Electronic Supplemental Information for:

Chemical Insight Into The Origin of Red and Blue Photoluminescence Arising From Freestanding Silicon Nanocrystals.

Mita Dasog,[†] Zhenyu Yang,[†] Sarah Regli,[†] Tonya M. Atkins,[‡] Angelique Faramus,[§] Mani P. Singh,[‡] Elayaraja Muthuswamy,[‡] Susan M. Kauzlarich,[‡] Richard D. Tilley,[§] Jonathan G. C. Veinot*^{†,0}

[†]Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada; ^ø NRC-National Institute for Nanotechnology, Edmonton, Alberta, T6G 2M9, Canada; [‡] Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States; [§]School of Chemical and Physical Sciences and the MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6012, New Zealand

Figure S1. A summary of the characterization of the oxide embedded and hydride-terminated (H-Si NCs) silicon nanocrystals obtained from thermal treatment of HSQ. (**A**) X-ray powder diffraction pattern of Si NCs embedded in silica. The broad reflection at *ca*. 20° arises from the amorphous silica-like matrix. (**B**) FT-IR spectrum of H-Si NCs. Absorptions at *ca*. 1050 cm⁻¹ is attributed to Si–O–Si stretching and *ca*. 2100 and *ca*. 900 cm⁻¹ are attributed to Si–H_x stretching and bending vibrations, respectively. (**C**) PL spectrum of H-Si NCs. (**D**) Excited state life time of H-Si NCs upon exciting with 349 nm wavelength laser. (**E**) Bright field TEM micrograph of H-Si NCs with a diameter *ca*. 3.5 ± 0.4 nm. The image was acquired at 200kV accelerating voltage.

Figure S2. X-ray photoelectron spectra (XPS) of dodecyl surface functionalized Si NCs (Si NC-A). (**A**) Survey spectrum showing emissions arising from Si, C and O. (**B**) High resolution XP analysis of the silicon 2p spectral region. For clarity, only Si 2p_{3/2} emissions are shown.

Figure S3. XPS spectra of the nitrogen 1s and silicon 2p spectral regions for H-Si NCs exposed to a variety of nitrogen sources: (A, B) TOAB functionalized Si NCs and (C, D) NH_4Br functionalized Si NCs. For clarity only Si $2p_{2/3}$ signals are shown.

Figure S4. ¹H NMR of the byproducts obtained by reacting H-SiNCs with TOAB confirming the formation of trioctylamine and octane.

Figure S6. PL intensity at 420 nm *vs*. nitrogen concentration for H-Si NCs reacted with (A) TOAB and (B) NH₄Br.