SUPPLEMENTARY TABLES AND FIGURES

 Table S1. Sequence of primers used for point mutagenesis

Primers with restriction sites:

eRFNde	5'-GAGATATACATATGGCGGACGACCC-3'
eRFBst(rev)	5'-CCATTCTTAAGCGGGCAAAACGCAAGG-3'

Mutant primers:

E25A (rev)	5'-GGGCCGCCACCAAGCTC-3'
E25Q (rev)	5'-GGGCCGCCTGCAAGCTC-3'
R28A	5'-ATTGCCAGCGGCCGCCTCCAAGCTC-3'
R28K	5'-CCATTGCCCTTGGCCGCCTCCAAGCTC-3'
G29V (rev)	5'-GCCATTGACGCGGGCC-3'
N30A (rev)	5'-GCTGGTGCCAGCGCCGCGGGC-3'
N30D (rev)	5'-GCTGGTGCCATCGCCGCGGGC-3'
G31Y	5'-ATGCTGGTGTAATTGCCGCG-3'
G31V	5'-ATGCTGGTGACATTGCCGCG-3'
T32A	5'-ATATCATGCTGGCGCCATTGCC-3'
T32S	5'-ATATCATGCTGCTGCCATTGCCG-3'
\$33A (rev)	5'-CAATGATATCATGGCGGTGCC-3'
S33T (rev)	5'-CAATGATATCATGGTGGTGCCATT-3'
\$361 (rev)	5' GGAATGATCAATATTATCATGCTGGTGC_3'
S301 (10V) S26T(mov)	5' CGAATGATCAATATTATCATGCTGCTG 2'
5501(rev) M511	5° CATCCCCTAACACTTTTCCCACTC 2°
M51D	5 -CATCOCTAACAOTTTTCCCACTC- 2
	5 - CATCLOCTAAOCOTTTTOCCACTC-5
E55A E550	5 -OCAOTTECAAACOCATCOCTAAC- 5
ESSQ	5 -GUAGIIICUAAAUIGAIICUGUIAAUA-3
ESSK	5'-GCAGIICCAAACCGAICCGCIAAC-3
ESSD	5'-GCAGIICCAAAGICAICCGCIAAC-3'
A59V(rev)	5'-GACITAATGITAGATACAGTICCAAACICATC-3'
A59S(rev)	5'-GACITAATGITAGATGAAGTTCCAAACTCATC-3'
860V	5'-ACIGCAGITAACATTAAGICACGAGTAAACCG-3'
N61A	5'-CTGCATCTGCCATTAAGTCACGAGTAAACCG-3'
N61S	5'-CTGCATCTTCCATTAAGTCACGAGTAAACCG-3'
N61D	5'-CTGCATCTGACATTAAGTCACGAGTAAACCG-3'
162A	5'-CTGCATCTAACGCGAAGTCACGAGTAAACCG-3'
162V	5'-CTGCATCTAACGTGAAGTCACGAGTAAACCG-3'
K63E (rev)	5'-GGTTTACTCGTGACTCAATGTTAGATGC-3'
K63A	5'-CTGCATCTAACATTGCCTCACGAGTAAACCG-3'
K63Q	5'-CTGCATCTAACATTCAGTCACGAGTAAACCG-3'
K63R	5'-CTGCATCTAACATTCGCTCACGAGTAAACCG-3'
S64A	5'-CTGCATCTAACATTAAGGCCCGAGTAAACCG-3'
S64D	5'-CTGCATCTAACATTAAGGACCGAGTAAACCG-3'
R65A	5'-GTTTACTGCTGACTTAATGTTAGATGC-3'
N67D (rev)	5'-CTGAAAGGCGGTCTACTCGTGAC-3'
R68A (rev)	5'-GTAAACGCCCTTTCAGTCCTGGG-3'
S70A (rev)	5'-CAGGACTGCAAGGCGGTTTACT-3'
S70T (rev)	5'-CCAGGACTGTAAGGCGGTTTACTC-3'
V71F	5'-TGGCTCCCAGGAATGAAAGGCG-3'
V71A	5'-CTCCCAGGGCTGAAAGGCGGTT-3'
G73S (rev)	5'-ACAGATGTAATGGCTGACAGGACTGAAAGG-3'
175A (rev)	5'-TGTACAGATGTAGCGGCTCCCA-3'
T76A(rev)	5'-GTTGTACAGATGCAATGGCTCCC-3'
V78A (rev)	5'-GTTTGAGTCTTTGTTGTGCAGATGTAATG-3'
Q79E (rev)	5'-AGTTTGAGTCTTTGTTCTACAGATGTAATGG-3'
Q79K (rev)	5'-AGTTTGAGTCTTTGTTTTACAGATGTAATGG-3'
Q80E (rev)	5'-AGTTTGAGTCTTTCTTGTACAGATGTAATGG-3'
R81E (rev)	5'-AGTTTGAGTTCTTGTTGTACAGATGTAATGG-3'
Y96F (rev)	5'-CAA TTG TTC CAC AGA ATA CAA CCA GAC-3'
Y96A (rev)	5'-CAA'I'TGTTCCACAGGCTACAACCA-3'
V101A	5'-GTGGAACAATTGCAACAGAAGAAGG-3'

V101F	5'-TGTGGAACAATTTTCACAGAAGAAGG-3'
E107K	5'-GAAGAAGGAAAGAAAAAGAAAGTCAACA-3'
E107Q	5'-GAAGAAGGAAAGCAAAAGAAAGTCAAC-3'
E107A	5'-GAAGAAGGAAAGCAAAAGAAAGTCAAC-3'
V110Y	5'-GAAAGGAAAAGAAATACAACATTGACTTTG-3'
V110I	5'-AGGAAAAGAAAATCAACATTGACTTTGA-3'
V110A	5'-GAAAGGAAAAGAAAGCCAACATTGA-3'
T122Q	5'-CCAATTAATCAGTCATTGTATTTGTGTGAC-3'
S123F	5'-CCAATTAATACGTTCTTGTATTTGTGTGAC-3'
Y125F	5'-AATACGTCATTGTTTTTGTGTGACAAC-3'
Y125A	5'-AATACGTCATTGGCTTTGTGTGACAAC-3'
L126F	5'-CTGCATTGTATTTCTGTGACAACAAATTCC-3'
C127S	5'-GTATTTGTCTGACAACAAATTCC-3'
C127A	5'-TCATTGTATTTGGCTGACAACAAATTCC-3'
D128R	5'-GTGACAACAAATTCGCTACAGAGG-3'
D128G	5'-GTGTGGCAACAAATTCCATACAGAGG-3'
N129A	5'-GTGTGACGCAAAATTCCATACAGAGG-3'
N129P	5'-GTGTGACCCTAAATTCCATACAGAGG-3'
N129D	5'-CATTGTGTGACGACAAATTCCATACAG-3'
F131A	5'-GACAACAAAGCCCATACAGAGGCTC-3'
F131Y	5'-GACAACAAATATCATACAGAGGCTC-3'
E134S	5'-ACAAATTCCATACATCGGCTCTTACA-3'
E134A	5'-ACAAATTCCATACAGCGGCTCTTAC-3'
E134Q	5'-ACAAATTCCATACACAGGCTCTTACAG-3'

Position	Replacement	RF activity, %		
		UAA	UAG	UGA
E25	E25A	109	73	93
	E25Q	116	130	109
R28	R28A	73	57	85
	R28K	79	58	71
G29	G29V	107	78	102
N30	N30A	94	94	104
	N30D	67	59	76
G31	G31Y	52	53	56
	G31V	46	43	29
Т32	T32A	32	30	75
	T32S	75	93	112
S33	S33A	100	90	63
	S33T	94	71	46
S36	S36I	0	5	24
	S36T	120	86	97
M51	M51L	65	100	85
	M51R	120	110	100
E55	E55A	117	48	90
	E55Q	127	53	89
	E55R	80	20	120
	E55D	76	53	76
A59	A59S	68	70	73
	A59V	46	36	41
S60	S60V	94	92	72
N61	N61A	64	68	75
	N61S	16	20	13
	N61D	16	20	6
162	162A	3	5	8
	162V	53	48	50
K63	K63A	22	20	24
	K63E	18	13	13
	K63Q	5	7	13
	K63R	97	108	111
S64	S64A	110	92	90
R65	R65A	26	21	32
N67	N67D	2	2	6
R68	R68A	0	5	2
S70	S70A	78	92	42
	S70T	60	55	30
V71	V71F	33	77	18
	V71A	4	55	28
G73	G73S	83	77	84
175	I75A	18	14	13
T76	T76A	71	90	61
V78	V78A	100	100	80
Q79	Q79K	210	220	200
	Q79E	76	39	57
Q80	Q80E	14	10	15

Table S2. The RF activity of the human eRF1 mutants

R81	R81E	7	0	6
Y96	Y96A	63	37	73
	Y96F	106	67	86
V101	V101A	95	90	85
	V101F	93	93	94
E107	E107Q	118	125	123
	E107K	122	146	133
	E107A	136	135	134
V110	V110I	100	99	92
	V110A	98	100	98
	V110Y	95	93	96
T122	T122Q T122Q/S123F/L124M/L126F (QFM_F)	38 18	29 13	47 106
S123	S123F	38	21	31
Y125	Y125F	92	78	92
	Y125A	0	3	2
L126	L126F	85	77	105
C127	C127S	67	62	63
	C127A	50	62	63
D128	D128R	157	162	142
	D128G	129	105	97
N129	N129A	32	40	28
	N129P	112	77	142
	N129D	55	45	70
	N129P/K130Q (DPQ)	21	33	63
F131	F131A	15	13	37
	F131Y	55	52	62
E134	E134S	100	80	78
	E134A	99	82	94
	E134Q	96	75	100

The RF activity of the wild-type eRF1 was considered 100%,

error values varied from 5 to 10% for different eRF1 mutants.

The amino acid residues of the N domain important for stop codon decoding are marked in bold.

Figure S1. Graph of k_{obs} versus eRF1 concentration (E). k_{obs} was determined in 50 µl termination reaction containing 0.0125 pmol of the preTC and different amounts of eRF1 (0.25 – 4 pmol).

Figure S2. Conformational rearrangement of ribosomal complexes during termination of translation. (A) Toe-prints with M, C, and MC domains of human eRF1 on UAA codon, (B) toe-prints with N, N+M, and N+MC domains of human eRF1 on UAA codon (C) toe-prints with N domain of human eRF1 on different stop codons and UGG codon. cDNAs corresponding to pretermination complex and termination complex have the 127 and 125 nt length, respectively. RFU, relative fluorescence unit.