A Shock Tube and Chemical Kinetic Modeling Study of the Oxidation of 2,5-Dimethylfuran

Baptiste Sirjean,¹ René Fournet,^{1,*}

Pierre-Alexandre Glaude,¹ Frédérique Battin-Leclerc,¹ Weijing Wang², Matthew A.

Oehlschlaeger^{2,*}

¹ Laboratoire Réactions et Génie des Procédés (LRGP), Université de Lorraine, CNRS,

BP 20451, 1 rue Grandville, 54001 Nancy, France

² Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA

*Authors to whom correspondence should be addressed: René Fournet – rene.fournet@univ-lorraine.fr Phone: +33 383175202 Matthew A. Oehlschlaeger – oehlsm@rpi.edu Phone: 518.276.8115 **Supplementary Data** for "A Shock Tube and Chemical Kinetic Modeling Study of the Oxidation of 2,5-Dimethylfuran" by Sirjean et al.

φ	%-molar DMF	P [bar]	T [K]	τ [μs]
1	1	1.34	1403	1045
1	1	1.34	1474	463
1	1	1.26	1533	326
1	1	1.27	1663	122
1	1	1.19	1685	102
1	0.5	1.46	1387	1555
1	0.5	1.43	1424	1025
1	0.5	1.40	1485	574
1	0.5	1.33	1525	391
1	0.5	1.29	1636	173
1	0.5	1.23	1716	110
1	0.5	1.14	1792	75
1	0.5	1.06	1831	58
1	0.25	1.40	1433	1224
1	0.25	1.36	1469	826
1	0.25	1.36	1514	630
1	0.25	1.30	1530	577
1	0.25	1.34	1602	281
1	0.25	1.27	1701	148
1	0.25	1.21	1767	112
1	1	3.97	1310	1324
1	1	3.79	1357	682
1	1	3.57	1372	610
1	1	3.41	1388	525
1	1	3.30	1451	259
1	1	3.23	1571	118
1	1	2.96	1667	52
0.5	1	1.43	1318	1413
0.5	1	1.44	1397	618
0.5	1	1.36	1472	329
0.5	1	1.22	1521	197
0.5	0.5	1.44	1300	2306
0.5	0.5	1.40	1360	1325
0.5	0.5	1.50	1372	1124
0.5	0.5	1.39	1439	507
0.5	0.5	1.42	1547	198
0.5	0.5	1.31	1599	143
0.5	0.5	1.18	1664	100
1.5	1	1.32	1340	2455
1.5	1	1.24	1373	1668
1.5	1	1.32	1540	402
1.5	1	1.28	1632	195
1.5	1	1.20	1723	105
1.5	0.5	1.45	1392	2023
1.5	0.5	1.42	1427	1619
1.5	0.5	1.39	1477	977
1.5	0.5	1.34	1538	528
1.5	0.5	1.34	1690	206
1.5	0.5	1.20	1705	191

Table S1. Experimental data: ignition delay time measurements for DMF/O₂/Ar mixtures. DMF: 2,5dimethylfuran, φ : equivalence ratio, τ : ignition delay time.

Species	Name	Species	Name
	DMF	~0 <u>~</u> .	R1C ₆ H ₇ O
	M2C ₆ H ₈ O	C ^O , C ^{CH} ₂	R2C ₆ H ₇ O
	M3C ₆ H ₈ O		R3C₀H7O
	M4C ₆ H ₈ O	0=C	R4C ₆ H ₇ O
o	M5C ₆ H ₈ O		R5C₀H ₇ O
ОН	M6C₀H ₈ O	< <u> </u>	R6C ₆ H ₇ O
	M7C ₆ H ₈ O		R7C ₆ H ₇ O
	M8C ₆ H ₈ O	<u> </u>	R8C ₆ H ₇ O
0 	M9C ₆ H ₈ O	<u> </u>	R9C ₆ H ₇ O
	M10C ₆ H ₈ O	0	R10C ₆ H ₇ O
	M11C ₆ H ₈ O		M2C ₆ H ₆ O
	CA1		M3C ₆ H ₆ O

Table S2. Name and structure of the species involved in the detailed mechanism of the DMF oxidation.

	CA2	\bigcirc	C₅H ₇ Y#
C:-	CA3	i	C₅H7
C: O	CA4		C₅H ₇ Y
· · ·=0	B1		M2C ₆ H ₆ O
· ·	B2	o	M3C ₆ H ₆ O
~~~~	В3	°	M4C ₆ H ₆ O
H ₂ C [·]	M2-R1	o C C	M5C ₆ H ₆ O
CH ₂	M2-R2	0	B1C ₆ H ₆ O
	DMF-3yl	C O	C ₄ H ₄ O
, o.	DMF-3ylO		R1C ₆ H ₉ O
	MF		R3C₀H₀O

CH ₂	furylCH2		R7C ₆ H ₉ O
H ₃ C O.	M5F-2yl	CH.	MFH
H ₃ C _ O _ O.	M5F-2ylO	~CH_2^O	M5F-CH2O
CH=0	MF-CHO	СН ₂ 0 ^{-0⁻⁰}	furylCH2O
~_0~_c:=0	MF-CO	€ ⁰ , c [:] =0	furyICO

**Table S3.** Geometries, frequencies and RRKM parameters for the reactant and transition state involved in the reaction  $CH_3CF_3 \rightarrow CH_2CF_2 + HF$ Geometries and frequencies obtained at the B3LYP/CBSB7 level of theory

#### CH₃CF₃ (Cartesian coordinates )

C 0.025794 1e-005 -2.6e-005 C -1.47728 8.8e-005 -3e-006 H -1.83923 0.853241 0.573577 H -1.83922 0.070152 -1.02565 H -1.83922 -0.92322 0.452083 F 0.526992 1.12745 -0.552796 F 0.526899 -0.084996 1.25276 F 0.52684 -1.04254 -0.699946

### CH₃CF₃ (Frequencies cm⁻¹)

3116.37	3116.15	3035.19
1467.29	1467.11	1418.43
1268.81	1219.69	1219.49
957.793	957.432	816.949
588.369	529.868	529.121
358.358	358.161	

**230.877** (treated as hindered rotor) with a hindrance of V=3.1 kcal mol⁻¹ and an internal symmetry  $\sigma_{int}$ =3.

## **RRKM** parameters used in Chemrate

## Lennard-Jones parameters for CH₃CF₃ : $\sigma$ =5.29 Å and $\epsilon/k_B$ = 468.4 K Ar as buffer gas ( $\sigma$ =3.54Å and $\epsilon/k_B$ = 39.95 K) and $\langle\Delta E\rangle_{down}$ =750cm⁻¹ Neon as buffer gas ( $\sigma$ = 2.82 Å and $\epsilon/k_B$ =32.8 K) and $\langle\Delta E\rangle_{down}$ =750cm⁻¹ Collision model: exponential down model Time dependent solution (Divide and Conquer method) Increment for energy: 25 cm⁻¹

# Transition state (Cartesian coordinates )

C -0.314717 0.189218 1.4e-005 C 0.494026 1.33579 4.5e-005 H 0.503768 1.89403 0.927649 H 1.41236 0.373914 -6.4e-005 H 0.50365 1.89417 -0.927481 F 1.32305 -0.888878 -4.4e-005 F -0.85571 -0.295171 1.07395 F -0.855738 -0.295077 -1.07396

# Transition state (Frequencies cm⁻¹)

3213.2	3115.8	1708.87		
1546.04	1393.9	1379.94		
1275.84	995.752	928.231		
871.203	743.146	611.343		
504.061	454.078	383.04		
283.641	244.291			
Imaginary frequency : -1781				