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Simplex Projection. Simplex projection (1) is a method for using
state space reconstruction to forecast a time series variable X(t).
The basic idea is simple: Points nearby in state space evolve sim-
ilarly in time. Simplex projection forecasts are a weighted average
of the dynamics observed at points nearby in the reconstructed
state space, M. We make this notion explicit as follows.
State space reconstruction involves identifying time series

point X(t) with corresponding vectors, x(t), in a multidimensional
space. In the case of univariate SSR, the coordinate axes of this
multidimensional space are time lags of the variable X. Thus, the
vector x(t) has components [x1(t), x2(t), x3(t), ..., xE(t)] = [X(t),
X(t−τ), X(t−2τ), ..., X(t−(E−1)τ)]. Here, E is the embedding
dimension and τ is the step size of the time lag (both for the
sardine and model analyses τ = 1 y). In multivariate SSR with
two time series variables X(t) and Y(t), some of the coordinate
variables of the state space vectors x(t) will correspond to lags of Y
rather than X. In this paper, we only experiment with multivariate
embeddings that include a single lag of an environmental variable
Y. Thus, the vector x(t) will have components [x1(t), x2(t), x3(t), ...,
xE(t)] = [X(t), X(t−τ), X(t−2τ), ..., X(t−(E−2)τ), Y(t)].
Suppose we have time series of X and Y with n observations,

i.e., {X(1), X(2), ..., X(n)} and {Y(1), Y(2), ..., Y(n)}. These
time series give n – E + 1 vectors (for the univariate case) in the
reconstructed state space, M. To predict future values of X
starting at time t*, we first determine the E + 1 nearest neighbors
to the vector x(t*) in M. Note that E + 1 is the minimum number
of points to surround x(t*) in the E dimensional space. Let t1 be
the time index of the first nearest neighbor to x(t*), t2 the time
index of the second nearest neighbor, and so on. The simplex
projection of X(t*) p steps into the future is then
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where the weighting applied to each neighbor, wi, is given by
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Here, jjx − yjj is the Euclidian distance between two vectors
in an E dimensional space. That is, jjx − yjj = {[x1 − y1]

2 + [x2 −
y2]

2 + . . . + [xE − yE]
2}1/2.

Thus, the algorithm for simplex projection can be summarized
as follows:

i) Translate the time series data into vectors in the (multidi-
mensional) reconstructed state space. In this paper we con-
sider two types of SSR: univariate SSR, where the state
space vector for time point t is given by x(t) = [X(t), X(t−τ),
X(t−2τ), ..., X(t−(E−1)τ)], and multivariate SSR with a single
lag of an environmental variables, where x(t) = [X(t), X(t−τ),
X(t−2τ), ..., X(t−(E−2)τ), Y(t)]. Note that the first few points
in the time series will not have all of the necessary lags and
so will not have a corresponding vector in the reconstructed
state space.

ii) Pick a target time point, t*, and identify the corresponding
vector x(t*). We seek to predict X(t*+p).

iii) Define the set of library vectors that will be used to predict
the behavior of x(t*). For short time series (like we examine
in this work), it is best to use cross-validation. In this case,

the library set will be all possible vectors formed from the
time series except the target vector. Note that with longer
time series, it is possible to split the time-series in half and
use the first half to predict the second half (as in ref. 1).

iv) Compute the Euclidian distance between x(t*) and each vector
in the library, d(x,y) = jjx − yjj={[x1 − y1]

2 + [x2 − y2]
2 + ... +

[xE − yE]
2}1/2.

v) Identify the E + 1 library vectors that are closest (have the
shortest Euclidian distance) to the target vector x(t*) in
the reconstructed state space. Define t1 as the time index
of the first nearest neighbor to x(t*), t2 as the time index of
the second nearest neighbor, and so on. The time indices ti
are the points in history that the system was in a similar
state to the target time, t* (according to this state space
reconstruction).

vi) Predict X(t*+p) using Eq. S1 above.
vii) Repeat steps ii–vi for each vector in the state space.

Note that for multivariate embeddings (the components of the
state space vectors x(t) correspond to lags of two or more time
series variables), it is important to normalize each time series.
Otherwise, if time series X and Y have very different magnitudes,
the choice of neighbors and weighting function will be domi-
nated by the larger time series. Alternatively, one could use more
complicated forecasting schemes, where weighting is adjusted
for each component variable, but this will increase the risk of
overfitting.

Embedding Dimension. Takens’s theorem and its multivariate gen-
eralization state that lag-coordinate reconstructions are valid ap-
proximations of the true system as long as sufficiently many
coordinate dimensions are used (2–4). Thus, if d dimensions are
sufficient for representing the system, d + 1 dimensions will work
as well. In real systems with observation and process error, in-
cluding too many dimensions adds uncertainty. In practice, we
chose the embedding dimension E that gives maximum predict-
ability, ensuring that E is sufficiently large to capture the dynamics
of the system without including extraneous dimensions (1). Pre-
dictability can be measured using mean absolute error (MAE),
root mean squared error (RMSE), or correlation (ρ) between
predictions and observations. Usually these measures will agree.
For the California Cooperative Oceanic Fisheries Investiga-

tions (CalCOFI) survey data of Sardinops sagax ichthyoplankton
abundance, the relationship between embedding dimension (E)
and ρ is noisy. With short time series, correlation is more sensitive
to outliers than MAE. Thus, we rely on MAE. Fig. S1 displays
prediction skill (1 −MAE) as a function of embedding dimension
(E). From this result, we chose an embedding dimension of E = 3.

S-Map. Once the optimal embedding dimension is determined
using simplex projection, the S-map (sequential locally weighted
global linear map) procedure (5) can be used to test for state-
dependent dynamics. For the target time point t*, a linear model
C is used to predict the future value X(t*+p) (in this paper we
only deal with p = 1-y forecasts) from the reconstructed state
space vector x(t*). That is,

X̂
�
t*+ p

�
=C0 +

XE−1
j= 0

Cj xj
�
t*
�
: [S2]

The linear model is fit to the other vectors in the state space.
However, points that are close to the target point, x(t), are given
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greater weighting. Specifically, the model C is the SVD solution
to the equation

B=A·C; [S3]

where B is an n-dimensional vector of the weighted future values
X(ti) for each historical point, ti, given by

Bi =w
���� x�ti�− x

�
t*
�����X�ti + p

�
; [S4]

and A is the n × E dimensional matrix give by

Aij =w
���� x�ti�− x

�
t*
�����xj�ti�; [S5]

The weighting function w is defined by

w
�
d
�
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;

which is tuned by the nonlinear parameter θ ≥ 0 and normalized
by the average distance between x(t*) and the other historical
points,

d=
1
n
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��� x�tj�− x
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As above, jjx − yjj is the Euclidian distance between two
vectors in the E-dimensional state space. Note that the model C
is separately calculated (and thus potentially unique) for each
time point, t.
The algorithm for S-map given a choice of the nonlinear pa-

rameter θ can be summarized as follows:

i) Translate the time series data into vectors in the multidi-
mensional state space. In this paper we consider pure uni-
variate SSR, x(t) = [X(t), X(t−τ), X(t−2τ), ..., X(t−(E−1)τ)]
and multivariate SSR with a single lag of an environmental
variables, x(t) = [X(t), X(t−τ), X(t−2τ), ..., X(t−(E−2)τ), Y(t)].

ii) Pick a target time point, t*, and identify the corresponding
state space vector x(t*). We seek to predict X(t*+p).

iii) Define the set of library vectors that will be used to predict
the behavior of x(t*). For short time series (like we examine
in this work), it is best to use cross-validation. In this case,
the library set will be all possible vectors formed from the
time series except the target vector.

iv) Compute the Euclidian distance between x(t*) and each vector
in the library, d(x,y) = jjx − yjj={[x1 − y1]

2 + [x2 − y2]
2 + . . . +

[xE − yE]
2}1/2.

v) Use these distances to define the weighted vector B using
Eq. S4 and matrix A using Eq. S5.

vi) Solve Eq. S3 using singular value decomposition (SVD) for
the matrix C.

vii) Calculate X(t*+p) using Eq. S2 above with C found above.
viii) Repeat steps ii–vii for each vector in the state space.

A time series is shown to have state-dependent dynamics if
nonlinear models (that depend on the location in state space)
produce better forecasts than linear models. Fig. S2 shows S-map
results for the first-differenced CalCOFI ichthyoplankton survey
abundance of Pacific sardine, using the embedding dimension
determined from simplex projection (Fig. S1). Forecasts are
substantially improved by accounting for nonlinear dynamics,
indicating the Pacific sardine have nonlinear dynamics.

Three-Species Logistic Model. The general form for a three-species
coupled logistic model for species X1, X2, and X3 in continuous
time is given by

dXi

dt
= Xi

 
ri +

X3
j= 1

αijXj

!
:

The parameter values were taken from figure 5 in ref. 6.
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The data were generated using a fourth-order Runge–Kutta
with integration step of h = 0.01 and initial conditions X1 = 5, X2 =
0.001, and X3 = 11. Fig. 1 shows data for t = (101, 102, . . ., 300).
The three red points correspond to time indices t1 = 108, t2 =
143, and t3 = 248.

Expanded Model Example of Scenario Exploration. We repeat the
analysis shown in Fig. 2A of the main text to show that the result
is robust over a wide range of the growth rate parameter, r. The
model structure is the same (Eq. 1 in the main text):

Sðt+ 1Þ= SðtÞexp½ðr+ «ðtÞÞð1− SðtÞÞ�expðψTðtÞÞ;

where «(t) is a normally distributed random variable with
mean(«) = 0 and SD(«) = 0.2. As in the analysis in the main text,
we set ψ = 0.3. However, the growth parameter is varied between
1.8 and 2.8. The temperature T(t) was modeled as red noise
with mean 0 and SD 1 by applying a 10-y averaging window to
white noise.
Using scenario exploration with multivariate SSR, we predict

the effect on stock size S of a 10% increase in temperature, ΔT,
relative to the SD σT of the temperature time series. We then
compare the SSR predictions to the exact calculations with the
model. As in Fig. 3A of the main text, we use the multivariate
embedding [S(t), S(t−1), S(t−2), S(t−3), T(t)] that contains lags
of population abundance and temperature. We predict the effect
that an increase in temperature ΔT at time t would have on the
population abundance the following year, t + 1. That is, we make
a nearest-neighbor forecast of the adult SSB for the state [S(t), S
(t−1), S(t−2), S(t−3), T(t) + ΔT]. Fig. S3 displays the results. For
each value of r, we generated 10 time series of 50 y each with
different initial conditions and realizations of T and «proc.
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Fig. S1. Univariate prediction skill (1 − MAE) is shown as a function of embedding dimension (E) for normalized first differences of the CalCOFI S. sagax
ichthyoplankton time series. MAE, mean absolute error.
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Fig. S2. S-map analysis of CalCOFI survey abundance of Pacific sardine ichthyoplankton. The improvement in forecast skill, Δρ, of sardine ichthyoplankton
abundance for nonlinear models compared with the completely linear model (θ = 0) for increasing values of the nonlinear tuning parameter, θ. Here, forecast
skill is measured by the Pearson’s correlation coefficient between model predictions (using cross-validation) and the observed values. Increasing the nonlinear
parameter substantially improves forecasts, suggesting that the dynamics of Pacific sardine are state-dependent (nonlinear).
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Fig. S3. Scenario exploration illustrated for short (50-y) time series generated with a simple Ricker model forced by temperature for a range of growth rates, r.
For each time series point t, the effect of warming on S(t+1) is predicted with multivariate SSR for warming of ΔT = 0.1σT (10% of the SD of T). Predictions are
compared with the true value calculated with the model over 10 model realizations for each r.
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