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QUALITY CONTROL OF RAW READ LIBRARY

Current sequencing machines produce reads with low accuracy and are prone to various contaminants. Proper preprocessing is
necessary for reliable analyses. Raw RIP-seq read libraries were subject to a series of quality control (QC). First, an automated
report of basic statistics for each raw read library was generated using FastQC program (http://www.bioinformatics.
bbsrc.ac.uk/projects/fastqgc/). In particular, FastQC reports “per base sequence quality” and “overrepresented
sequences”. The former indicates the averaged Phred quality at each individual base position of the reads. Sequencing quality
usually drops off as reads go from 5’-end toward 3’-end. Poor quality reads will unlikely map to the reference genome with
reasonable number of mismatches allowed (default: 2 mismatches). The latter reports enriched sequences according to a list of
contaminants provided by the user. We compiled a custom list of common contaminants including Illumina adapter and primer
sequences for single and paired-end sequencing, species specific (human or mouse) mitochondria genome, ribosomal and actin
RNA, and phi X genome. Comparison of read library against this list will reveal the common contaminants and facilitate further
experimental design and formulation of filtering strategy described next.

To improve the subsequent alignment quality, we devised an automated filtering program consisting of the following
preprocessing steps. Reads containing non-determinant nucleotides (‘N’) are filtered out using fastx_clipper from FASTX-
Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html). Bases lower than a defined Phred quality
threshold (default: 20) at the 3’ end are trimmed off from each read using cutadapt (http://code.google.com/
p/cutadapt/) (1). Next, known Illumina primers and adaptor sequences are clipped off from each read by cutadapt,
which computes sensitive semi-global alignments of all the reads against all the primer/adaptor sequences, allowing gapped and
mismatched alignments. Finally, filtered reads are aligned against the aforementioned custom contaminant list using Bowtie to
further filter contaminant (aligned) reads (2).

ALIGNMENT OF FILTERED RIP-SEQ READ LIBRARY TO REFERENCE GENOME

TopHat (version 1.4.1) was used to align RIP-seq library to mouse (mm9 build) or human (hg19) reference genome (3). Following
the default setting, multihits mapped to more than 20 distinct loci were discarded. To account for splicing junction, each read is
cut up into segments of half of its total length $s with option ——segment-1length. In addition, a list of exon annotations
from Ensembl (v65) was supplied as a parameter option (-—GTF) to TopHat. Based on this annotation, the program will build
a set of known splice junctions for each gene and attempt to align reads to these junctions even if they would not normally be
covered by the initial mapping. This will presumably increase the sensitivity of the mapper. For the strand-specific sequencing,
the library type (-—1ibType) was set to “fr-secondstrand” consistent with the RIP-seq experiments where the second strand of
the cDNA (i.e., the opposite strand of the PRC2-bound RNA) was sequenced. To account for PCR artefacts, only reads aligned to
the distinct genome coordinates are retained. This post-alignment filtering is achieved using samtools rmdup from Samtools
(4) and MarkDuplicates from Picard (picard.sourceforge.net/command-line—-overview.shtml). Table S1
presents the basic statistics from the above analysis.

Bowtie (version 0.12.7) was used to align reads from PAR-CLIP library to human (hgl9) reference genome following the
alignment setting recommended in the README file of the PARalyzer program (version 1.1) (5). Specifically, two mismatches
(=v 2) and up to 10 multihits per read (-m 10) are allowed, and only the best alignment (-—best) is reported. Alignment in
both BOWTIE and SAM formats are produced as input to PARalyzer and other peak callers, respectively (described below).
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CHIP-SEQ PROGRAM SETTINGS
Alignment conversion

The alignment files in BAM (TopHat outputs) were converted to SAM using samtools view and to BED using bamToBed
from BEDTools (6) as compatible input formats for the ChIP-seq algorithms QuEST and HPeak, respectively. For strand-specific
library, as a fair comparison with the proposed program RIPSeeker, alignments on + and - strand from the BAM, SAM, and BED
files were extracted and provided as separate inputs to MACS, QuEST, and HPeak respectively in order to force each peak caller
to model read alignments in the strand-specific manner. The strand information is crucial to the identification of strand-specific
IncRNA. Notably, both strand-specific sequencing experiments generated sequences from the opposite strand of the protein-bound
RNA. Accordingly, the strand signs in the alignment files were switched (i.e. + to -, - to +) before providing to the peak callers.
For the PAR-CLIP data, the alignment files in SAM were converted to BAM files as input to MACS and RIPSeeker and further
converted to BED file as input to HPeak.

QuEST

QuEST (version 2.4) (7) was provided with required SAM formatted alignment files of RIP and control. The program allows
user to select from three types of ChIP experiments including “TF”, “RNAPII-like”, and “Histone ChIP” in terms of the range
and size of the read-enriched regions. For our purpose, we select “RNAPII-like” option for both RIP-seq datasets to reflect the
median length of ~200 bp for the majority of the known IncRNA based on Ensembl annotation (v65). (Figure S6). QUEST also
requires a genome table specifies the sequence length on each chromosome in a space-delimited (not tab) format. Such table was
downloaded from UCSC Genome Browser for both mouse and human and formatted in the expected way. The options are piped
to QUEST prompt to run jobs on the server without user-interaction. All other settings are set by default.

MACS

MACS (version 1.4.1) was provided with BAM alignment files of RIP and control. The “~nomodel” and “—shiftsize=1" options
were set to disallow MACS to estimate fragment size and to minimize the shift distance (—shiftsize must be nonzero as required
by the program). Unlike double-stranded DNA in ChIP-seq, RIP library contain the single-stranded RNA, which does not have
symmetrical enrichment on both strands to enable the estimation of fragment size and localization of “binding site”. Please
referred to (8) and the online manual (http://liulab.dfci.harvard.edu/MACS/) for more details. The genome size
was set to be species-specific (——gsize mm for mouse and ——gsize hs for human) for PRC2 and the other RIP-seq data for
human, respectively. Option ——call-subpeaks was enabled to refine the MACS peaks and split the wide peaks into smaller
subpeaks.

HPeak

HPeak 3.0 (https://sourceforge.net/projects/hpeak/files/latest/download) was provided with BED
formatted files with species option (-sp) set to “mouse” and “human” for PRC2 and the other RIP-seq data for human,
respectively. The minimum (-fmin) and maximum (-fmax) fragment size was set to 200 and 1200 nt to be consistent with
the selected fragment size in the RIP-seq experiments.

RNA-SEQ PROGRAM CUFFLINKS AND CUFFDIFF SETTINGS

Cufflinks (version 1.3.0) was applied to individual BAM files from Alignment of Filtered RIP-seq Read Library to Reference
Genome to first assemble transcripts from each alignments separately. For each assembly tasks, Ensembl (v65) annotation files
for mouse and human was provided to Cufflinks as the parameters for -—GTF—-guide option for the PRC2 and other human RIP-
seq data, respectively. With the annotation guide, Cufflinks generates faux read alignments from the known exons and compare
these artificial read coverage with real read alignment coverage to improve detection accuracy for novel transcripts (9). The
options ——multi-read-correct and ——frag-bias-correct were also activated to improve prediction accuracy. For
strand-specific RIP-seq data (PRC2 and CCNT1 Biorepl, Table S1), the option ——1ibrary—-type was set to “fr-secondstrand”
otherwise to “fr-unstranded” (Table S1).

The assembled transcripts for the RIP-seq data (including the control) from Cufflinks were merged with the known
transcripts from Ensembl (v65) via option ——ref-gtf into a single GTF file using cuffmerge. The resulting GTF
transcript file was provided to cuf£di £ £ for differential analysis between RIP and control library (each having two biological
replicates). To maximize prediction accuracy, options ——frag-bias-correct (requiring fasta genome sequence) and
—-—multi-read-correct were turned on. Only transcripts with default significant positive log2(fold-change) of normalized
RPKM in RIP versus control comparison were retained as predicted protein-intersecting RNAs.

BIOCONDUCTOR PACKAGE DESEQ SETTINGS AND RESULTS

As another RNA-seq comparison strategy, we applied Bioconductor package DESeq (10) to the read count table computed over
all of the transcripts from the latest Ensembl for human or Ensembl 65 (mm9) for mouse for RIP and control library. DESeq is
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applicable only to RIP-seq libraries as PAR-CLIP does not have control library. To have a stable variance (dispersion) estimate,
we applied DESeq to only the transcripts with read count larger than 5 in RIP or control. Similar to Cuffdiff, we compared
gene expression of RIP with control to identify transcripts with fold-change greater than 1 and BH-adjusted p-value (or FDR)
<= 0.1. To estimate dispersions, we experimented with different parameter settings to maximize the yield of the significant
transcripts above the cutoff: est imateDispersions ( cds , method="pooled", sharingMode="fit-only",
fitType="1local") (the default fitType="parametric" fitting dispersion with gamma GLM failed to fit the data).

For PRC2 data, 6400 out of the 95883 Ensembl transcripts for mouse have read count greater than 1. With the most sensitive
empirical settings for DESeq, only one transcript for PRC2 dataset (ensembl id: ENSMUST(00000124738; external gene id:
Gm12992, a predicted gene) with a positive fold-change of 3.64 passed the BH-adjust p-value cutoff (adjusted p-value < 0.02).
The known PRC2 RNA-interactors Meg3, Xist, Tsix and all have adjusted p-value equal to 1 and smallest unadjusted p-values
(for multiple transcripts) 0.95, 0.89, and 0.65, respectively. For CCNT]1, no transcript passed the same 0.1 cutoff. Similar results
were observed for the ENCODE data, where only one transcript ENST00000261254 from PABPCI1 versus T7Tag comparison in
K562 have passed the 0.1 adjusted p-value cutoff and have positive fold-change of 3. Due to small fraction of positive hits for all
test RIP-seq datasets, we omitted the comparison with DESeq in the main text.

Although DESeq is a powerful tool and has been successfully applied in many RNA-seq analyses, its dispersion estimation may
be over-stringent to RIP-seq analyses. Comparing with RNA-seq analyses, the insufficient power of DESeq in RIP-seq analysis
is likely due to the sparseness of the RIP-seq read count input data. The first problem might be potentially alleviated by further
restricting hypothesis testings on transcripts with greater minimum read count as suggested in the DESeq vignette. In our case,
however, testing on only 1555 and 718 transcripts with at least 5 and 10 read counts, respectively, in RIP or control data for PRC2
did not change the statistical conclusion. The same applied to the other RIP-seq test data. This also underscores the limitation of
the current RIP-seq protocol. More effective IP followed deeper sequencing may lead to better results when applying DESeq-like
approach. Notably, DESeq (and Cuffdiff) is non-applicable to the PAR-CLIP data, which does not have an external control library.

PAR-CLIP PROGRAM PARALYZER SETTINGS

For each PAR-CLIP library, the sample. ini file required by PARalyzer (version 1.1) (5) was prepared with identical setting
as in the default Sample. ini file provided by the program package. The required hgl9.2bit file for human genome was
downloaded from UCSC genome browser.
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SUPPLEMENTARY TABLES

Table S1. Source information and mapping statistics for the RIP-seq and PAR-CLIP data used in the paper

Cell line Protein Platform Sample GEO Strand- Read Pilot Reads Total Distinct
Accession specific Length Reads After Mapped Mapped
(nt) Filter
mESC PRC2 RIP-seq biorepl GSE17064  Yes 36 14,359,505 5,292,794 1,839,385 1,022,474
mESC PRC2 RIP-seq biorep2 GSE17064  Yes 36 6,410,602 2,021,856 1,598,060 442,030
mESC PRC2 RIP-seq mutant GSE17064 Yes 36 6,861,940 2,030,415 549,315 208,445
HEK?293 CCNT1 RIP-seq wildtype GSM1057803  Yes 59 775,582 737,905 53,950 5,853
HEK293 GFP RIP-seq control GSM1057804  Yes 59 773,785 717,692 55,062 4,556
HEK293 CCNT1 RIP-seq wildtype GSM1057805 No 128 1,647,641 674,583 39,300 26,859
HEK?293 GFP RIP-seq control GSM1057806 No 128 2,369,271 1,912,105 2,658,747 45,024
GM12878 ELAVL1 RIP-seq Biorepl SRR504447 No 36 37,263,588 32,601,518 32,528,042 13,261,848
GM12878 ELAVLI1 RIP-seq Biorep2 SRR504448 No 36 37,414,489 31,912,714 31,601,964 6,132,389
GM12878 PABPCI1 RIP-seq Biorepl SRR504445 No 36 34,885,904 33,458,725 39,368,686 8,351,529
GM12878 PABPC1 RIP-seq Biorep2 SRR504446 No 36 33,969,717 32,636,482 38,209,503 4,549,408
GM12878 RIP input RIP-seq Biorepl SRR504457 No 36 36,111,283 12,778,363 12,057,948 5,506,941
GM12878 RIP input RIP-seq Biorep2 SRR504458 No 36 32,508,482 8,051,545 6,505,188 2,913,744
GM12878 T7Tag RIP-seq Biorepl SRR504455 No 36 35,560,522 18,710,540 18,268,309 5,735,953
GM12878 T7Tag RIP-seq Biorep2 SRR504456 No 36 20,625,454 10,870,584 10,885,726 5,784,151
K562 ELAVL1 RIP-seq Biorepl SRR504453 No 36 24,253,488 22,326,300 22,239,698 6,161,580
K562 ELAVLI1 RIP-seq Biorep2 SRR504454 No 36 24,201,745 21,184,619 20,988,413 4,685,302
K562 PABPC1 RIP-seq Biorepl SRR504451 No 36 21,970,069 20,899,928 28,123,613 3,440,796
K562 PABPCI1 RIP-seq Biorep2 SRR504452 No 36 21,951,428 20,993,334 26,887,104 5,973,108
K562 RIP input RIP-seq Biorepl SRR504449 No 36 20,351,980 7,766,898 7,102,232 4,529,832
K562 RIP input RIP-seq Biorep2 SRR504450 No 36 24,019,308 7,288,617 5,439,098 1,348,233
K562 T7Tag RIP-seq Biorepl SRR504459 No 36 22,795,411 12,112,270 12,743,129 4,914,470
K562 T7Tag RIP-seq Biorep2 SRR504460 No 36 28,776,896 24,358,117 24,355,967 6,493,841
HEK?293 PUM2 PAR-CLIP  TechRepl SRR048967 No 32 5,104,559 3,471,160 500,288 500,288
HEK?293 PUM2 PAR-CLIP  TechRep2 SRR048968 No 32 5,351,797 2,162,508 385,669 385,669
HEK293 QKI PAR-CLIP  TechRepl SRR048969 No 32 3,682,206 2,441,584 132,334 132,334
HEK?293 QKI PAR-CLIP  TechRep2 SRR048970 No 32 2,845,295 1,919,805 110,904 110,904
HEK?293 QKI PAR-CLIP  TechRep3 SRR048971 No 32 5,402,812 2,843,006 106,222 106,222
HEK?293 QKI PAR-CLIP  TechRep4 SRR048972 No 32 5,023,532 2,433,413 15,743 15,743

Technical replicates were pooled after the alignments and subject to preprocessing. Please refer to Quality Control of Raw Read Library and Alignment of Filtered RIP-seq Read
Library to Reference Genome for preprocessing and alignment procedures applied on each datasets. The RIP-seq data for CCNT1 and GFP control were generated in-house and
deposited in GEO subsequently.
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Table S2. Top 10 Molecular Function (MF) GO terms enriched for genes associated with RIPSeeker predictions on - strand of the PRC2 Biorep! dataset.
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molecules).
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nucleic acid.

Interacting selectively and non-covalently with any
enzyme.

Interacting selectively and non-covalently with an
RNA molecule or a portion thereof.

Interacting selectively and non-covalently with a
nucleotide, any compound consisting of a nucleoside
that is esterified with (ortho)phosphate or an
oligophosphate at any hydroxyl group on the ribose
or deoxyribose.

The selective, non-covalent, often stoichiometric,
interaction of a molecule with one or more specific
sites on another molecule.

Interacting selectively and non-covalently with
a small molecule, any low molecular weight,
monomeric, non-encoded molecule.

Interacting selectively and non-covalently with a
purine ribonucleoside triphosphate, a compound
consisting of a purine base linked to a ribose sugar
esterified with triphosphate on the sugar.

Interacting selectively and non-covalently with a
purine ribonucleotide, any compound consisting
of a purine ribonucleoside that is esterified with
(ortho)phosphate or an oligophosphate at any
hydroxyl group on the ribose moiety.

Interacting selectively and non-covalently with a
ribonucleotide, any compound consisting of a
ribonucleoside that is esterified with (ortho)phosphate
or an oligophosphate at any hydroxyl group on the
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GO enrichment was performed using RIPSeeker built-in function annotateRIP. Only Biorepl1 is displayed. Consistent with the biology, the top 10 Molecular Function (MF) GO terms
enriched for genes overlapping or adjacent to the RIPSeeker predictions on both PRC2 datasets are mostly related to protein binding (adjusted p-value < 1.17E-17) and nucleotide binding
(adjusted p-value < 1.29E-10). These genes involved in these processes thus represent a putative list of RNA transcripts bound by PRC2.
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Table S3. Top 10 Biological Process (BP) GO terms enriched for genes associated with RIPSeeker predictions on the + strand of the CCNT1 second screen

dataset.
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The achievement of highly specific, quantitative,
temporal and spatial control of virus gene expression
within the limited genetic resources of the viral
genome.

The mechanisms involved in viral gene transcription,
especially referring to those with temporal properties
unique to viral transcription.

The nonsense-mediated decay pathway for nuclear-
transcribed mRNAs degrades mRNAs in which an
amino-acid codon has changed to a nonsense codon;
this prevents the translation of such mRNAs into
truncated, and potentially harmful, proteins.

A reproductive process involved in viral reproduction.
Usually, this is by infection of a host cell, replication
of the viral genome, and assembly of progeny virus
particles. In some cases the viral genetic material may
integrate into the host genome and only subsequently,
under particular circumstances, 'complete’ its life
cycle.

The process resulting in the release of a polypeptide
chain from the ribosome, usually in response to
a termination codon (UAA, UAG, or UGA in the
universal genetic code).

A set of processes which all viruses follow to
ensure survival; includes attachment and entry of
the virus particle, decoding of genome information,
translation of viral mRNA by host ribosomes, genome
replication, and assembly and release of viral particles
containing the genome.

The successive addition of amino acid residues
to a nascent polypeptide chain during protein
biosynthesis.

The targeting of proteins to a membrane that occurs
during translation and is dependent upon two key
components, the signal-recognition particle (SRP)
and the SRP receptor. SRP is a cytosolic particle
that transiently binds to the endoplasmic reticulum
(ER) signal sequence in a nascent protein, to the large
ribosomal unit, and to the SRP receptor in the ER
membrane.

The targeting of proteins to a membrane that occurs
during translation. The transport of most secretory
proteins, particularly those with more than 100 amino
acids, into the endoplasmic reticulum lumen occurs in
this manner, as does the import of some proteins into
mitochondria.

The process of directing proteins towards the
endoplasmic reticulum (ER) using signals contained
within the protein. One common mechanism uses a
16- to 30-residue signal sequence, typically located
at the N-terminus of the protein and containing
positively charged amino acids followed by a
continuous stretch of hydrophobic residues, which
directs the ribosome to the ER membrane and initiates
transport of the growing polypeptide across the ER
membrane.

=}
2l

BP

BP

BP

BP

BP

BP

BP

BP

BP

9.85E-07

9.85E-07

1.60E-06

1.63E-06

3.38E-06

4.16E-06

7.57E-06

7.57E-06

8.57E-06

8.57E-06

=)

11

10

W

151

119

256

93

229

105

105

107

107

W
w
~
o]

5378

5378

5378

5378

5378

5378

5378

5378

5378

oo}
(=3
W
[*)
w2
=)

805639

805639

805639

805639

805639

805639

805639

805639

805639

0.0005904

0.0005904

0.0005904

0.0005904

0.0009801

0.0010051

0.0010955

0.0010955

0.0010955

0.0010955

Intriguingly, the most enriched Biological Process GO term on the second screen of CCNT1 datasets is viral genome expression followed by viral transcription, viral reproductive process,
and virial infectious cycle. Indeed, CCNT1 is known to interact with nascent TAR HIV RNA, which competes with the endogenous IncRNA RN7SK for the control over RNAPII in viral
specific transcription elongation (see Introduction in the main text). However, we cannot exclude the possibility that such enrichment of viral functions were caused by the usage of
viral vector in delivering the tag to the CCNT1 gene.
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SUPPLEMENTARY FIGURES
(a)
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Figure S1. (a) Simulation test on RIPSeeker predictions. HMM predicts well on the (i) 100 simulated data points that are sampled from negative binomial
mixture distribution of two components by following a arbitrary set of HMM parameters (« ={2,4},5={1,0.25},A={0,9,0.1;0.3,0.7}); (ii) EM converges
steadily and efficiently; (iii and (iv)) Both maximum a posterior (MAP) and Viterbi (i.e. ML) produces over 95% accuracy and around 85% for large number of
data points (>5000) for both training and testing. (b) Comparison in terms prediction accuracy on simulated data among negative binomial mixture model (NBM)
with maximum a posterior (MAP), negative binomial hidden Markov model (NBH) with MAP (NBH_MAP) and Viterbi (NBH_VIT), and NBM initialization
(NBMLINIT) followed by NBH_VIT (NBM_INIT + NBH_VIT) or NBH_.MAP (NBM_INIT + NBH_MAP). One thousand data points of discrete counts were
simulated using the same model described in S1. The test was repeated 10 times. As shown, NBM_INIT + NBH_VIT achieves the best performance among all.
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Figure S2. RIPScore (Equation 15 in the main text) approximately follows normal distribution based on (a) histogram and (b) quantile-quantile (QQ) plot.
RIPScores per chromosome for PRC2 RIP-seq dataset are shown to reflect the peak calling process in RIPSeeker on per-chromosome basis. Distribution of
RIPScores for other RIP-seq data are similar (not shown).



a)

“SD” — 2013/1/20 — 22:32 — page 9 — #9

Nucleic Acids Research, XXXX, Vol. XX, No. XX 9

§1  chr1:1-197195432 #1  chr10:1-120993255 #1  chr11:1-121843856 #1  chr12:1-121257530 s chri3:1-120284312
8 5
s z s 5
' J ; U i
- Gl gaeal L _
T L s
T . i .
g H
g Z
§ il H
&1 chri4:1-125194864 chr15:1-103494974 | chr16:1-98319150 L. chri7:1-95272651 chr18:1-90772031
H = N
L * | i
L R [ R
7 il L T (‘ 1 ‘H Ll o
5 5
H A ¥
2. chr19:1-61342430 #1  chr2:1-181748087 21 chr3:1-159599783 chr4:1-155630120 chr5:1-152537259
‘ : J
g g
B PR P i WO TR W ‘n ‘Al J
= T T
: T T : Y
' :
8 ! o
P P T soror Lo ssets aswen sowar v s oowen sowar Lo [ sovar Lot sous
g chr6:1-149517037 ohr7:1-152524553 “1  chre:1-131738871 "1 chroi1-124076172 chrX:1-166650296
g H
1l : !
R VR ll Lk | Y b . .
b ‘F'l“”"” AL
] § 5
H H
" g
g ES
aovan sovtr wvon 1o oo sovar Low T T S e T Y TN PR A ) sover Towon Lovin
"] chrYi1-15902555
5
vUv) 500005 10007 tswar
#1 chrii-197195432 21 chri0:1-129993255 chri1:1-121843856 chr12:1-121257530 chri3:1-120284312
g 2 N
H
ool L B s
: g My n
£ N 3 .
g
5 Q000 506097 19508 150008 00000 208007 40007 608407 B0w007 199008 1.28+08 00er00. 20007 40007 60907 B9w007 1.06v08 1.26+08 ’ 008400 208007 4007 60007 898407 1.08+98 128008 005400 208007 492007 B0 80807 1,081 12804
T| chri4:1-125194864 chr15:1-103494974 chr16:1-98319150 chr17:1-95272651 chr18:1-90772031
& 5 8 lJ 3 \
N JIH; il - Ldetilds %Jﬁu L o ‘ IVJLMW
L e Tw Lammy 114
; T A 1 |
¥ o = o
s i %
" 5
e = e S avar wwor s sor oo omn avar awr avar wwar awm s o wor soar
chr19:1-61342430 5] chr2:1-181748087 .| chr3:1-159599783 chr4:1-155630120 5 chr5:1-152537259
" Lo * ﬁ il
4 'N hill i
% 5 #
& s
H = H
P S P S soror Lo 1500 oocn sowar 1oros 1sars own ssgar Lo Lo oova sowar Love 1sams
L. chr6:1-149517037 ohr7:1-152524553 chrg:1-131738871 51 chr9:1-124076172 chrX:1-166650296
B e kS 2
o g
el wdlbi i1 . N B
LIS 48 I A1)
8 i
. ! i i
H ) ‘
e sovar L 1o s sovar 100 Tsem o e Aowr o sowar  lowes  1zee e T sowar Toes .
chrY:1-15902555
& H
oo soumo “ovr 1saror



“SD” — 2013/1/20 — 22:32 — page 10 — #10

10 Nucleic Acids Research, XXXX, Vol. XX, No. XX

<)

chr1:1-197195432

é LL J[ hifll’l{r\% Lo #‘]L w“l u”_l{.r

chr10:1-129993255 N chr11:1-121843856 " chr12:1-121257530 chr13:1-120284312

Wom

Y

I T T

0
EE

chr14:1-125194864 chr15:1-103494974 H chr16:1-98319150 N chr17:1-95272651

chr18:1-00772031

28

now@ w
E
W ow

o
0

-4
E
—

w @
e
E

chr19:1-61342430 chr2:1-181748087 £ chr3:1-159599783 chr4:1-155630120 chr5:1-152537259

]

T

e

,H “Tﬂ il \LJ\LILJUL

P

Qo001 e s dew  sew e oo S0 e 15005 o0se0 s0ser 108008 e aowar sowar 10008 15w osem sowar 1ouete 1awns

8 chr6:1-149517037 chr7:1-152524553 L chr8:1-131738871 = chr9:1-124076172 £ chrX:1-166650296
. % o
_ L addld | gl R B
Ly s ‘H‘ r
: . : :
: . ]
5 N N 5

chrY:1-15902555

oo sow0s 1owe0r 180007

Figure S3. Read coverage of distinct alignments (after filtering duplicate alignments) across each chromosome for (a) PRC2 wild type biological replicate
(Biorep) 1, (b) wild type Biorep 2, and (c) Ezh2 -/- mutant control. Read count on + and - strand are displayed as blue and red bars on the positive and negative y-
axis, respectively. Read counts are drawn to scale within a chromosome. As expected, no symmetry is observed for the peak for the strand-specific sequencing data.
However, considerable noise is observed within the Ezh2 -/- mutant library, which ideally should not have any aligned reads. This may also imply considerable
noise within the wild type library and thus a high false discovery rate if the RIP regions were simply determined based on read counts. Biorep 1 is the pooled
alignments of the two technical replicates. The plot was generated by plotStrandedCoverage from RIPSeeker with bin size fixed to 1 kb for all of the
chromosomes. Chromosome with no alignment is omitted (e.g., chrM).
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Figure S4. Read coverage of distinct alignments (after filtering duplicate alignments) across each chromosome for the strand-specific sequencing data for (a)
CCNT1 and (b) GFP as well as non-strand-specific sequencing data of (¢) CCNT1 and (d) GFP. All datasets were generated in-house. Much stronger symmetry
of peaks is observed in the non-strand-specific comparing to strand-specific data. Also, noise is considerably high as implicated by both GFP datasets. The plot
was generated by plotStrandedCoverage from RIPSeeker with bin size fixed to 1 kb for all of the chromosomes. Chromosomes with no alignment are
omitted.
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Figure S5. Total peaks predicted by each comparison method on RIP-Seq and PAR-CLIP data. (a) PRC2 in mES using mutant Ezh-/- as control (13); (b) CCNT1
in HEK293 using GFP as control (in-house); (¢) ELAVL1 in GM 12878 using RIP input RNA as control; (d) ELAVL1 in GM12878 using T7Tag as control; (e)
PABPC1 in GM 12878 using RIP input RNA as control; (f) PABPC1 in GM 12878 using T7Tag as control; (g-j) correspond to the same proteins and control as in
(c-f) respectively except performed in K562 cell line; (k, I) PAR-CLIP data for PUM2 and QKI in HEK293, respectively (14). (¢) to (j) correspond to the RIP-seq
data generated by Dr. Scott Tenenbaum laboratory at the ENCODE Consortium (15). For technical replicates, reads were pooled and subject to peak calling by
each method. For biological replicate, all of the methods except for “Cuffdiff”” and “Published” are applied to each biological replicate separately. The grey colour
on the white bar indicate the peaks shared in common by both Biorep! and 2. “Cuffdiff” and “Published” employ statistical hypothesis testing on both biological
replicates to estimate the sample variance for each potential peak. “Published” represents the peaks analyzed by Dr. Tenenbaum group and were downloaded
from UCSC Genome Browser (http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hgl9&g=wgEncodeSunyRipSeq). Please refer to Table S1
for basic statistics about the data. Since CCNT1 (b) is only known to interact with RN7SK, the low concordance between biological replicates for each method
perhaps implies that most peaks identified outside of the positive target loci are due to background noise.
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Figure S6. Lengths of peaks predicted by each comparison method on RIP-Seq and PAR-CLIP data. Peaks predicted from biological replicates are pooled. For
(a)-(j), the peak lengths are draw at the log10 scale. Please refer to Figure S5 for details on each subfigure. As reference for comparison, transcript lengths from
(m) mouse and (n) human based on Ensembl 65 and 69, respectively, are included.
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Figure S7. Pair-wise comparison of shared peaks between methods on all RIP-Seq and PAR-CLIP test data. Each panel shows the percentage of total peaks from
methods on the y-axis that overlap with the peaks from the methods on the x-axis. Notably, the percentage matrices are not symmetrical because a number of
peaks in method A may overlap with a different number of peaks in method B and vice versa. For instance, in panel (a), 70.0% of the RIPSeeker peaks (row 4,
column 6) overlap with 6.2% of the QUEST peaks (row 6, column 4). Programs in both axes are sorted by increasing number of peaks and entries are shaded by

color gradients such that red represents the highest shared proportion and grey, the lowest. Please refer to Figure S5 legend for details on the test data used in each
of the 12 subfigures.
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(a) RIP-Seq: PRC2

HPeak RIPSeeker

QuEST Rulebased

RIPSeeker

(b) RIP-Seq: CCNTI

HPeak RIPSeeker

Figure S8. Venn diagram of RIPSeeker predictions for (a) PRC2 and (b) CCNT1 comparing with predictions from the three peak callers MACS, HPeak, and
QuEST and the two transcript-based methods Cuffdiff and Rulebased. N peaks from one program may overlap with M peaks from another, where N is not
necessarily equal to M. To resolve the ambiguity, the number of overlapping peaks is defined as the lower number (i.e. min(N, M)). Similarly, for 3-way and 4-
way overlap, the number of overlapping peaks among the 3 and 4 programs respectively is the lowest number of overlapping peaks from one of the programs. Such
assignment will prevent some but not all of the cases where the same peaks from one program overlap with multiple peaks from one or more other programs,
resulting in negative number of remaining peaks after subtracting the overlapping peaks from the total peaks. A more robust representation is via barplot as
illustrated in Figure S9 for the PAR-CLIP data and Figure S10 for the ENCODE data (for examining robustness of each method), for which the Venn diagram
cannot be solved without introducing negative values for the remaining non-overlapping peaks.
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Figure S9. Four-way overlap for peaks identified from the four comparison methods on the two PAR-CLIP datasets (a) PUM2 and (b) QKI. For pairwise overlap,
peaks identified from one program are used to overlap with peaks identified from each of the other three programs. N peaks from one program may overlap with
M peaks from another, where N is not necessarily equal to M. To resolve the ambiguity, the number of overlapping peaks is defined as the lower number (i.e.
min(N,M)). Similarly, for 3-way and 4-way overlap, the number of overlapping peaks among the 3 programs is the lowest number of overlapping peaks from
one of the programs. In each subfigure, there are four panels corresponding to the four program. Each panel shows the total number of peaks for the program
(“The_Program”) and its overlap with other programs. For instance, MACS+HPeak represent the number of overlapping peaks between MACS and HPeak (4232
for PUM2 and 1704 for QKI). The overlap representation convey more information than the conventional Venn diagram as the number of overlapping peaks
relative to the total number of peaks can be directly visualized based on the heights of the bars. As clearly illustrated, for instance, relative to its total number of
peaks RIPSeeker has very high overlap with both HPeak and MACS in the PUM2 dataset (a) and with HPeak and PARalyzer in the QKI dataset.
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Figure S10. Overlap of peaks identified by each of the six comparison method for the same protein from two different cell lines and controls. The primary goal
of this analysis is to examine the robustness of each method on data generated for the same protein using two different cell line and controls. Specifically,
protein-RNA interaction sites were predicted as peaks by each method in cell lines GM12878 and K562 by comparing the RIP signal to the background
generated from either T7-tag or RIP RNA input as two different types of negative control library for the specific interactions. The peaks identified from these
four samples, namely GM12878_T7Tag, GM12878_RIPInput, K562_T7Tag, K562_RIPInput, are subject to 4-way overlap to compare the number of peaks
identified from each sample comparison with the number of overlapping peaks between two sample comparisons, among three and among all of the four
sample comparisons. For a robust method, a high proportion of overlap is expected within the cell line for the same protein despite using different controls
(i.e. GM12878_T7Tag+GM 12878 _RIPInput; K562_T7Tag+K562_RIPInput) whereas lower number of overlaps is expected between the cell-lines (i.e. all of the

remaining overlaps). (a-f) Six methods (presented in alphabetic order) Cuffdiff, HPeak, MACS, QuEST, RIPSeeker, and Rulebased on protein ELAVL1 and (k-1)
on protein PABPCI.
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intronic 0e+00 0e+00 0e+00  2e-01 3e-03 0e+00 intronic  8e-25 0e+00 5e-29  7e-01 1e-06 1e-94 intronic. 0e+00 0e+00 0e+00 1e-01 2e-33 0e+00
BUTR 2e-70 1e+00 1e+00 1e+00 1e+00 2e-05 3UTR 1e+00 1e+00 1e+00 9e-08 1e-14 1e+00 3UTR 2e-114 1e+00 0e+00 8e-01 2e-16 0e+00
(d) (e) (F)
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CDS  1e+00 1e+00 1e+00 1e+00  1e+00 1e+00 1e+00 CDS  1e+00 1e+00 1e+00 1e+00  1e+00 1e+00 CDS  1e+00 1e+00 1e+00 1e+00  1e+00 1e+00 1e+00
intronic  0e+00  0e+00 0e+00  3e-01 3e-27 0e+00 0e+00 intronic. 0e+00 0e+00 0e+00 1e+00 3e-25 0e+00 intronic. 0e+00 0e+00 0e+00 8e-02 9e-15 0e+00 0e+00
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(2) (h)
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5UTR  1e+00 1e+00 1e+00 1e+00 2e-04 1e+00 5UTR 1e+00 1e+00 1e+00 4e-01 8e-10 1e+00 1e+00 5UTR 1e+00 1e+00 1e+00 9e-01 4e-10 1e+00
CDS  0e+00 1e+00 1e+00 6e-01 1e+00 1e+00 CDS  0e+00 1e+00 1e+00 7e-01 1e+00 1e+00 1e+00 CDS  0e+00 1e+00 1e+00 5e-01 1e+00 1e+00
intronic 1e+00 0e+00 7e-142  7e-03 2e-05 1e-15 intronic 1e+00  0e+00 2e-92  5e-02 1e-02 2e-04 1e+00 intronic. 1€+00 0e+00 2e-11 2e-01 4e-06 2e-27
3UTR 0e+00 3e-84 0e+00 1e+00 2e-23 0e+00 SUTR  0e+00 3e-293 0e+00 1e+00 2e-51 0e+00 0e+00 SUTR 0e+00 0e+00 0e+00 3e-01 2e-66 0e+00
RIP-SEQ: K562_PABPC1_vs_K562_T7Tag PAR-CLIP: PUM2 PAR-CLIP: QKI
100% - 100% -
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5UTR 1e+00 1e+00 1e+00 7e-02 2e-14 1e+00 1e+00 5UTR  1e+00 1e+00 1e+00 1e+00 SUTR  1e+00 1e+00 1e+00 1e+00
CDS  0e+00 1e+00 1e+00 1e+00 1e+00 1e+00 1e+00 CDs  1e+00 1e+00 1e+00 1e+00 CcDs  1e+00 1e+00 1e+00 1e+00
intronic 1e+00 0e+00 6e-194  7e-01 1e-02 4e-66 1e+00 intronic. 0e+00  0e+00 1e-165 6e-25 intronic 0e+00  0e+00 0e+00 0e+00
3UTR 0e+00 0e+00 0e+00 8e-05 2e-88 0e+00 0e+00 3UTR  0e+00 0e+00 0e+00 0e+00 3UTR  1e+00 1e+00 1e+00 8e-01

Figure S11. Proportion of peaks overlapping with basic genomic elements. Each peak is assigned with exactly one genomic feature according to the following
order of preference: 5’ UTR, coding sequence (CDS), 3’ UTR, intronic, and intergenic based on Ensembl 65 for mouse and Ensembl 69 for human. Peaks predicted
from biological replicates are pooled. Hypergeometric tests on enrichment of the four basic genomic elements were performed and the significance tables are
presented below each corresponding barplot. Briefly, for each of the four types of genomic elements namely 5’UTR, CDS, intronic, or 3’UTR, we counted how
many of them overlap with peaks from each comparison method and denoted this number as . The hypergeometric test is conducted based on four quantities: x,
m, n, k, where x is defined above, m is the total number of the target elements known to Ensembl database, n is the number of non-target elements, and k& is the
total number of target and non-target elements overlapped by the peaks. The probability that the event generating the four values at random is the computed using
R built-in function phyper (x, m, n, k) . For instance, we have £ =11146 intronic elements and k= 12580 elements found in total by the RIPSeeker peaks
on QKI PAR-CLIP dataset, and there are m =1,068,140 total intronic elements and n =1,435,152 non-intronic elements including 156,609 5°UTR, 1,141,234
CDS, and 137,309 3’UTR in the human genome (Ensembl 69). The probability that the intron is enriched by random is then phyper (x,m, n, k) =0 (or <
1e-308 the smallest decimal number in R) (i.e. almost impossible). Please refer to Figure S5 for more details on each subfigure.
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Figure S12. Motif enriched among the top 5000 peaks with the highest RIPScores from RIPSeeker on PUM2 and QKI PAR-CLIP data. (a) the published PUM2
motif (5); (b) the published QKI motifs (5); (¢) PUM2 motif enriched among the top 5000 RIPSeeker peaks identified from the PUM2 PAR-CLIP data; (d) QKI
motif enriched among the top 5000 RIPSeeker peaks identified the from QKI PAR-CLIP data. The motif enrichment was performed on the FASTA sequences of
the top 5000 peaks using MEME-ChIP(16), which runs both MEME and DREME as complementary algorithms to predict long and short motif, respectively. As
illustrated in the second row of (c), the top 5000 peaks from RIPSeeker are enriched for exactly the published motif for PUM2. Similarly, the first and second row
of (d) bare striking similarity with the published motif for QKI.
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Figure S13. Motif enriched among the top 5000 peaks predicted by PARalyzer on PUM2 and QKI PAR-CLIP data. (a) the published PUM2 motif (5); (b) the
published QKI motifs (5); (¢) PUM2 motif enriched among the top 5000 PARalyzer peaks identified from the PUM2 PAR-CLIP data; (d) QKI motif enriched
among the top 5000 PARalyzer peaks identified the from QKI PAR-CLIP data. The top peaks are chosen as the ones having the highest ModeScore (score of
the highest signal / (signal + background) value). The motif enrichment was performed on the FASTA sequences of the top 5000 peaks using MEME-ChIP (16),
which runs both MEME and DREME as complementary algorithms to predict long and short motif, respectively.
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Figure S14. Motif enriched among the top 5000 peaks predicted by MACS on PUM2 and QKI PAR-CLIP data. (a) the published PUM2 motif (5); (b) the
published QKI motifs (5); (¢) PUM2 motif enriched among the top 5000 MACS peaks identified from the PUM2 PAR-CLIP data; (d) QKI motif enriched among
the top 5000 MACS peaks identified the from QKI PAR-CLIP data. The top peaks are chosen as the ones having the highest MACS score (i.e. -10log 10(p-value)
in the Sth column of the output BED file). The motif enrichment was performed on the FASTA sequences of the top 5000 peaks using MEME-ChIP (16), which
runs both MEME and DREME as complementary algorithms to predict long and short motif, respectively.
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Figure S15. Motif enriched among the top 5000 peaks predicted by HPeak on the PUM2 and QKI PAR-CLIP data. (a) the published PUM2 motif (5); (b) the
published QKI motifs (5); (¢) PUM2 motif among the top 5000 HPeak peaks; QKI motif is not present among the corresponding top 5000 HPeak peaks. The top
peaks are chosen as the ones having the highest absolute normalized cumulative log transformed posterior probability (i.e. the last column of the all.regions.txt
output). The motif enrichment was performed on the FASTA sequences of the top 5000 peaks using meme-chip (16), which runs both MEME and DREME as
complementary algorithms to predict long and short motif, respectively. The published PUM2 motif is not the #1 rank motif among the 5000 HPeak peaks and
have much less significant E-value than the those for the same motif from RIPSeeker, PARalyzer, and MACS (Figure S12, S13, S14).



“SD” — 2013/1/20 — 22:32 — page 27 — #27

Nucleic Acids Research, XXXX, Vol. XX, No. XX 27

(a)

—
o
~

(c) (d)

s RIP SEQ: PRCZ 5 RIP-SEQ: CCNT1 3IRFSEQ: GM12878 ELAVL1 _VS_GM12878_RIPINPUT RiP- SEQ GM12878 ELAVL1 _VS_t GM12878 T7TAG
B ] li pe T i 5o 5 HE 8. i
l S . F] 4
EL( 50- i [ l ] = . EL 050~ [
é" o5} H S Peaks gw | 3 Peaks §m— S Peaks g .. 3 Peaks
2 | B shuffied 2 B Shuffied % B shuffied % B8 shuffied
& § 5 &
2 £ ] I 2 £ |
& - & &

w\cs HpeBV‘ mgs‘ cutiot

Fmew@‘ “,Ww WS et QuEST | opased  ogoskel was m»* oues‘ cm«wﬂa N‘,seese‘ w\os \,\Peﬂ* auas-‘ cm'“ Wsmpsee Wk,«ﬁw“

-

= s s s

S =3 S0 =3

= =) = 2=

Ei g = 8 8

WO pe ST o et ccaer e W QEST e cgoaet WO e QST gl pased coceet WAOS ypemh  GuEST Gt oased  coaet | pyened
B more consarved han ater pesis 0 o conserved han thr pecks B more conserved han ther s B rors conserved than ot pesks
[ more conserved than shufied exonic regions. [ more conserved than shutled exonic regions [ more conserved than shufied exonic regions [ more conserved than shutied exonic regions
(l%SEQ GM12878_| PABPC1 _VS_ GM12878 RIPINPUT R#P- EQ GM1287B PABPC1 VS GM12878 _T7TAG 5 RIP-SEQ: K562_ELAVL1_VS_| K562 RIPINPUT k] HIF‘ SEQ: K562_| ELAVL1 VS K562 T7TAG
100 £100- 210 =

8ors- ] 8o7s- §ws

oso- g Soso- Zoso-

. B8 peaks g B8 Pes . B peats . B peaks
$ B8 Shuffled 3 B3 Shuffled b B8 shuffled 3 5 Shuffed
& & 8 §

e Q e <
5 3 7 7
] ] g g
= | g =
Mp@S Hped* G“EST ou\*ﬂ‘ﬂ e N‘,seewaf MACS \,\vea* @,EST mm\\ steel b\\s\"‘d wxcs Hve«“ QuEsT Ng.,ase F\FseeKE‘ WGS avea* QUES‘ o\md\w\en»se“ \,\\srved

-log10(p)

WACS ppedt QST Guief | esed pgedkel WAOS  pposk QUEST  Gufe jpased _ ogeake o jened s osedte! WS et QuEST gl el aned
[ more conserved than other peaks [0 more conserved than other peaks [ more conserved than other peaks [0 more conserved than other peaks
1B rore conserved tan st exori rgions 1B more conserved han st exoni regions 1B more conserved than st exoni regions 1 more conserved han st exoni regions

—
-

)

—
~
—
x
~
—~
~

RIP SEQ: K562_PABPC1_VS_| K562 RIPINPUT

P-SEQ: K562_| PABPC1 VS_| K562 _T7TAG PAR CLIP PUM2

- = R 5 s PAR-CLIP: QKI
€ H e £ 1.0 H
8ors- g H 8o g ] i !
8 k| . 8 k|
%_L 50~ % %J 50~ %
2 ES Peaks 2 s ES Peaks 202 ES Peaks < ES Peaks
G028 o2 @
H CEVEI | CLVRE CEVEI 5 Shuffed
S S 3 S
e 4] < <
3 ] 7 ]
8 8 8 8
= H = & ! . . .
MA°5 uvaa* meST cuveﬂ‘ b2 ‘pgew wxGS Hveﬂ“ QMES‘ c\mﬂ \Ebasgﬂpsae& m\\s\\e“ w&f' Hvea“ F“,g,eeke' P,\Faw‘ MACS weet  psed qayet

WS ped  qEsT et Ru@asaé apsest WAOS  ppedt  QUEST Gt jopasd [ pgeak o yened WS wpedt apseet oanaz® WAOS wpedt P opRAYE
[ more conserved than other peaks [0 more conserved than other peaks [ more conserved than other peaks I more conserved than other peaks
[ more conserved than shutied exonic regions [ more conserved than shutied exonic regions [ more conserved than shutied exonic regions [ more conserved than shutied exonic regions

Figure S16. Comparison of conservation for the top 1000 peaks from each program on the RIP-seq and PAR-CLIP datasets. For each program, the top
1000 peaks are the ones having the highest scores based on the specific scoring scheme of that program: for MACS, the highest -10log10(p-value)
(i.e. 5th column of the BED output); for HPeak, the highest absolute normalized cumulative log transformed posterior probability (i.e. the last
column of the all.regions.txt output); for QuEST, highest normalized enrichment fold at the maximum position within the region (i.e. 5th column in
ChIP_calls.filtered.bed); for Cuffdiff, highest -log10(p-value); for Rulebased, the highest fold-change of RPKM in RIP over control; for RIPSeeker,
the highest RIPScores. The conservation score of each top peak is computed as the averaged per-base phastCons46waysPlacental scores for human
hg19 reference genome or the averaged per-base phastCons30ways scores for mouse mm9 reference genome (for PRC2 dataset only) downloaded from
the UCSC genome browser (http://hgdownload.cse.ucsc.edu/goldenPath/hgl9/phastCons46way/placentalMammals/; http://
hgdownload.soe.ucsc.edu/goldenPath/mm9/phastCons30way/placental/). As background control, peaks are randomly shuffled within the
same chromosome restricted to the exonic regions based on the Ensembl 65 annotations. The restrictions control for chromosome-dependent and exon-dependent
effects. The alternative hypotheses in the one-sided Wilcoxon tests are (1) the peaks from one method are more conserved than the peaks from other methods (i.e.
inR,wilcox.test (peakl, allotherpeaks, alternative='‘greater’’)) AND (2)the peaks are more conserved than the randomly shuffled
exonic regions (i.e. in R, wilcox.test (peak, random, alternative=‘'‘greater’’)).In each subfigure, the top panel display the boxplots of the
averaged conservation scores of the peaks and randomly shuffled exonic regions for each method, and the bottom panel displays the -log10(p-value) from the
Wilcoxon tests for (1) (indicated as red bar) and (2) (indicated as cyan bar) hypothesis described above. Only when both tests are significant (i.e. both red and
cyan bars are above the 0.05 or 0.01 cut-off showns as the dash line), can one ascertain that the corresponding peaks identified by that program are more conserved
than others on the same dataset. As shown above, the results are inconclusive. Please refer to Figure S5 legend for details on the test data used in each subfigure.
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Figure S17. Comparison of folding energy from the predicted local RNA secondary structure for the top 1000 peaks from each program on the RIP-seq and PAR-
CLIP datasets. The top 1000 peaks are selected the same way as described in the Figure S16 legend. Local RNA folding energy is computed using RNALfold
from Vienna RNA Package 2.0 (17). The more negative the minimum free energy (MFE), the more stable the local secondary structure of the RNA. Thus, the
alternative hypotheses in the one-sided Wilcoxon tests are (1) the peaks from one method are more stable (having lower engery) than the peaks from other
methods (i.e. in R, wilcox.test (peakl, allotherpeaks, alternative=‘‘less’’)) AND (2) the peaks are more stable than the randomly
shuffled exonic regions (i.e. in R, wilcox.test (peak, random, alternative=‘'‘less’’)).In each subfigure, the top panel display the boxplots of
the MFE of the peaks and randomly shuffled exonic regions for each method, and the bottom panel displays the -log 10(p-value) from the Wilcoxon tests for
(1) (indicated as red bar) and (2) (indicated as cyan bar) hypothesis described above. Only when both tests are significant (i.e. both red and cyan bars are above
the 0.05 or 0.01 cut-off shown as the dash line), can one ascertain that the corresponding peaks identified by that program are more likely to have stable second
structure than others on the same dataset. As shown above, the results are inconclusive. Please refer to Figure S5 legend for details on the test data used in each
subfigure.
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Figure S18. Biotypes category of known genes associated with the peaks from each comparison method. The selected biotypes of interest from “protein coding”

to “sense_intronic” correspond to the transcripts_biotypes downloaded from Ensembl biomart using the biomaRt package. “Others” and “Unknown”

correspond to other biotypes such as rRNA, mtRNA etc and peaks that do not overlap with any of the categories, respectively. In each subfigure, the top panel

represent the proportion of peaks each overlapping with exactly one biotype category. Each peak is assigned by only one biotype category according to preferential
order as listed in each panel legend (i.e. “protein coding” the most preferred to “Others” the least preferred) based on Ensembl 65 for mouse (for PRC2 dataset
only) and Ensembl 69 for human; the bottom panel display three layers of information described in the bottom-up order: “log2(Feature)” is the number of

transcripts at log2 scale that are overlapped by the peaks; “Feature%” is the percentage of genes in the biotype category that are overlapped by the peaks; “-
log10(p)” is the -log10(p-value) from the hypergeometric test for the enrichment of the corresponding biotype category using the same approach as described in

Figure S11 legend replacing the four genomic elements with the nine biotype categories. Peaks predicted from biological replicates are pooled, and overlapping
peaks are merged before overlapping with the biotype categories. Please refer to Figure S5 for more details on each corresponding subfigure. We are unable to

draw meaningful pattern from the results above.
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Figure S19. Visualization of predictions by each algorithm on known PRC2-ncRNA (a) Xist, (b) Kcnglotl and (¢) Meg3 (with three alternative transcripts) and
(d) known CCNT1-ncRNA RN7SK. In panel a, b, and ¢, the top track indicates the reference gene from RefSeq; the track 2, 3, and 4 represent the alignments
in Ezh2 mutant (MT) and the two biological replicates for Ezh2 wild type (WT), respectively; the remaining track from top to the bottom represent the peaks
predicted by Cuffdiff, Rulebased, MACS, QuEST, HPeak, and RIPSeeker, respectively. In panel d, top track indicates the reference gene from Ensembl; the
second and third track represent read alignment in GFP control and CCNT1 RIP library, respectively; the remaining tracks are the predictions from the six method
as in the previous 3 tracks.
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Figure S20. Visualization using UCSC browser on known PRC2-ncRNA (a) Kcnglotl and (b) Xist on the - strand and (¢) Meg3 on the + strand. The UCSC
browser is launched by the RIPSeeker’s built-in function viewRIP with the peak information automatically uploaded as separate tracks in the browser without
needing to manually upload files. Users can relate the RIP-seq peaks with other information from the UCSC database by interacting with the browser as they
normally. The selected track in this illustration are described as follows. “aligned RIP reads” and “aligned CTL reads”: actual read alignments for RIP and control
from the RIP-seq data, respectively; “read counts”: read count in the RIP library; “eFDR”: -log10(eFDR); “Mammal Cons”: conservation score from UCSC. For
demonstration purpose only, the range for bin size was set between 10 kb and 10.01 kb.
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NEGATIVE BINOMIAL HIDDEN MARKOV MODEL

In this section, we present the detailed mathematical formulation of hidden Markov model (HMM) with negative binomial (NB)
emission probability to facilitate in text reference of the equations used in the main manuscript. Readers knowledgeable in
HMM may skip this section. Section Definition of HMM characterizes HMM in terms of its intuition, basic definition, model
assumption, and probability properties. Section Expectation-Maximization outlines Expectation-Maximization procedures,
which is a tractable and efficient way (but might not be optimal) to optimize HMM parameters. Section Forward-Backward
Algorithm describes Forward-Backward algorithm, which is an efficient way to derive the intermediate quantities required
in Section Expectation-Maximization. Section Numerical Approximation of Negative Binomial Parameters outlines the
conditional maximization procedures needed to update NB parameters for HMM. Section Viterbi Algorithm describes Viterbi
algorithm to derive the most probable sequence of hidden states.

Intuition

Hidden Markov model (HMM) has wide applications in various areas including speech recognition, predicting climate changes,
financial forecasting, and gene predictions along the DNA sequence (11). Its wide popularity is due to its ability to efficiently
model distribution of observations that are correlated in a sequence of events and thus are not independent identically distributed
(i.i.d.). None-i.i.d. is common in biological data. Expression of gene at the upstream may affect the gene expression at the
downstream. Binding of one RNA transcript to a protein may affect the protein recruitment by other RNA molecules. In reality,
however, whether the gene is active/inactive or the RNA truly binds/unbinds to a protein is hidden from us. The read coverage
within each defined genomic region from a sequencing instrument is merely a noisy reflection of the true hidden states. Using
the probabilistic approach of HMM, we would like to (1) model the data distribution by maximizing the likelihood of the model
parameters based on the observed data (covered by the following subsections up to Viterbi algorithm) (2) infer under uncertainty
the most probable sequence of (correlated) hidden states from the learnt distribution (covered by Viterbi algorithm). The following
detailed formulation of HMM is largely based on Chapter 13 from (11).

Definition of HMM

Let Z be the hidden variables and X be the observed variables, HMM is defined by the following five properties. Readers can
refer to Figure S21 to visualize the model.

1. K, the number of hidden states for Z. For instance, there are two states k € {1,2} in the HMM digram (Figure S21).
2. N, the length of the hidden variables or observations such that Z=1{z1,23,...,z25} and X={z1,22,...,2n}.

3. A, the transition matrix with each entry a;;, = p(2n=k|2n—1=7). In other words, a ;i is the probability at which the latent

variable switches from state j at (n— 1)th time point or position to & at n*" time point or position. Notably, aj is subject
to probability constraints such that

VajkO < Cljk <1
K
2k=19jk=1

4. ¢, a set of parameters governing conditional distribution of each p(xp |2, 1,¢)) (Figure S21). For instance, X can be
continuous variables and follows a Gaussian conditional distribution, p(zy|dy) ~N (ug,Xg); or discrete in a negative
binomial distribution, p(zy,|¢y) ~ N B(ag,by), which is the interest in this study.

hidden N P N P

states: ay as ay
k=1 D\ 2 Q12 Q12 o

J g J
hidden Z4 A\ 2 Ziq /L Z; Zy
variables:
observed Xt X2 Xie1 X XN
variables:

Figure S21. Schematic diagram of two-state Hidden Markov model.
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5. v, a set of initial distributions with each 7, =p(z1 =k), where k€ 1,... K.

For clarity of notation, we use 8 to represent all of the model parameters:

0={A ¢ m}

Markovian Assumptions

Two important assumptions of HMM that makes maximization of the entire joint distribution of observed and latent variables
tractable. Besides the formal definitions below, these assumptions are implicated in Figure S21.

1. Markov Assumption: Given the state of the current latent variable, the state of the next latent variable is conditionally
independent of all the earlier preceding latent variables (Figure S21):

Zn41 Ll zn—1|2n 1@

Due to the Markov property, the conditional (or transition) probability of the state for each latent variables can be induced
as:

P(zn+1l21,22;--.2n) =p(2n+1l2n) @)

where each p(zy,41|2n) has already been defined as ay, in the transition matrix A from the definition above.

2. Independent Assumption: Given the state of its parent latent variable, the observed variable is independent from other
variables:

InJ—L{X/xn7Z/zn}|Z’ﬂ (3)

where X/, and Z,, ~denote the corresponding variables excluding x;, and zp, respectively. As a result, the conditional
probability of generating the entire observed data given the latent variables can be factorized as follows.

N
p(X|Z.9)= [ ] p(enlon, ) @
n=1

Joint Probability

Based on (2) and (4), the entire joint probability of data and latent variables can be simplified as follows.

p(X,Z|0)zp(xl,xg,...,xN,Zl,ZQ,...,ZNle)

N N
=p(z1]m) [prznl,A)] [T p(@mlzm.¢) s)

n=2 m=1

where we have taken advantage of the conditional independence of latent and observed variables. The objective is then to
maximize the likelihood L(6|X,Z)=p(X,Z|0) by fitting the model parameters 6. Because the latent variables are unobserved,
we need to marginalize over all of their hidden states and instead maximize the expectation of the logarithmic likelihood of the
joint probability:

= "p(Z|X,0)lnp(X,Z|6) (6)
Z

In short, (6) is the objective function we need to optimize by tuning parameters 6. However, direct maximization of (6) by partial
differentiation leads to complex expression with no closed-form solution. We therefore turn to an iterative optimization approach
described in the following section.
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Expectation-Maximization

The Expectation-Maximization (EM) algorithm starts with an initial setting 6°'% for the parameters in order to computes the
expectation in (6) (E-step). It then maximizes (6) by setting the model parameters to their maximum likelihood solution (M-step).
The process alternates between E and M-step until n iterations or no further improvement observed in the objective function (6).
Specifically, if we substitute (5) into (6) and perform some simple manipulation of the formula, we obtain:

K N K K
QO =3 (a1 )mt Y DD ez ) InAjy
k=1 n=2j=1k=1
N K
0 A(znp) Inp(anlér) v
n=1k=1
where
’V(Zn,k):p(zn,k‘xvaold) ®)
g(zn—l,jazn,k):p(zn—l,jazn,k|xa90ld) (€)

To simplify notation, z,, ;. denotes 2, having state k (i.e., zn, = k).
Therefore, the goal of E-step is to evaluate (8) and (9), which can be done efficiently by an algorithm described in the following

section.

old
The M-step requires solving the partial derivative equation % =0 for 6={m, A, ¢}. The solutions for each parameter

are listed as follows (11).

v(z1,k)
k=" < (10)
Y iv(zg)
N )
Ang Zn:2§(zn—l,jyzn,k) 11

T K N
D=1 n=2 5(Zn—1,jvzn,l)

N

SN (k)

where u € = ¢ is the mean of the discrete one-dimensional observed variables for latent state k.
Therefore, we need v(zy,;) and {(2,,—15,2p, 1) in order to evaluate (10), (11), and (12). The procedure to obtain both quantities
is described in the following section.

Forward-Backward Algorithm

The Forward-Backward algorithm is formulated naturally through the following mathematical derivation for v(zy).

V(zn) =p(zn|X)

_ p(Xzn)p(zn) (Bayes' rule)

p(X)
P(Ihx%---,In|2n)p($n+1,l’n+2,~--7$N|Zn)P(Zn)
= by (4
o(X) (by 4)
:p(l’l,Iz,...,In,Zn)p(l’n+1,I‘n_’_Q,...,,IN‘Zn)
p(X)
a(zn)B(2n)

=) 13)
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where «(zy,) and B(zy,) represent the quantities computed in the forward and backward phase, respectively. The mathematical
derivations of both quantities naturally falls into recurrent relations as shown below.

( ) p(r1,72,.. xnazn)
p(x,.. $n|zn) (Zn)

(
(
p(zn|zn)p(@1,- s Tn—1|2n)p(2n) (by 4))
(
(

p(xn|zn)p(T1,- - Xn—1,2n)

p $n|zn) Z p(xlr--axn—lvzn—lazn)

Zn—1

:p(‘rn|zn) Z P(l“l,u-»mn—1,2n|zn—1)p(zn—1)

Zn—1

=p(2n|zn) Z p(r1,.. 0 Tp—1 |Zn—1)p(zn|zn—1)p(zn—l) (by (2))

Zn—1

=p(nlzn) Y p(a1, o Tn-1,2n-1)P(2n] 1)

Zn—1

=p(zn|2n) Z a(2n—1)p(2nlzn-1)

Zn—1

Therefore, we obtain the recursion for «(zy, ):

Oz(Zn) :p($n|zn) Z Oé(zn—l)p(zn|zn—1) 14)

Zn—1

Evaluation of a(zy,) requires the value of a(z,—1). To start the recursion (i.e., the base case), we must have the value for a(z1)
for each state k:

a(z1 k) =p(r1,21 1) =p(21,k)P(1]21 1) = TP (21| D) 15)

Since we know both 7, and p(z1|¢y) (from the initial parameters 0°'%), we can start the process by passing the “message” of
a(z1) forward along the chain to obtain a(zy,). If we set n= N, we can compute all of the «(21),...,a(z) in a single forward
pass.

The backward pass for 3(zy, ) involves a similar derivation:

B(Zn) :P($n+17$n+27--~a$N|Zn)

- Z P(mn+1a$n+2a~~waazn+1 |Zn)
Zn+1

= ji: p(ahv+17x7v+2a~~71UV|an%1aZn)p(Zn+JJ2n)

Zn+1

= Z P($n+1,$n+2a~"7$N|Zn+1)P(Zn+1 |Zn) (by (4))
Zn+1

= p(@nt2, 8Nz 1)P(@ 011 |2041)P (s 1]20) (by (4))
Zn+1

= Z 5(Zn+1)p($n+1 ‘Zn+1)p(zn+1 |Zn)
Zn+1

Thus, we obtain the solution for 5(zy, ), which is another recurrent relation:

= Z B(2n+1)P(Tnt1|znr1)p(2na1l2n) 16)

Zn+1
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To initiate the backward message passing, we set the end of the Markov chain 5(zy)=1 for all k€ {1,..., K} states. Now, if we
set n=1, we can obtain all of the 5(z1),...,5(zn) in a single backward pass.

To compute v(z,) (13), we also need p(X), which is easy to obtain by picking any n' observation and performing the
following.

p(X):Zp(xlax%--~axnazn)p(1‘n+1a$n+2a~--ny|zn)
Zn

:Za(zn)ﬂ(zn)

Zn

Together, we have all the components, «(zy,), 5(zr ), and p(X) required to compute all of the v(z1)...v(zy) specified in (13).
The evaluation of £(2,,—1,2y) also depends on «(zy,) and B(zy):

&(2n—1,2n) =p(2n—1,2n|X)
_ p(X|Zn71,Zn)P(Zn—1aZn)

(Bayes’ rule)

p(X)
_ p(mla-.wxnfl ‘anl)p(xnpn)p(wrﬂrlw"7xN‘Zn)p(Zn|Zn*1)p(znfl)
_ o0 (by 4))
_ p(:);‘l,...,CUn,1,Zn,1)p(xn‘Zn)p(zn|zn71)p(xn+17’">xN|Zn)
p(X)
_ a(zn1)p(xn|2;1()}}2()zn|zn1)5(zn) (by definition)

Therefore, we now have both v(zy,) and £(z,—1,2y) and can evaluate (10), (11), and (12) for 8 = {7, A, ¢} promised in the
M-step of the EM algorithm in the previous section. However, there is a further complication in optimizing the parameters of
negative binomial conditional distribution, which is addressed in the following section.

Negative Binomial distribution

For the specific emission probability distribution, RIPSeeker uses negative binomial (NB) distribution to model the read count
distributions in order to infer background and RIP regions. NB has been shown by (10) to be a more realistic parametric model
than Gaussian and Poisson models. Gaussian distribution (popular in microarray analysis) might provide a good approximation
to large read counts but becomes inadequate to model the majority of the low count values due to their discreteness and skewness.
Poisson distribution is intuitive in that it expresses the probability of a given number of events occurring in a fixed interval given
the average rate A\, which can be interpreted in our context as the probability of number of reads sampled/sequenced from the fixed
bin given the average read counts across all of the bins. The Poisson model offers the convenience that the single model parameter
A represents both the mean and the variance of the discrete distribution but becomes inadequate to model data with larger variance
than the mean, which is known as over-dispersion problem (10). On the other hand, NB is suitable to model discrete events with
separate mean and variance via two parameters a and b. Formally, let x,, be the read count in nth bin sampled from NB(a,b),
then the conditional probability of z,, can be expressed as:

Zn+ak71 bk ak 1 Tn
= 17
panln)= ("5 (135) (3 a7)

where a;, and by, are the parameters for the function given the latent variable with state k. Importantly, the mean i, and variance
a,% of the data sampled from NB, can also be expressed in terms of a;, and by

Mkza (18)
ap(1+b

02— k(bQ k) 19)
k

Notably, NB can also be viewed as a Poisson(\) distribution, where A is itself a random variable, distributed according to
Gamma(a, b) with a and b as shape and scale parameter, respectively (10). Thus, NB is a both intuitive and flexible choice
for modelling read count distribution.
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Numerical Approximation of Negative Binomial Parameters

Now, in the M-step of EM algorithm, we obtain the maximum likelihood function for p (12). However, we cannot evaluate a;,
and b;, simultaneously. Thus, we turn to a variation of the M-step called conditional maximization (12), where we fix variable a;.
to evaluate by, using (12) and (18), and then use Newton’s method to update aj. Specifically, we solve for by, as follows.

old N
ar > n=17n k)0

new : (by (12) and (18))
bk: ZnNzl V(Zn,k)

new _ “zld 27]:[:1 7(2n7k)

g 21]1\7:1 ’V(Zn,k)mn

old\~N
_ ag En:la(zn,k)ﬁ(zn,k) (by (13)) 20)

S alzn 1) Bz k) n

ld
new __ old f( z )

g =0k #(a old) @21

where f(a Old) is the logarithmic posterior probability of the data p(X|Z), which is the product of the conditional probability by
the assumption (4); f' and f” are the first and second derivative of f w.r.t ay, , respectively:

N
Faf) = ][ p(wnlzn,r) (22)
n=1
pnew N
f ( old) N |:1n(1+kbzew> _ old :| Z |: «Tn+azld):| (23)
N
(0 = =Ny (ag)+ [ (zn)¥1 xn+azld>} (24)
n=1

where ¥(a Old) and ¢ (a OZd) are the di and trigamma function, which are the first and second derivative of the logarithmic gamma
function F( )= (x—1)!, respectively:

Y(af) = 2 Inr(X) 25)
2
D1(a) = 5T (X) (26)

For detailed numerical approximation of (25) and (26), refer to the Matlab code in the software package.
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Viterbi Algorithm

After learning the model parameters ), we can obtain the sequence of hidden states for 1... N latent variables that maximizes the
joint log-likelihood p(x1,...,xN,21,---,25) =P(X,Z) using Viterbi algorithm.

N N
p(X,Z)=p(21) [ II p(anzn—1)} [T p@mlzm)
n=2 m=1

N N
Inp(X,Z)=Inp(z1)+ Y _ Inp(znlzn—1)+ Y _ p(@m|zm)
n=2 m=1
N
—lnp(z) +hnp(ay o)+ S [mp(zn\zn_l)+1np<a:n|2n>]
n=2
N
L max Inp(X,Z)=_ max lnp(21)+1np(w1|21)+;_:2{hlp(Znzn1)+1np(xn|2n)]

= max (x| Inp(e1) -+ 1up(a1 1) +1np(aplen)| + mp(aalen)
1

22449 ZN
N
+ 30 [ plenlzno) +inp(onln)|
n=3
N
= max { max |:11’1p($1,$2,21,22):| + Z [lnp(zn\zn_l)+lnp(a:n|zn)]

225--ZN Z1
n=3

= max {max {rréax |:1Hp(l'1,$2,21,22):| +lnp(23|zg)] +Inp(z3|z3)
1

235--98N Z2

N

+> {lnp(anzn_l)+lnp(xn|zn)}

n=4

N
— max { max {lnp(33175627333721722723)]+Z [1np<zmznf1>+1np(xn\zm

Z35..,ZN | 21,22
n=4

:max{max{ max  [Inp(z1,...,2N_92,21,..,2N_2)]

ZN ZN—1|R1y+3ZN -2

+lnp(zN|zN_1):| +lnp($N|ZN)}

:max{ max [lnp(a:l,...,xN_l,zl,...,zN_1)+1np(zN|zN_1)} +lnp(xN|zN)}
N | 21,0281
where p(X,Z|0) =p(X,Z) for clarity; a uniform prior of p(z1) is used; and maxz, Inp(z1,29,21,29) indicates that for each state of zo, find
z1 that maximizes the Inp of reaching to that state. Similarly, maxz, 2, Inp(z1,z9,23,21,22,23) denotes finding z{ and zo that maximizes the
Inp of reaching to each state of z5. Because 27 is obtained at the previous iteration, we only needs to find zo by following the “path” from 2.
More generally, we have derived a recurrent relation:

max Inp(xq,...,ZN,21,--,2N)

214032 N
:max{ max |:lnp(x1,...,a:Nfl,zl,...,szl)+1np(zN\zN,1):| —|—lnp(1:N|zN)} 27
ZN 215N —1

The derivation of (27) itself is in fact the algorithm used to find zp, that maximizes Inp(21,...,2y41,21,...,2n41) for each state of z, 1.
The choice of zn, is saved in order to backtrack to find the entire sequence of latent states z1,...,z _1. More specifically, at the end of iteration,
we first choose the state for z; that maximizes the entire joint probability and backtrack to the choice of zpy_ 1 that reaches to the optimal state
of zpy, then to zpr_o that reaches to z,, 1, and so forth.
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If there are K states, then K 2 computation is required at each iteration to find the optimal state of z,, 1 for each state of 2. For N data

points corresponding to IV latent variables, the Viterbi algorithm takes O(K 2N ). Thus, the algorithm is linear to the growth of data points and
takes only O(4N) for a two-state HMM.
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