictions are 

strongly correlated with the predictions for adjacent residues, so that much of these residues fall into 

regions of more extended disorder. Supplementary Table S4 indicates that estimating a viral proteome’s 

disorder propensity based on regions rather than on residues generated results that were broadly 

correlated.  We opted to focus on residue predictions, to avoid the increase in sampling variance created 

by surveying the presence or absence of larger regions across very short proteins and smaller 

proteomes.   

 

Which proteins display strong disorder? 

We selected the most disordered proteins from each family in order to sample and illustrate typical 

potential roles and functional relevance. We looked among viruses longer than 10kb (all of which are 

dsDNA and ssRNA) at all viral proteins with more than 200 residues and with high disorder (D > 50%). 

Table 4a shows the most disordered protein identified in each family. These proteins are discussed 

further below.  

 

C4 from Callitrichine herpesvirus 3 is predicted to be 100% disordered. This viral protein was identified in 

this marmoset virus, but displayed no sequence homology to previously identified proteins [11]. This is 

not unusual for disordered proteins, which often evolve much faster than ordered proteins. It does present 

a particular challenge in elucidating the role of these proteins in viruses, since homology to ordered 

domains often gives insights into their functional roles. The Porcine adenovirus A protein 22K (DUF2890) 

has homologues across many adenoviruses, but the role of this disordered protein has not been 

established. While the herpesvirus protein with 100% predicted disorder is clearly high, the average 

disorder for Herpesviridae (Table 2) is also relatively high, at 17.9%. The observation that another protein 

(CPXV136) from the large Cowpox virus is 73% disordered is particularly striking, in the context that the 

mean disorder for this genome is only 5.6% (Table 2). It will be very interesting to determine whether this 

protein interacts with host components.  

 

The D protein of human parainfluenza virus 3 is derived from an internal alternative reading frame within 

protein P [12], so it is possible that the level of disorder may have been affected by the coding constraints 

of the P gene. The 64.6kDa ascoviral protein (Table 4) shows a strong amino acid compositional bias, 

being highly basic [13]. This is likely to relate to the particular, and unidentified, function of this protein.  
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The Lymantria dispar MNPV mucin-like protein (putatively involved in horizontal gene transfer [14]) is one 

of the longer disordered proteins identified (L = 1029, D = 76%). Other long proteins included two 

hypothetical proteins from Cotesia congregata bracovirus (L = 671, D = 88%) and Acidianus two-tailed 

virus (L = 567, D = 72%) and the 64.6 kDA protein from Spodoptera frugiperda ascovirus 1a (L = 565, D = 

68%). The function of the gp30 protein from the large Burkholderia phage BcepIL02 has not been 

identified, but such a highly disordered protein may play a role in interaction with its host bacterium. 

Interestingly, this protein displays suggestive similarity to a protein from its host (27% identity over 162 

residues to the protein BURPS1710b_2246 from Burkholderia pseudomallei), raising the possibility that 

this disordered protein may have been hijacked from host to phage, or vice versa. As these phages have 

been investigated as therapeutic treatments for bacterial infection [15,16], it may be of interest to 

determine the role of this disordered phage protein. Two of the predicted highly disordered proteins from 

larger viruses encoded collagen-like proteins (Lymphocystis disease virus 1, accession NP_078660; and 

Acanthamoeba polyphaga mimivirus YP_142550). If these proteins do indeed form collagen like triple 

helical structures, they are clearly not disordered proteins while forming that structure. The fact that the 

mimivirus encodes enzymes capable of hydroxylating lysine increases the likelihood that this is indeed 

the case, and it has been speculated that the collagen-like fibres may form part of the fibre layer 

surrounding the Mimivirus particle [17]. If this is the case, such proteins are not strictly disordered in their 

typical state, and therefore this represents an incorrect prediction of the IUPRED method, and we have 

accordingly omitted them from Table 4. However, it is worth considering that these proteins also perform 

biological functions in their monomeric disordered states.  

 

While disordered proteins from the larger viruses discussed above may benefit from the availability of 

greater genomic space in which they can evolve and acquire functions, we found that the smaller viruses 

showed a similar range of functions for their longer disordered proteins (Table 4b). The 

overlapping/movement protein from Turnip yellow mosaic virus was particularly long and disordered, 

given the smaller genome size (L = 628, D = 92%). Movement proteins are encoded by many plant-

infecting viruses, and are important because of their ability to allow movement from the initially infected 

cell to neighboring cells [18]. The E4 protein of Human Papillomavirus has been identified to harbor 

cyclin-binding motifs, supporting a role for this disordered protein in interacting with the host proteome to 

support genome amplification [19]. NP1 of Bocavirus is also important in DNA replication [20]. A similar 

nuclear role is implicated for human Torque Teno Virus ORF2/2, which has been postulated to play a role 

in binding nucleic acids during either transcription or replication [21,22]. ORF-X of Finch polyomavirus is 

an apparent accessory protein not present in other polyomaviruses [23], whose role is as yet unclear.  

 

Thus, disordered proteins from both small and large genome viruses can play roles in viral structure and 

function, including interactions with host proteins. 
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