Supporting Information

Izhar et al. 10.1073/pnas.1216894110

Fig. S1. Construction of double-stranded oligonucleotides carrying the core lesion sequence used for the construction of the lesion shuttle vectors and controls. (A) Oligonucleotide B containing a site-specific benzo[a]pyrene-guanine (BP-G) or TT 6–4 photoproduct (PP) adduct was extended by ligating oligonucleotides A and C to its 5' and 3' ends, respectively, using oligonucleotide D as a scaffold. (B) Extended oligonucleotides E_L and E_S were annealed to form a short DNA duplex with 5' BspQI and 3' BstXI compatible overhangs, which was then ligated to the 4,321-bp BspQI-BstXI-digested fragment of plasmid pLSV5, whose construction is described in *Materials and Methods*.

	Event type	DNA damage tolerance product		No. isolates	%
1	Accurate TLS	5'GT G ACCGTAT 3'CACTGGCATA	3′ 5′	68	76%
		5'GTCACCGCAT 3'CAGTGGC G TA	3′ 5′		
2	Mutagenic TLS	5'GT T ACCGTAT 3'CAATGGCATA	3′ 5′	6	6%
		5'GT A ACCGTAT : 3'CATTGGCATA :	3′ 5′		
		5'GTCACCGAAT 3'CAGTGGC T TA	3′ 5′		
3	HDR	5'GT C ACCGTAT 3'CAGTGGC A TA	3′ 5′	16	18%
	Total no. isolates:			90	

Human XP12RO xeroderma pigmentosum group A (XPA) cells were stably transformed with the lesion shuttle vector pLSV5(BP-GstaggBP-G) that carries two BP-G lesions in a staggered conformation with opposing G or T, respectively. Shown are sequences obtained from amplified genomic DNA of individual colonies after integration and long-term propagation. The nucleotides at the lesion's position are marked with boldface type. HDR, homology-dependent repair; TLS, translesion DNA synthesis.

Table S2. Relative colony yield of cells after genomic integration of the two-staggered BP-G adducts lesion shuttle vector pLSV5(BP-GstaggBP-G)

	No. colonies per dish						
Shuttle vector	Exp. 1	Exp. 2	Exp. 3				
Control	144	162	159				
pLSV5(BP-GstaggBP-G)	120	191	193				
Relative colony yield (RCY), %	83	118	121				
Average RCY, %		107 ± 17					

Relative colony yield was calculated as the ratio of the number of colonies obtained in pLSV5(BP-GstaggBP-G) to a control vector without BP-G adducts (pBCs) transfections. Shown is an average value of three independent experiments.

Table S3. Tolerance efficiency and sequence signature of two-staggered TT 6–4 photoproducts integrated into human chromosomes

~ .

	5' AAG TT 3' TTC TT (GGAGCAGTGGAATATCTAGTCGTGC 	CCTCG 3' TAGC 5'	
	Event type	DNA damage tolerance product	No. isolates	%
1	Accurate TLS	5'AAG TT GGA——————————————————————————————————	18	40
2	Mutagenic TLS	5'AATTTGGA———————————————————————————————	22	48
3	HDR	5'TTATCCT ACGGGA 5' 5'AAG AA GGA	5	11
Total ı	no. isolates:		45	

Human XP12RO XPA cells were stably transformed with pLSV56-4TTstagg that carries two 6–4TT lesions in a staggered conformation with opposing TT or CC, respectively. Shown are sequences obtained from amplified genomic DNA of individual colonies after integration and long-term propagation. The nucleotides at the lesion's position and/or neighboring bases are in boldface type.

Table S4. Relative colony yield of cells after genomic integration of the two-staggered 6-4TT adducts lesion shuttle vector pLSV5(6-4stagg6-4)

Shuttle vector	No	. colonies per o	dish
Control	187	190	90
pLSV5(6-4Stagg6-4)	176	184	96
Relative colony yield (RCY), %	94	97	107
Average RCY, %		99 ± 5	

Relative colony yield was calculated as the ratio of the number of colonies obtained with pLSV5(6-4stagg6-4) to pC6-4s (control with no lesions). Shown is an average value of three independent experiments.

Table S5. Tolerance efficiency and sequence signature of two-staggered trimethylene lesions integrated into human chromosomes

...

PNAS PNAS

	3	3'TAGTTCATGAACCTCCCAACACTAGTGAAGCGGGAGT	 Mgaca	5'	
	Event type	DNA damage tolerance product		No. isolates	Fraction,%
1	HDR	5'ATCA A GCATCTGT	3′	29	76%
		3'TAGTTCGT A GACA	5′		
	8				
2	TLS	5'ATCAAGCAGCTGT	3′	9	24%
		3'TAGTTCGT C GACA	5 ′		
		1			
		5 ' ATCA \mathbf{T} GCATCTGT	3′		
		3 ' TAGTA C GTAGACA	5′		
Tot	al No. isolates:			38	

Human XP12RO XPA cells were stably transformed with pLSV5(M3staggM3) that carries two trimethylene (M3) lesions in staggered conformation. Shown are sequences obtained from amplified genomic DNA of individual colonies after integration and long-term propagation. The nucleotides present at the lesion's position are in boldface type.

Table S6. Relative colony yield of cells after genomic integration of the two-staggered M3 adducts lesion shuttle vector pLSV5(M3staggM3)

Shuttle vector	No	. colonies per o	dish
Control	131	129	126
pLSV5(M3staggM3seq2)	63	77	44
Relative colony yield (RCY), %	48	60	35
Average RCY, %		48 ± 10	

Relative colony yield was calculated as the ratio of the number of colonies obtained with pLSV5(M3staggM3) to a control vector without M3 adducts (pCMs). Shown is an average value of five independent experiments.

Table S7. Sequence signature of two-staggered BP-G adducts integrated into human chromosomes in cells in which expression of *REV3L*, the gene encoding the catalytic subunit of DNA polymerase zeta, was knocked down

		No. isola	ites (%)
Event type	DNA damage tolerance product	siControl	si <i>REV3L</i>
1. Accurate TLS		27 (67.5)	35 (81.4)
	5'gt g ac		
	3'CACTG		
	5'GTCAC		
	3'CAGTG		
2. Mutagenic TLS	_	3 (7.5) (7)	1 (2.3)
	5'GT T AC		
	3'CAATG		
	5'GT A AC		
	3'CATTG		
	5'GTCAC-CGAAT 3'		
	3'CAGTG		
	5'GT C AC		
	3'CAGTG		
Total no. isolates	_	40	43

Human XP12RO XPA cells were treated with a control siRNA or siRNA against *REV3L* and with a boost treatment 24 h later. After 48 additional hours cells were stably transformed with pLSV5(BP-GstaggBP-G) that carries two BP-G lesions in a staggered conformation with opposing G or T, respectively. Shown are sequences obtained from amplified genomic DNA of individual colonies after integration and long-term propagation. The nucleotides at the lesion's position are marked with boldface type.

SANG SANG

		Chromosome:		Chromosome:
Event	Chromosomal	844 c	Vactor	1440
		acc. 1		aF
1	19q13.31	CCCAGTACCATCAGAAGGACCCTGGTGAC CACCCGCACC	Vector	GACCAGATGGGTGGGGGGGGGGGGGGGGGGGGGCTCATTCTTCACCACTGT
		GCGGCTTCGAGACCG		GGGATCCCATAGAAGTCAGG
2	19q13.31	CCCAGTACCATCAGAAGGACCCTGGTGACCACCCGC	Vector	GACCAGATGGGTGGGTGGAGTACGCGCCGGCTCCATTCTTCACCAC
		ACCGCGGCTTCGAGACCG		TGTGGGATCCCATAGAAGTCAGG
œ	19q13.31	AGAATGAGACCACGG AGGGCACGCCCTGGCACCCGCA	Vector	GACCAGATGGGTGAGTGGAGTACGCGCCCGGGTCACCAGGGT
		CCGCGGCTTCGAGACCG		CCTTCTGATGGTACTGGGGACACCTG
4	19q13.31	CCCAGTACCATCAGAAGGACCCTGGTGACCCGCACCC	Vector	GACCAGATGGGTGAGTGCAGTACGCGCCTATTCCGTGGTCTCATTCTT
		CGGCTTTCGAGACCG		CACCACTGTGGGATCCCA
5	19a13.31	ATCCCCTGACTTCTATGGGATCCCACAGTGGTGAAGA	Vector	GACCAGATGGGTGAGGTGGAGTACGCGCGGGGGAGCCCAGGGGGTC
5	· · · · · · · · · · · · · · · · · · ·			
,		AIGAGACCACCACCACCACCACCACCACCACCACCACCACCA		AUCAGGGI ULI ULGAI GGIAUI GGGGA
9	19913.31	AGGTGTCCCCAGTACCATCAGAAGGACCCTGGCGCAC	Vector	GACCAGATGGGTGGGTGGAGTACGCGCCGGTCATTCTTCACCAC
		CGCGGCTTCGAGACCG		TGTGGGATCCCATAGAAGTCAGGGGA
7	19q13.31	TGAACATCCCCTGACTTCTATG <i>GCCCTGGCACCCGCA</i>	Vector	GACCAGATGGGTGAGTGCAGTACGCGCCCGGGGAGCCCTTCTGATG
		CCGCGGCTTCGAGACCG		GTACTGGGGACACCTGATCCCAT
a	19r13 31	\mathbb{R}^{2}	Vactor	<u>ວອີຊາກາດຊີຊອອດດາການດາດການຊີຊອດຫຼາຍຊີຊອກຄວາມຊີລິຊາກເຊັ່ງ</u>
0				
		AAT GAGACCA CGAGACCG		Getcaccaggetccttctgatgetactgggggcacctgatcc
6	19q13.31	ATCCCCTGACTTCTATGGGATCCCACAGTGGTGAAG	Vector	GACCAGATGGGTGAGGTGGAGTACGCGCCCGGGGGGGGGG
		AATGAGACCA CGAGACCG		CACCAGGGTCCTTCTGATGGTACTGGGGGACACCTGATCC
10	19a13.31	ATGAGACCACGGAATACCAAGGA CCCTGGCACCC	Vector	GACCAGATGGGTGAGGTGGAGTACGCGCGCGGGTCACCAGGGTCCTTC
2				
;		SUPPORT L'ENDER DE LE	:	I GAI GGIAUT GGGGA
11	19q13.31	TCCTGAACATCCCCTGACTTCTATGGGATCCCACAGT	Vector	GACCAGATGGGTGAGTGGAGTACGCGCCCCGGGGAGCCCCA
		GGTGAAGAATGAGACCA CGAGACCG		GGGGTCACCAGGGGTCCTTCTGATGGTACTGGGGGACACCTGATCC
12	2p11.1	TTTGAAACACTCTTTTTGTAGTATATGGAAGTGGA	Vector	GACCAGATGGGTGAGGTGGAGTACGCGCGCGGGGGGGGGCCCA
				GACAGAAGCATTCTCAGAAGCTTCATTGGGATGTTTCAAATTGGAAGTGA
ç				
13	Zq23.2	AAGACATAGGACCATGAAGAT CCAGGGCACGCCCTG	Vector	GACCAGATGGGTGAG ACCTAATTAAACTAAAGAGCTTCTGCACN
		GCACCCGCGCGGGCTTCGAGACCG		ACTAAAGAAACTATCA
14	6P21.1	ATATATAGTTCCATGGA GCACCCGCACCGC	Vector	GACCAGATGGGTGAGTGGAGTACGCGCGCGGGGAGC
		GGCTTCGAGACCG		CCAATGG CATTTGTTGTAAAATGCATATAAA
15	9n13 7	Κ υσυυνς συσσμυμή « « «μ« σσμυσμοσ «μ« μ« « σοσμμ	Vactor	ℚ∪⅁ ⊞⅁⅁ ℇ ℋℋℋℇℬℬℋℋℋℋℋℋℋℋℋℋℋℋℋℋℋℋℋℋℋℋℋℋℋ
2	1			
		CCGCGC1.1.CGAGACCG		ATTUCATUATTGAACAGATGGGGGGGGGGGGGGGGGGGGG
16	9p21.2	AACATCATCAGATAAATAATTAAGTCAAAGTAC	Vector	GACCAGATGGGTGAGTGCGGGGCCCCGGGGTAAGAACTAGGAG
		CTGGAAATTAA CCGCACCGNGGCTTCGAGACCG		ACCCTTAACATTTCCCAGGGCAATACACATGGTAAA
17	8p22	TACAGCAATAAGTACTTGGGTTT <i>CCCTGGCACCCGCAC</i>	Vector	TGGCAGACTTGGGTGTGAACAGATATTTCTGGTTTCCATGTTCTTTA
		CGCGGCTTCGAGACCG		
18	8n22	ΑΑΓΩΓΩΩΩΤΑΓΑΓΑΓΑΓΗΤΗΑΓΑΑΑΑΑΑΓΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟΟ	Vector	₹∪∪∪∪₽₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
	1			
0				
19	8p.22	CATTGCGTCATGGCTTAAAATCTCCA TGGCACCCGCA	Vector	GACCAGATGGGTGAGGTGGAGTACGCGCGCGGGGGGGGCGTCCCAAGTA
		CCGCGGCTTCCAGACCG		CTTATTGCTGTATTTGAAACCACC
20	5q14.3	GGGTAAATAGTTTTCTGTGGTGGCAT TGGCACCCGCAC	Vector	GACCAGATGGGTGAGTGCAGTACGCGCCCCGCCCCTTCTCCAGCTCTAG
		CGCGGCTTCGAGACCG		TGAAATTTAAGGGCCTACCTTAT
21	4a35.2	GGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGT	Vector	GACCAGATGGGTGAGGTGGAGTAGCGCGCGGGGGAGCCCAGGTGAGGG
		ΩΔΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩΩ		ͲϾϪϲϥϲϲͲϲϪϲϲϲϲͲͲϪϲϲϲϲͲͲϪϲϲϲϲͳͳϪ
22	1.dsp4	CTCTGACCCCACAGTAGCATCTAGGAT TGGCACCCGCACC	Vector	GACCAGATGGGTGAGGTGGAGTACGCGCGGGGGGGGGGG
		GCGGCTTCGAGACCG		AGTGGGCATAATACAGTGCTCTTTAGCTCTGCCATTCGCAGA

	Chromosome:		attL	GACCAGATGGGTGAGTGCGCGCGCGGGGAGCT	AAACTGTCTTCCATTTCAGTTTTGAATCAGTATTGTTACACTCAAACC	GACCAGATGGGTGAGGTGGAGTACGCGCCACTCCA	ATTGCAGCTGCTGTACCAGATGTGGTTTCATTGCCTCA	GACCAGATGGGTGAGGTGGAGTACGCGCC AGGATCCCCATGGCCG	GGGGGCTCACTGACT	GACCAGATGGGTGAGTGGAGTACGCGCCCGGGGA	GCC CTATGGCATTATTTTAAAACAATTAATTGCTTATTCTCTC	GACCAGATGGGTGAGTGGAGTACGCGCCCGGGGA	GCCC3AGGAAAATGATCATTTTAGTTTCATAATATTCAACAAG	GACCAGATGG CTAGGAAGAATTGGTGGGTGCAGAG	AAAGGAGAAATGGAAGGAGGGATGAGCCTTACATG	* GTTTCGAGGGCGAGAGCTTCCCGGT ATATCTTTGCTTTCCCCAGAT	CCTGCCAGCCTGACTCCTT	*GTGACCGTCGAGAACCCGCTGANGCTGCCCCGCGTCTCCTCCCAG	GACCTTATGTAACCCAGCGTCGGCAGCAAG	* cgttcatcatgatggaccagatgggtg atagattaaatgaggcatt	AAAGACATATCAACCAAATGTAACC
			Vector	Vector		Vector		Vector		Vector		Vector		Vector		Vector		Vector		Vector	
	Chromosome:		attR	CTGAAAAACCCTAAAGTATTCTAGG AGGCA	CGCCCTGGCACCCGCGCGCGCCTTCGAGACCG	TCTTGGAGAACGACCATGGATTCTCATAAG CG	CCCTGGCACCCGCACCGCGGCTTCGAGACCG	GGGAAAGCAGACAGACCATGGGGTGGC CCCGCA	CCGCGGCTTCGAGACCG	GTCTGTCCAAAGATCCAGTAAACATCCACCT	CTATTTCTTT CGGCTTCGAGACCG	TGTATGTTTATTAAATTTATTTTTAAATCC	TCATTTTTTAACCAATCCG CGGCTTCGAGACCG	AAGTCAAGAT AATGGTTAAA GGCTTTGAAG AG	TATCTTTG CG	TACACATCCTGGACCATGAA GAAAGGTAGAC CTGC	AGATCTGNGATCTCATACAGAACTTAT [*]	CCAGACGCGTCCGGGGGGGGCGCTC GCACCCGCCGAC	GCCGTCGCACGTCCCGTGCTCAC [*]	CCAGTTTCTTCAACAAAAAATTGCAAAAATAAAAAG	gaacaagg agaacttataagattccc*
		Chromosomal	location	7p14.1		10q22.1		20p13		3p23		1q41		13q13.3		4p13		12q22		Xq22.3	
Table S8. Cont.		Event	no.	23		24		25		26		27		28		29		30		31	

PNAS PNAS

Human XP12RO XPA cells were stably transformed with pLSV5(BP-GstaggBP-G) that carries two BP-G lesions in a staggered conformation. Individual colonies carrying the integrated plasmid were propagated for 21 d, after which the integrated plasmids were rescued and subjected to DNA sequence analysis of the vector-chromosome junctions. *attR* and *attL* are pseudo *att* sites, which are hallmarks of ϕ C31 integrase-mediated integrated plasmids were rescued and subjected to DNA sequence analysis of the vector-chromosome junctions. *attR* and *attL* are pseudo *att* sites, which are hallmarks of ϕ C31 integrase-mediated integration. Several random integrations were detected too (marked by asterisks). The authentic *attP* site is 5'-GCCCAACTGGGGGTAACCTTTGAGTTCTCAGTGGGGG-3' (the *attL* and *attR* sites are *Random integration. underlined).

No.	Event type	DNA damage tolerant product	No. isolates	Fraction, %
1	Accurate TLS			
		5' CAAG <u>TT</u> GGAGC	13	12
		3' GTTCAACCTCG		
2	Mutagenic TLS		40	38
		5' CAA T TTCCACC	40	
		3' GTT A AACCTCG	15	
		5' CAA T<u>T</u>C GGAG	4	
		3' GTT A A G CCTC		
		5/ and - 7.000 and	2	
		5' CAA TTA GGAGC	3	
		3 GTT A A T CCTCG		
		5' CAAG C TGGAGC	3	
		3' GTTC G ACCTCG		
		5' CAAG TA <u>T</u> GGAGC	2	
		3' GTTC AT ACCTCG		
		5/ 033 77 7 003 00	2	
		5' CAACICGGAGC		
		5 GIIGAGCEICG	1	
		5' caagtt g gagc	·	
		3' GTTCAACCCTCG		
			1	
		5' CAA AAA GGAGC		
		3' GTT TT CCTCG		
		5' CAAAAACACC	I	
		3' GTT TTTT CTCG		
		0 011	1	
		5' CAAG G IGGAGC		
		3' GTTC C ACCTCG	1	
		5' CAA T TTGGA A GC	1	
		3 GITAAACUT I UG	I	
		5'CA GTT G GGAGC		
		3' GT CAA C CCTCG	1	
		—		
		5' CAA T T A TGGAGC		
_		3' GTT A A T ACCTCG		
3	Replication/HDR	5/ 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	52	50
		5' CAAGAAGGAGC	53	50
Total n	no isolates:	3 GTTCTTCCTCG	106	100
i otai II	10. isolates.		100	100

Table S9. Signature of chromosomal DNA damage tolerance of a single TT 6–4 PP 5' CAAG<u>TT</u>GGAGC 3' GTTCTTCCTCG

Human XP12RO XPA cells were stably transformed with pLSV5(TT6-4) that carries a single TT 6–4 PP lesion with opposing TT. Shown are sequences obtained from amplified genomic DNA of individual colonies after integration and long-term propagation. The nucleotides at the location of the original lesion are underlined. The mutations are in boldface type and italics.

Table S10. Oligonucleotides used for construction of pLSV5(BP-GstaggBP-G), pLSV5(BP-G), and pLSV5BCs vectors

	Sequence bp	
Long		
1A _L	GCTCGATCTGAC	12
1BL	GTTCGT (G) ACGTG	12
1C _L	CAGTGGAATATCTAGTGTAGGACGTATGCTCCTTGAACGCACCG	44
1DL	CGTCCTACACTAGATATTCCACTGCACGTCACGAACGTCAGATCGAG	47
1EL	$GCTCGATCTGACGTTCGT(\underline{\mathbf{G}}) \land ACGTGCAGTGGAATATCTAGTGTAGGACGTATGCTCCTTGAACGCACCG$	68
1FL	GCTCGATCTGACGTTCGTGACGTGCAGTGGAATATCTAGTGTAGGACGTATGCTCCTTGAACGCACCG	68
Short		
1A _s	GCGTTCAAGGAG	12
1Bs	CAT (G) CGTCCTAC	12
1Cs	ACTAGATATTCCACTGCACGTGACGAACGTCAGATCG	37
1Ds	CACGTGCAGTGGAATATCTAGTGTAGGACGCATGCTCCTTGAACG	45
1Es	GCGTTCAAGGAGCAT (\mathbf{G}) CGTCCTACACTAGATATTCCACTGCACGTGACGAACGTCAGATCG	61
1Fs	GCGTTCAAGGAGCATGCGTCCTACACTAGATATTCCACTGCACGTGACGAACGTCAGATCG	61

Shown are the oligonucleotides used to construct the duplex oligonucleotides carrying the core lesion sequences for building the lesion shuttle vectors carrying BP-G lesions and their controls. The underlined G represents the BP-G adduct. The outline of the construction is shown in Fig. S1 and described in *Materials and Methods*.

Table S11. Oligonucleotides used for construction of pLSV5(TT6-4staggTT6-4) and pV5TTCs vectors

	Sequence by	0
Long		
2A _L	GCTCGATCTGAC	12
2BL	GCAAG (TT) GGAG	11
2CL	CAGTGGAATATCTAGTCGTGCCCTCGCACTCCTTGAACGCACCG	44
$2D_L$	GCGAGGGCACGACTAGATATTCCACTGCTCCAACTTGCGTCAGATCGAGC	50
2EL	GCTCGATCTGACGCAAG (TT) GGAGCAGTGGAATATCTAGTCGTGCCCTCGCACTCCTTGAACGCA	ACCG 67
2FL	GCTCGATCTGACGCAAGTTGGAGCAGTGGAATATCTAGTCGTGCCCTCGCACTCCTTGAACGCACC	CG 67
Short		
2As	GCGTTCAAGGAG	12
2Bs	TGCGA (TT) GCACG	12
2Cs	ACTAGATATTCCACTGCTCCTTCTTGCGTCAGATCG	36
2Ds	GAAGGAGCAGTGGAATATCTAGTCGTGCAATCGCACTCCTTGAACGC	49
2Es	GCGTTCAAGGAGTGCGA (TT) $GCACGACTAGATATTCCACTGCTCCTTCTTGCGTCAGATCG$	60
2Fs	GCGTTCAAGGAGTGCGATTGCACGACTAGATATTCCACTGCTCCTTCTTGCGTCAGATCG	60

Shown are the oligonucleotides used to construct the duplex oligonucleotides carrying the core lesion sequences for building the lesion shuttle vector carrying TT 6–4 PP lesions and their controls. The underlined TT represents the 6–4 PP. The outline of the construction is shown in Fig. S1 and described in *Materials and Methods*.

Table S12. Oligonucleotides used for construction of pLSV5(M3staggM3), pLSV5(M3oppM3), and pV5MCs vectors

	Sequence bp	
Long		
3E1	GCTGCTCTCCATCAAMTACTTGGAGGGTTGTGATCACTTCGCCCTCAGCTGTGTTGTGGCGGACCG	66
3E2	GCTGCTCTCCATCAMGTACTTGGAGGGTTGTGATCACTTCGCCCTCATCTGTGTGTG	66
3F	GCTGCTCTCCATCAAGTACTTGGAGGGTTGTGATCACTTCGCCCTCAGCTGTGTGTG	66
Short		
3E	CCGCCACAACACAGMTGAGGGCGAAGTGATCACAACCCTCCAAGTACTTGATGGAGAGC	59
3F	CCGCCACAACACAGCTGAGGGCGAAGTGATCACAACCCTCCAAGTACTTGATGGAGAGC	59

Shown are the oligonucleotides used to construct the duplex oligonucleotides carrying the core lesion sequences for building the lesion shuttle vectors carrying M3 lesions and their controls. The underlined M represents the M3 lesion. The outline of the construction is shown in Fig. S1 and described in *Materials and Methods*.