Pseudo-complementary PNA actuators as reversible switches in dynamic DNA nanotechnology

Damian Ackermann, Michael Famulok*

LIMES Institute, Chemical Biology and Medicinal Chemistry Unit, c/o Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany

CONTENTPAGE	
Supplementary Table T1 - Oligonucleotides used in this study2	
Supplementary Figure S1 - Crystal structure of 2-thiothymidine (10)	
Supplementary Figure S2 - Secondary structure of PGR gap-ring4	
Supplementary Figure S3 - Secondary structure of spherical stoppers	
Supplementary Figure S4 - PAGE of pcRod assembly	
Supplementary Figure S5 - PAGE of macrocycle invasion studies7	
Supplementary Methods - Synthesis of thiouracil monomer (1)8	

name	sequence				
spherical stopper					
Ring1 r (56)	5'phos-CGCGCTTTTTGCGCGTTTTTTCCGTCTTTTTGGCACTTTTTCTCGCTTTTTAGAT				
RingSE a (54)	5'phos-GACGGAAAAACTGTCAAAAAATGTTCAAAAAGTGCAGCACCTCACGTCTCATGG				
RingSE b (52)	5'phos-TCGTGCCATGAGACGTGAGGTGCTGCTGGAAAAAATATCTAAAAAGCGAGAA				
GE-1 (39)	5'phos-AAGCGAGAAAAAAGTGCCAAAAAGACGGAAAAAACGCGC				
GE-2 (42)	5'phos-AAAAAGCGCGAAAAAAGGGTCTTTTTGGCACTTTTTTCTCGC				
GE-3 (45)	5'phos-TTTTTAGATATTTTTTCCAACTTTTTGAACATTTTTTGACAGTTT				
GE-4 (42)	5'phos-TTCCGTCTTTTTGCGTCAAAAAGTTGGAAAAAATATCTAAA				
HJalpha b (53)	5'phos-AAAAGTGCCAAAAAGACCAAAAACTGTCAAAAAACGGAGAAAAATGTTCAAAA				
HJalpha c (61)	5'phos-TTTCCATATTTTTGAACATTTTTCTCCGTTTTTTGACAGTTTTTGGCGGAAAAAACGCGC				
HJalpha d (33)	5'phos-CGCGCTTTTTGCGCGTTTTTTCCGCCCTTTTTT				
Bogen f (47)	5'phos-AAAAAGCGCGAAAAAAGGGCCAAAAACTGTCAAAAAACGGAGAAAAA				
Bogen r (47)	5'phos-TTTTTGAACATTTTTCTCCGTTTTTTGACAGTTTTTGGCCCTTTTTT				
HJbeta a (56)	5'phos-AATATGGAAAAACGCGCAAAAAAGACGGAAAAACTGTCAAAAAATGTCGCAAAAAA				
HJbeta kc (32)	5'phos-ATTTTTCCAACTTTTTGAGCTTTTTCCATAT				
HJbeta kd (60)	5'phos-TGTTCAAAAAATATGGAAAAAGCACATTTTTTGACAGTTTTTCCGTCTTTTTTGCGCGTT				
PGR126					
AGRalpha f (57)	5'-AAATAATGAAAAAAGTGCCAAAAAAGACGGAAAAAACGCGCAAAAAAGCGCGAAAAAA				
AGRalpha r (47)	5'phos-TTTGGCCCTTTTTTCGCGCGTTTTTTCCGTCTTTTTGG				
AGRbeta f (55)	5'phos-GGCCAAAAACTGGCAAAAAAGACGGAAAAACTGTCAAAAAATGTTCAAAAAAGCGG				
AGRbeta r (35)	5'phos-ATTTTTGACAGTTTTTCCGTCTTTTTGCCAGTT				
PGRgamma r (44)	5'phos-CACTTTTTCATTATTTTCCGAGTTACAACTCCGCTTTTTGAAC				
PGR-RO p (14)	5'phos-AGTTGTAACTCGGA				
pcRod					
EFCT-2 (25)	5'phos-CACGATCCAGGTACAGTAACTGTCA				
EFCT-1 (20)	5'-TTAGTTCACAGGGATAACAG				
rodA-DNA (19)	5'phos-CACGACTGTTATCCCTGTG				
SD5-DNA (20)	5'phos-AACTAASGSDDCSCTGACTG				
rodC-DNA (14)	5'phos-TTGCTGTACCTGGA				
pc-anti-RO (14)	5'TCDDCDSSGDGCCT				
PNA					
psiPNA (14)	NH ₂ -Lys-TCDDCDSSGDGCCT-Lys-H				

Supplementary Table T1 – Oligonucleotides used in this study

S: 2-thiouracil (for PNA); 2-thiothymine (for DNA). D: 2,6-diaminopurin.

PNA: $-NH_2$ = carboxy end (carboxamide); -H = amino end.

Figure S1 PAGE of pcRod assembly

10% PAGE of pcRod assembly. Lane 1: mixture of unligated ODNs; lane 2: product of ligation, main band corresponds to pcRod; lane 3: reference DNA rod (EFCT-1 and EFCT-2 hybridized with a corresponding unmodified 53-mer DNA strand).

Figure S2 Secondary structure of PGR gap-ring

Figure S3 Secondary structure of spherical stoppers

Table of atomic coordinates (x 10^4) for **10**.

	х	У	Z
C(1)	10826	1030	3923
C(2)	13446	477	1605
C(3)	13953	1245	990
C(4)	12860	1842	1793
C(5)	15682	1345	-538
C(6)	10134	2434	4029
C(7)	12137	2820	5795
C(8)	11347	3668	5498
C(9)	10539	3740	3185
C(10)	12976	3943	2356
N(1)	11898	431	3059
N(2)	11289	1742	3212
O(1)	14251	-129	974
O(2)	9423	2987	2449
O(3)	8980	3834	6272
O(4)	12288	3871	197
S(1)	9102	865	5715

Figure S5 PAGE of macrocycle invasion studies

Polyacrylamide gels (10 %) of the macrocycle invasion studies after incubation at indicated conditions. Lane 1: PGR (reference). Lane 2: PGR·PGR-RO nanoring. Lane 3-5: dsDNA nanoring incubated with 1.0, 2.0, and 4.0 equiv. of psiPNA. Lane 6-8: dsDNA nanoring incubated with 1.0, 2.0, and 4.0 equiv. of pc-anti-RO.

At 20 °C the displacement occurs only in the presence of psiPNA but not pc-anti-RO (a). Even after 24 h the pc-anti-RO does not displace the oligo from the macrocycle (b). When the sample is warmed up to 45 °C for 2 h, partial displacement occurs also in case of pc-anti-RO (c). In PAGE (d) the samples were warmed up to 60 °C for only 2 min. At this temperature the PGR-RO and the macrocycle are completely dissociated so that all involved components re-hybridize "statistically" in the thermodynamically favoured state. This is reflected by the band intensities given for free gap-ring and the full macrocycle. In PAGE (c) the PGR-RO partially dissociates from the macrocycle and represents an intermediary event between (a) and (d).

Supplementary Methods

Synthesis of 2-thiouracil PNA monomer (1)

Scheme S1. a) NaOH, 4-methoxybenzyl chloride, EtOH/H₂O (1:1), 45°, 60 min, 77%. b) NaH, ethyl bromoacetate, CH₃CN, 0° \rightarrow rt, 2 h, 40%. c) 2.0 M LiOH, THF/MeOH (1:1), rt, 10 min, 51%. d) Ethyl *N*-(Boc-aminoethyl)glycinate, HBTU, DMF, EtNⁱPr₂, rt, 2h, 80%. e) 2.0 M LiOH, THF, 0°, 6 min, 77%.

N-1-(Ethyloxycarboxymethyl)-S-(4-methoxybenzyl)-2-thiouracil (S1). A solution of 2-thiouracil (19.4 g, 151 mmol) in EtOH (90 ml) was mixed with a solution of NaOH (7.2 g, 166 mmol) in H₂O (90 ml) and warmed to 45 °C. 4-Methoxybenzyl chloride (22.7 ml, 180 mmol) was added during 5 min and the suspension stirred for 60 min at 45 °C. After removing EtOH under reduced pressure, the mixture was neutralized by the addition of sat. aq. NaHCO₃ soln. The product was filtered, washed 2 x with H₂O and 3 x with Et₂O to give the Pmb-protected 2-thiouracil (28.9 g, 77%) as white solid. This intermediate (13.4 g, 54 mmol) was suspended in CH₃CN (170 ml), cooled to 4 °C, and slowly treated with freshly activated NaH (from NaH 60% dispersion in mineral oil, 2.27 g, 56.7 mmol) and then allowed to warm to room temperature. Ethyl bromoacetate (9.0 ml, 81 mmol) was drop wise added during 10 min. After stirring for 120 min the reaction was stopped by neutralization with 1.0 M ag. phosphate buffer soln. (200 ml, pH 7.0). The mixture was filtered and, after removal of CH₃CN under reduced pressure, partitioned between CH₂Cl₂/PrOH 9:1 (200 ml) and the aq. phosphate buffer. The organic layer was dried with MgSO₄, evaporated under reduced pressure and the crude was adsorbed on SiO₂ (30 g). CC (silica gel (150 g), CH₂Cl₂ → CH₂Cl₂/MeOH 94:6) gave **S1** (7.1 g, 40%) as yellow oil. ¹H-NMR (300 MHz, DMSO- d_6) δ 7.72 (d, J = 7.5 Hz, 1H, H-C(6)), 7.47 - 7.30 (m, 2H, arom. H), 7.00 - 6.84 (m, 2H, arom. H), 5.99 (d, J = 7.5 Hz, 1H, H-C(5)), 4.84 (s, 2H, NCH₂), 4.41 (s, 2H, BnCH₂), 4.22 (q, J = 7.1 Hz, 2H, OCH₂CH₃), 3.78 (s, 3H, OCH₃), 1.23 (t, J = 7.1 Hz, 3H, OCH₂CH₃). ¹³C-NMR (75 MHz, DMSO- d_6) δ 167.41, 166.79, 162.72, 159.12, 145.97, 130.85, 128.35, 114.33, 109.11, 62.14, 55.52, 52.87, 40.86, 34.79, 14.34. ESI-MS (pos.) 335.1 ([M+H]⁺, C₁₆H₁₉N₂O₄S⁺; calc. 335.1).

N-1-(Carboxymethyl)-S-(4-methoxybenzyl)-2-thiouracil (S2). A solution of S1 (7.1 g, 21.2 mmol) in THF/MeOH 1:1 (200 ml) was treated with 2.0 M aq. LiOH soln. (23 ml) for 10 min. at room temperature. After addition of 1.0 M aq. HCl (46 ml) the organic solvents were slowly removed under reduced pressure whereby the product precipitated. The solid was filtered, washed 2 x with H₂O and 3 x with Et₂O to give S2 (3.30 g, 51%) as white powder. ¹H-NMR (400 MHz, DMSO- d_6) δ 13.6 (br. s, 1H, COOH), 7.67 (d, *J* = 7.5 Hz, 1H), 7.39 - 7.26 (m, 2H, arom. H), 6.95 - 6.79 (m, 2H, arom. H), 5.92 (d, *J* = 7.5 Hz, 1H, H-C(5)), 4.66 (s, 2H, CH₂N(1)), 4.34 (d, *J* = 5.4 Hz, 2H, BnCH₂), 3.72 (s, 3H, OCH₃). ¹³C-NMR (101 MHz, DMSO) δ 168.37, 166.58, 162.37, 158.70, 145.71, 130.46, 127.95, 113.94, 108.55, 55.11, 52.61, 34.36. ESI-MS (pos.) 307.0 ([M+H]⁺, C₁₄H₁₅N₂O₄S⁺; calc. 307.1).

Ethyl-*N*-(2-(*t*-butyloxycarbonylamino)ethyl)-*N*-(*S*-(4-methoxybenzyl)-2-thiouracil-1-ylacetyl)glycinate (S3). A solution of S2 (3.30 g, 10.7 mmol) and EtNⁱPr₂ (1.67 g, 12.9 mmol) in DMF (30 ml) was treated with HBTU (4.9 g, 12.9 mmol) for 5 min at room temperature. Then a solution of ethyl *N*-(Bocaminoethyl)glycinate (3.18 g, 12.9 mmol) in DMF (10 ml) was added and the mixture stirred at room temperature for 18 h. The mixture was partitioned between CH₂Cl₂ and sat. aq. NaHCO₃ soln., the organic layer washed with 10% aq. citric acid soln., dried with MgSO₄ and evaporated under reduced pressure. The crude was adsorbed on SiO₂ (20 g). CC (silica gel (75 g), CH₂Cl₂ \rightarrow CH₂Cl₂/MeOH 98:2) gave S3 (4.63 g, 80%) as yellow foam. ¹H-NMR (400 MHz, DMSO-*d*₆) δ 7.48 and 7.46 [d (maj/min), *J* = 7.5 Hz, 1H, H-C(6)] 7.34 - 7.30 (m, 2H, arom. H), 6.90 and 6.71 [t (maj/min), *J* = 5.9 Hz, 1H, NHBoc], 6.88 - 6.84 (m,

2H, arom. H), 5.91 and 5.89 [d (maj/min), J = 7.5 Hz, 1H, H-C(5)], 4.96 and 4.76 [s (maj/min), 2H, CH₂N(1)], 4.34, and 4.26 [s (maj/min), 2H, BnCH₂], 4.12 [q (min), J = 7.1 Hz, 0.66H, OCH₂CH₃], 4.08 - 4.02 [m, 3.33H, CH₂COOEt, (maj) OCH₂CH₃], 3.72 (s, 3H, OCH₃), 3.39 - 3.29 (overlayed with H₂O signal), and 3.17 - 3.14 and 3.02 - 3.00 (2m, 4H, NCH₂CH₂N), 1.35 and 1.32 [s (min/maj), 9H, C(CH₃)₃], 1.17 and 1.15 [t (min/maj), J = 7.1 Hz, 3H, OCH₂CH₃]. ¹³C-NMR (101 MHz, DMSO-*d*₆) δ 169.55 and 169.13 (min/maj), 167.03 and 166.99 (maj/min), 166.58 and 166.29 (min/maj), 163.10, 159.09, 156.16, 146.20 and 146.15 (min/maj), 130.85, 128.33, 114.34 and 114.31 (maj/min), 108.94 and 108.90 (maj/min), 78.51 and 78.21 (maj/min), 61.67 and 61.00 (min/maj), 55.51 and 55.33 (maj/min), 53.06 and 52.67 (min/maj), 49.44, 48.37, 47.44, 38.57 and 37.96 (maj/min), 34.91, 28.62 and 28.55 (min/maj), 14.42 and 14.39 (maj/min). ESI-MS (pos.) 535.4 ([M+H]⁺, C₂₅H₃₅N₄O₇S⁺; calc. 535.2).

N-(2-(t-butyloxycarbonylamino)ethyl)-N-(S-(4-methoxybenzyl)-2-thiouracil-1-ylacetyl)glycine (1). S3 (2.79 g, 5.2 mmol) was dissolved in THF/H₂O 2:1 (65 ml), cooled to 4 °C and treated with 2.0 M aq. LiOH soln. (7.8 ml). After stirring for 10 min at 4 °C the reaction was neutralized by the addition of 1.0 M aq. HCl soln. (15.6 ml) and the mixture evaporated to dryness. The crude was suspended in CH₂Cl₂//PrOH 9:1 (50 ml) by sonication. After addition of EtOAc (100 ml) the solid was filtered, washed 3 x with H_2O and 3 x with Et₂O to give the **1** (2.04 g, 77%) as white powder. ¹H-NMR (400 MHz, DMSO- d_6) δ 12.7 (br. s, 1H, COOH), 7.49 and 7.45 [d (maj/min), J = 7.6 Hz, 1H, H-C(6)], 7.35 - 7.31 (m, 2H, arom. H), 6.91 and 6.72 [t (maj/min), J = 5.9 Hz, 1H, NHBoc], 6.88 - 6.84 (m, 2H, arom. H), 5.91 and 5.89 [d (maj/min), J = 7.6 Hz, 1H, H-C(5)], 4.95 and 4.75 [s (maj/min), 2H, CH₂N(1)], 4.34, and 4.32 [s (maj/min), 2H, BnCH₂], 4.13 and 3.97 [s (min/maj), 2H, CH₂COO], 3.72 (s, 3H, OCH₃), 3.36 and 3.30 [t (maj/min), J = 6.6 Hz, 2H, NCH₂CH₂NH], 3.18 – 3.13 and 3.03 – 2.99 [m (maj/min), 2H, NCH₂CH₂NH], 1.35 and 1.32 [s (min/maj), 9H, C(CH₃)₃]. ¹³C-NMR (101 MHz, DMSO-d₆) δ 170.71 and 170.25 (min/maj), 166.67 and 166.63 (min/maj), 166.16 and 165.72 (maj/min), 162.76 and 162.72 (min/maj), 163.10 and 159.09 (maj/min), 156.76 and 155.57 (maj/min), 145.84 and 145.80 (min/maj), 130.45 and 130.43 (maj/min), 128.04 and 127.94 (maj/min), 113.94 and 113.92 (maj/min), 108.52 and 108.45 (maj/min), 78.08, and 77.78 (maj/min), 55.10, 52.64 and 52.30 (min/maj), 49.22 and 47.68 (min/maj), 47.06 and 46.91 (min/maj), 38.10 and 37.52 (maj/min), 34.54, 34.49 (min/maj), 28.23 and 28.16 (min/maj). ESI-MS (pos.) 507.3 ([M+H]⁺, $C_{23}H_{31}N_4O_7S^+$; calc. 507.2).