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Appendix Web Appendix A: Proof of Theorem 1

Identifiability of ξ, ωa and ωn is immediate from randomization of Z and the monotonicity

assumption, that is, ξ = P (Z = 1), ωa = P (U = a) = P (D = 1|Z = 0) and ωn = P (U =

n) = P (D = 0|Z = 1). We next show that δyzu are the functions of the distributions of

observed variables. Under the Assumption 3, we obtain that δy1n = P (Y = y,R = 1|Z =

1, U = n) = P (Y =y,R=1,Z=1,D=0)
P (Z=1,D=0)

and that δy0a = P (Y =y,R=1,Z=0,D=1)
P (Z=0,D=1)

.

For δy1c, we have δy1c = P (Y =y,R=1,Z=1,U=c)
P (Z=1,U=c)

= P (Y =y,R=1,Z=1,D=1)−P (Y =y,R=1,D=1,Z=1,U=a)
P (Z=1,D=1)−P (D=1,Z=1,U=a)

.

Under the monotonicity and randomization assumptions, P (D = 1, Z = 1, U = a) in the

denominator can be rewritten as P (Z = 1)P (D = 1, U = a|Z = 1) = P (Z = 1)P (U = a|Z =

1) = P (Z = 1)P (U = a|Z = 0) = P (Z = 1)P (D = 1, U = a|Z = 0) = P (Z = 1)P (D =

1|Z = 0). On the other hand, from the numerator we have that P (Y = y, R = 1, D = 1, Z =

1, U = a) = P (R = 1|Y = y, D = 1, Z = 1, U = a)P (Y = y|D = 1, Z = 1, U = a)P (D =

1, Z = 1, U = a), where P (R = 1|Y = y, D = 1, Z = 1, U = a) = P (R = 1|Y = y) = P (R =

1|Y = y, D = 1, Z = 0, U = a) because of Assumption 6, P (Y = y|D = 1, Z = 1, U = a) =

P (Y = y|D = 1, Z = 0, U = a) due to the exclusion restriction and P (D = 1, Z = 1, U =

a) = P (D = 1, U = a|Z = 0)P (Z = 1) by the forward proof. So P (Y = y,R = 1, D =

1, Z = 1, U = a) = P (R = 1|Y = y, D = 1, Z = 0, U = a)P (Y = y|D = 1, Z = 0, U =

a)P (D = 1, U = a|Z = 0)P (Z = 1) = P (Y = y, R = 1, D = 1, U = a|Z = 0)P (Z = 1).

Hence, we obtain that δy1c = P (Y =y,R=1,Z=1,D=1)−P (Y =y,R=1,D=1|Z=0)P (Z=1)
P (Z=1,D=1)−P (D=1|Z=0)P (Z=1)

.

Similarly, we can show that δy0c = P (Y =y,R=1,Z=0,D=0)−P (Y =y,R=1,D=0|Z=1)P (Z=0)
P (Z=0,D=0)−P (D=0|Z=1)P (Z=0)

. Hence, we

have shown that δyzu’s are identifiable.
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Next we will show that ρy’s are identifiable. Let us define the matrix ∆1 as follows:

∆1 =




δ01n δ00a δ01c δ00c

δ11n δ10a δ11c δ10c




T

.

Because θ0zu + θ1zu = 1 and from δyzu = ρyθyzu, we obtain the following equations:

∆1




1/ρ0

1/ρ1


 =

(
1 1 1 1

)T

. (A.1)

Below we show that ∆1 has rank 2. Suppose that ∆1 does not have full column rank. Then

we have δ01n

δ11n
= δ00a

δ10a
= δ01c

δ11c
= δ00c

δ10c
, which implies θ01n

θ11n
= θ00a

θ10a
= θ01c

θ11c
= θ00c

θ10c
since δyzu = ρyθyzu.

Thus we obtain that θ10a = θ11n = θ11c = θ10c, which implies that Y is independent of Z

given U and is also independent of U given Z. This contradicts the condition of Theorem

1. Therefore, we have shown that ρy’s are identifiable. Finally, the parameters θyzu can be

identified from equations: θ10n = θ11n = δ11n/ρ1, θ11a = θ10a = δ10a/ρ1, θ11c = δ11c/ρ1 and

θ10c = δ10c/ρ1.

Appendix Web Appendix B: Moment Estimators under the Model specified in

Theorem 1

Corollary 1: Under the assumptions of Theorem 1, the moment estimator, θ̂, of the

parameter vector θ is given as follows: for y = 0 and 1, δ̂y1n = Ny110

N++10
, δ̂y0a = Ny101

N++01
,

δ̂y1c =
Ny111 −Ny101

N++1+

N++0+

N++11 −N++01
N++1+

N++0+

, δ̂y0c =
Ny100 −Ny110

N++0+

N++1+

N++00 −N++10
N++0+

N++1+

.

ξ̂ = N++1+

N
, ω̂a = N++01

N++0+
, ω̂n = N++10

N++1+
, θ̂10a = δ̂10a

ρ̂1
, θ̂11n = δ̂11n

ρ̂1
, θ̂11c = δ̂11c

ρ̂1
, θ̂10c = δ̂10c

ρ̂1
. Here

ρ̂0 and ρ̂1 are computed as follows:

(1) if P (Y = 1|Z = 1, U = n) 6= P (Y = 1|Z = 1, U = a) (i.e. θ11n 6= θ10a), then ρ̂0 =

δ̂01nδ̂10a−δ̂11nδ̂00a

δ̂10a−δ̂11n
, ρ̂1 = δ̂01nδ̂10a−δ̂11nδ̂00a

δ̂01n−δ̂00a
;

(2) if P (Y = 1|Z = 1, U = n) = P (Y = 1|Z = 1, U = a)(i.e. θ11n = θ10a) and P (Y = 1|Z =
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1, U = c) 6= P (Y = 1|Z = 0, U = c) (i.e. θ11c 6= θ10c), then ρ̂0 = δ̂01cδ̂10c−δ̂11cδ̂00c

δ̂10c−δ̂11c
, ρ̂1 =

δ̂01cδ̂10c−δ̂11cδ̂00c

δ̂01c−δ̂00c
;

(3) if P (Y = 1|Z = 1, U = n) = P (Y = 1|Z = 1, U = a) (i.e. θ11n = θ10a) and P (Y = 1|Z =

1, U = c) = P (Y = 1|Z = 0, U = c) (i.e. θ11c = θ10c), then ρ̂0 = δ̂01nδ̂10c−δ̂11nδ̂00c

δ̂10c−δ̂11n
, ρ̂1 =

δ̂01nδ̂10c−δ̂11nδ̂00c

δ̂01n−δ̂00c
.

Appendix Web Appendix C: The EM algorithm under the assumptions in

Theorem 1

Let θ(k) = (ω
(k)
a , ω

(k)
n , θ

(k)
10a, θ

(k)
11n, θ

(k)
11c, θ

(k)
10c, ρ

(k)
0 , ρ

(k)
1 ) be the estimate of θ after the kth iteration

in the EM algorithm. Define π
(k)
0 = (ω

(k)
n θ

(k)
10n+(1−ω

(k)
n −ω

(k)
a )θ

(k)
10c)(1−ρ

(k)
1 )+(ω

(k)
n (1−θ

(k)
10n)+

(1−ω
(k)
n −ω

(k)
a )(1−θ

(k)
10c))(1−ρ

(k)
0 ), π

(k)
1 = (ω

(k)
a θ

(k)
11a +(1−ω

(k)
n −ω

(k)
a )θ

(k)
11c)(1−ρ

(k)
1 )+(ω

(k)
a (1−

θ
(k)
11a) + (1 − ω

(k)
n − ω

(k)
a )(1 − θ

(k)
11c))(1 − ρ

(k)
0 ), and nyrzu = #of(Y = y, R = r, Z = z, U = t).

Then the next iteration estimate θ(k+1) of θ in the EM algorithm is given as follow:

n
(k+1)
110n = N1100

ω
(k)
n θ

(k)
10nρ

(k)
1

ω
(k)
n θ

(k)
10nρ

(k)
1 +(1−ω

(k)
n −ω

(k)
a )θ

(k)
10cρ

(k)
1

, n
(k+1)
110c = N1100 − n

(k+1)
110n ,

n
(k+1)
010n = N0100

ω
(k)
n (1−θ

(k)
10n)ρ

(k)
0

ω
(k)
n (1−θ

(k)
10n)ρ

(k)
0 +(1−ω

(k)
n −ω

(k)
a )(1−θ

(k)
10c)ρ

(k)
0

, n
(k+1)
010c = N0100 − n

(k+1)
010n ,

n
(k+1)
111n = N1110, n

(k+1)
011n = N0110, n

(k+1)
110a = N1101, n

(k+1)
010a = N0101,

n
(k+1)
111a = N1111

ω
(k)
a θ

(k)
11aρ

(k)
1

ω
(k)
a θ

(k)
11aρ

(k)
1 +(1−ω

(k)
n −ω

(k)
a )θ

(k)
11cρ

(k)
1

, n
(k+1)
111c = N1111 − n

(k+1)
111a ,

n
(k+1)
011a = N0111

ω
(k)
a (1−θ

(k)
11a)ρ

(k)
0

ω
(k)
a (1−θ

(k)
11a)ρ

(k)
0 +(1−ω

(k)
n −ω

(k)
a )(1−θ

(k)
11c)ρ

(k)
0

, n
(k+1)
011c = N0111 − n

(k+1)
011a ,

n
(k+1)
100n = N+000

ω
(k)
n θ

(k)
10n(1−ρ

(k)
1 )

π
(k)
0

, n
(k+1)
100c = N+000

(1−ω
(k)
n −ω

(k)
a )θ

(k)
10c(1−ρ

(k)
1 )

π
(k)
0

,

n
(k+1)
000n = N+000

ω
(k)
n (1−θ

(k)
10n)(1−ρ

(k)
0 )

π
(k)
0

, n
(k+1)
000c = N+000

(1−ω
(k)
n −ω

(k)
a )(1−θ

(k)
10c)(1−ρ

(k)
0 )

π
(k)
0

,

n
(k+1)
101n = N+010

θ
(k)
11n(1−ρ

(k)
1 )

θ
(k)
11n(1−ρ

(k)
1 )+(1−θ

(k)
11n)(1−ρ

(k)
0 )

, n
(k+1)
001n = N+010 − n

(k+1)
101n ,

n
(k+1)
100a = N+001

θ
(k)
10a(1−ρ

(k)
1 )

θ
(k)
10a(1−ρ

(k)
1 )+(1−θ

(k)
10a)(1−ρ

(k)
0 )

, n
(k+1)
000a = N+001 − n

(k+1)
100a ,

n
(k+1)
101a = N+011

ω
(k)
a θ

(k)
11a(1−ρ

(k)
1 )

π
(k)
1

, n
(k+1)
101c = N+011

(1−ω
(k)
n −ω

(k)
a )θ

(k)
11c(1−ρ

(k)
1 )

π
(k)
1

,

n
(k+1)
001a = N+011

ω
(k)
a (1−θ

(k)
11a)(1−ρ

(k)
0 )

π
(k)
1

, n
(k+1)
001c = N+011

(1−ω
(k)
n −ω

(k)
a )(1−θ

(k)
11c)(1−ρ

(k)
0 )

π
(k)
1

,

ω
(k+1)
a =

n
(k+1)
000a +n

(k+1)
001a +n

(k+1)
010a +n

(k+1)
011a +n

(k+1)
100a +n

(k+1)
101a +n

(k+1)
110a +n

(k+1)
111a

N
,
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ω
(k+1)
n =

n
(k+1)
000n +n

(k+1)
001n +n

(k+1)
010n +n

(k+1)
011n +n

(k+1)
100n +n

(k+1)
101n +n

(k+1)
110n +n

(k+1)
111n

N
,

θ
(k+1)
10a =

n
(k+1)
100a +n

(k+1)
101a +n

(k+1)
110a +n

(k+1)
111a

n
(k+1)
000a +n

(k+1)
001a +n

(k+1)
010a +n

(k+1)
011a +n

(k+1)
100a +n

(k+1)
101a +n

(k+1)
110a +n

(k+1)
111a

,

θ
(k+1)
11n =

n
(k+1)
100n +n

(k+1)
101n +n

(k+1)
110n +n

(k+1)
111n

n
(k+1)
000n +n

(k+1)
001n +n

(k+1)
010n +n

(k+1)
011n +n

(k+1)
100n +n

(k+1)
101n +n

(k+1)
110n +n

(k+1)
111n

,

θ
(k+1)
11c =

n
(k+1)
101c +n

(k+1)
111c

n
(k+1)
101c +n

(k+1)
111c +n

(k+1)
001c +n

(k+1)
011c

, θ
(k+1)
10c =

n
(k+1)
100c +n

(k+1)
110c

n
(k+1)
100c +n

(k+1)
110c +n

(k+1)
000c +n

(k+1)
010c

,

ρ
(k+1)
0 =

n
(k+1)
010n +n

(k+1)
011n +n

(k+1)
010a +n

(k+1)
011a +n

(k+1)
010c +n

(k+1)
011c

D0
,

ρ
(k+1)
1 =

n
(k+1)
110n +n

(k+1)
111n +n

(k+1)
110a +n

(k+1)
111a +n

(k+1)
110c +n

(k+1)
111c

D1
, where n

(k+1)
yrzt = E(nyrzt | observed data, θ =

θ(k)), D0 = n
(k+1)
010n + n

(k+1)
011n + n

(k+1)
010a + n

(k+1)
011a + n

(k+1)
010c + n

(k+1)
011c + n

(k+1)
000n + n

(k+1)
001n + n

(k+1)
000a +

n
(k+1)
001a + n

(k+1)
000c + n

(k+1)
001c , D1 = n

(k+1)
110n + n

(k+1)
111n + n

(k+1)
110a + n

(k+1)
111a + n

(k+1)
110c + n

(k+1)
111c + n

(k+1)
100n +

n
(k+1)
101n + n

(k+1)
100a + n

(k+1)
101a + n

(k+1)
100c + n

(k+1)
101c .

Proof. Let nyrzu =
∑N

i=1 I{Yi=y,Ri=r,Zi=z,Ui=u}. The complete-data likelihood function is

given as follows:

Lc(θ) = ΠN
i=1P (Zi)P (Ui)P (Di|Zi, Ui)P (Yi|Zi, Ui)P (Ri|Yi), where P (Zi = 1) = ξ can be

dropped during the EM steps. Then the complete-data log-likelihood function is given as

follows:

lc(θ) = n110nlog(ωnθ10nρ1) + n110clog((1− ωn − ωa)θ10cρ1)

+n010nlog(ωn(1− θ10n)ρ0) + n010clog((1− ωn − ωa)(1− θ10c)ρ0)

+n111nlog(ωnθ11nρ1) + n011nlog(ωn(1− θ11n)ρ0) + n110alog(ωaθ10aρ1)

+n010alog(ωa(1− θ10a)ρ0) + n111alog(ωaθ11aρ1) + n111clog((1− ωn − ωa)θ11cρ1)

+n011alog(ωa(1− θ11a)ρ0) + n011clog((1− ωn − ωa)(1− θ11c)ρ0)

+n100nlog(ωnθ10n(1− ρ1)) + n100clog((1− ωn − ωa)θ10c(1− ρ1))

+n000nlog(ωn(1− θ10n)(1− ρ0)) + n000clog((1− ωn − ωa)(1− θ10c)(1− ρ0))

+n101nlog(ωnθ11n(1− ρ1)) + n001nlog(ωn(1− θ11n)(1− ρ0))

+n100alog(ωaθ10a(1− ρ1)) + n000alog(ωa(1− θ10a)(1− ρ0))

+n101alog(ωaθ11a(1− ρ1)) + n101clog((1− ωn − ωa)θ11c(1− ρ1))

+n001alog(ωa(1− θ11a)(1− ρ0)) + n001clog((1− ωn− ωa)(1− θ11c)(1− ρ0)). In the E step, we
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take the expectation of the complete-data log-likelihood, given the observed data and the

previous parameter estimate θ = θ(k), that is n
(k+1)
yrzu = E[nyrzu|observed − data, θ(k)]. In the

M step, we can solve following functions and get the estimates.

∂l
∂ωa

=
n

(k+1)
000a +n

(k+1)
001a +n

(k+1)
010a +n

(k+1)
011a +n

(k+1)
100a +n

(k+1)
101a +n

(k+1)
110a +n

(k+1)
111a

ωa

−n
(k+1)
000c +n

(k+1)
001c +n

(k+1)
010c +n

(k+1)
011c +n

(k+1)
100c +n

(k+1)
101c +n

(k+1)
110c +n

(k+1)
111c

1−ωn−ωa
,

∂l
∂ωn

=
n

(k+1)
000n +n

(k+1)
001n +n

(k+1)
010n +n

(k+1)
011n +n

(k+1)
100n +n

(k+1)
101n +n

(k+1)
110n +n

(k+1)
111n

ωn

−n
(k+1)
000c +n

(k+1)
001c +n

(k+1)
010c +n

(k+1)
011c +n

(k+1)
100c +n

(k+1)
101c +n

(k+1)
110c +n

(k+1)
111c

1−ωn−ωa
,

∂l
∂θ10a

=
n

(k+1)
100a +n

(k+1)
101a +n

(k+1)
110a +n

(k+1)
111a

θ10a

−n
(k+1)
000a +n

(k+1)
001a +n

(k+1)
010a +n

(k+1)
011a

1−θ10a
,

∂l
∂θ11n

=
n

(k+1)
100n +n

(k+1)
101n +n

(k+1)
110n +n

(k+1)
111n

θ11n

−n
(k+1)
000n +n

(k+1)
001n +n

(k+1)
010n +n

(k+1)
011n

1−θ11n
,

∂l
∂θ11c

=
n

(k+1)
101c +n

(k+1)
111c

θ11c
− n

(k+1)
001c +n

(k+1)
011c

1−θ11c
, ∂l

∂θ10c
=

n
(k+1)
100c +n

(k+1)
110c

θ10c
− n

(k+1)
000c +n

(k+1)
010c

1−θ10c
,

∂l
∂ρ0

=
n

(k+1)
010n +n

(k+1)
011n +n

(k+1)
010a +n

(k+1)
011a +n

(k+1)
010c +n

(k+1)
011c

ρ0

−n
(k+1)
000n +n

(k+1)
001n +n

(k+1)
000a +n

(k+1)
001a +n

(k+1)
000c +n

(k+1)
001c

1−ρ0
,

∂l
∂ρ1

=
n

(k+1)
110n +n

(k+1)
111n +n

(k+1)
110a +n

(k+1)
111a +n

(k+1)
110c +n

(k+1)
111c

ρ1

−n
(k+1)
100n +n

(k+1)
101n +n

(k+1)
100a +n

(k+1)
101a +n

(k+1)
100c +n

(k+1)
101c

1−ρ1
.

Appendix Web Appendix B: Proof of Theorem 2

The joint distribution can be factorized as P (Z, U,D, X, Y, R) = P (R|Z, U,D, X, Y ) P (Y |Z, U,D, X)

P (D|Z,U,X)P (U,X|Z)P (Z). Since Z is randomized, P (U,X|Z) = P (U,X). Because D is

determined by (Z,U), we obtain that P (D|Z, U,X) = P (D|Z, U) and P (Y |Z,U,D,X) =

P (Y |Z, U,X). From the randomization assumption and Assumption 7, we obtain that

P (R|Z, U,D, X, Y ) = P (R|Y, Z). So we can rewrite the joint distribution as

P (Z, U,D, X, Y, R) = P (Z)P (U,X)P (D|Z,U)P (Y |Z, U,X)P (R|Y, Z).
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To identify P (U,X), we first note that from independence of Z and (U,X), the definition of

U , and Assumption 3, we obtain that P (U = a|X = x) = P (U = a|Z = 0, X = x) = P (D =

1|Z = 0, X = x), P (U = n|X = x) = P (U = n|Z = 1, X = x) = P (D = 0|Z = 1, X = x)

and then P (U = c|X = x) = 1 − {P (U = n|X = x) + P (U = a|X = x)}. Since P (X)

is identifiable, P (U,X) is identifiable; since Z and U determine D, P (D|Z = z, U = u) is

known for all z and u.

Below we show that ρ01, ρ11, ρ00, ρ10, θ11nx, θ10ax, θ11cx and θ10cx are identifiable condition-

ally on X = x. Let us define the following matrices:

∆2
zu =




δ0zux δ1zux

δ0zux′ δ1zux′




Since

δyzux = P (R = 1|Y = y, Z = z)P (Y = y|Z = z, U = u,X = x) = ρyzθyzux, (A.2)

using the same idea as in the proof of Theorem 1, we obtain the following equations:

∆2
1n




1/ρ01

1/ρ11


 =




1

1


 (A.3)

and

∆2
0a




1/ρ00

1/ρ10


 =




1

1


 . (A.4)

Under Assumption 3, the elements in the matrices ∆2
1n and ∆2

0a can be expressed by the

distributions of observed variables, respectively, as follows:

δy1nx =
P (Y = y,R = 1, Z = 1, D = 0, X = x)

P (Z = 1, D = 0, X = x)
(A.5)

and

δy0ax =
P (Y = y, R = 1, Z = 0, D = 1, X = x)

P (Z = 0, D = 1, X = x)
. (A.6)

Suppose that ∆2
1n in (A.3) is not full rank for all x 6= x′. Then it is immediate that Y is

independent of X given U = n and Z = z, which contradicts the assumptions in Theorem 2.
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Thus there exists at least one pair of x and x′ so that the matrix ∆2
1n is full rank, and then

ρ01 and ρ11 can be solved from (A.3). Similarly, we can show that ρ00 and ρ10 are identifiable

from (A.4).

From (A.2), (A.5) and (A.6), we can identify θy1nx and θy0ax. Similarly we can identify θy1cx

and θy0cx from the equations θy1cx = δy1cx

ρy1
= P (y,R=1,Z=1,D=1,x)/(ξρy1)−P (y,R=1,Z=0,D=1,x)/{(1−ξ)ρy0}

P (Z=1,D=1,x)/ξ−P (D=1,Z=0,x)/(1−ξ)

and θy0cx = P (y,R=1,Z=0,D=0,x)/{(1−ξ)ρy0}−P (y,R=1,Z=1,D=0,x)/(ξρy1)

P (Z=0,D=0,x)/(1−ξ)−P (D=0,Z=1,x)/ξ
.

Appendix Web Appendix C: Proof of Theorem 3

Similar to the proof of Theorem 2, we have P (Z, U,D, X, Y, R) = P (Z)P (U,X)P (D|Z,U)

P (Y |Z, U,X)P (R|Y, Z, U). Hence, we can identify δy1nx and δy0ax from (A.5) and (A.6) re-

spectively. We can also identify δy1cx and δy0cx by δy1cx = P (y,R=1,Z=1,D=1,x)−P (y,R=1,D=1,Z=0,x)ξ/(1−ξ)
P (Z=1,D=1,x)−P (D=1,Z=0,x)P (Z=1)/P (Z=0)

and δy0cx = P (y,R=1,Z=0,D=0,x)−P (y,R=1,D=0,Z=1,x)(1−ξ)/ξ
P (Z=0,D=0,x)−P (D=0,Z=1,x)P (Z=0)/P (Z=1)

.

Next we show that we can identify ρyzu. We first put δyzux’s into the following matrices:

∆3
zu =




δ0zux δ1zux

δ0zux′ δ1zux′


 ,

for (z, u) = (1, n), (1, c), (0, a) and (0, c). Because R is independent of X given (Y, Z, U),

we obtain that δyzux = P (R = 1|Y = y, Z = z, U = u)P (Y = y|Z = z, U = u, X = x) =

ρyzuθyzux. Hence, we can obtain the following equations:

∆3
zu




1/ρ0zu

1/ρ1zu


 =




1

1


 .

Using the same argument as in the proof of Theorem 2, we can show that all four ∆3
zu matrices

have full ranks under the assumptions in Theorem 3. Therefore, we can identify ρyzu’s. Finally,

because δyzux = P (R = 1|Y = y, Z = z, U = u)P (Y = y|Z = z, U = u,X = x) = ρyzuθyzux,

we can identify θ10ax, θ11nx, θ11cx and θ10cx respectively.


