Comparative genomics of defense systems in archaea and bacteria

Kira S. Makarova, Yuri I. Wolf, Eugene V. Koonin*

Supplementary tables

Table S1. Poorly characterized genes in the genomic neighborhoods of the Dnd defense system^a

Gene and	d Comment and References					
Family						
	Gene in the modification cluster					
DndB	ParB family nuclease, also known as DGQHR domain, associated with many defense systems					
pfam14072	(1), often contains additional HEPN superfamily domain, predicted endoribonuclease (2)					
DndD	ABC type ATPase of Mre11/Rad50 subfamily					
DndE	The structure has been solved and DNA-binding demonstrated (3); HHpred identifies significant					
pfam8870	similarity of N-terminal region with RelE family of RHH fold, an antitoxin associated with many					
	TA systems; this domain is also fused to FtsK and HerA-like ATPases, usually associated with					
	dnd genes					
	Associated gene families					
DndF	The N-terminal domain belongs to the HEPN endoribonuclease superfamily (2), C-terminal					
	domain is a predicted NTPase likely specifically GTPase					
DndG						
pfam08747	C-terminal HTH domain					
DndH	The C-terminal domain is a HerA-like helicase/ATPase, the domain next to it belongs to the PD-					
	(D/E)xK endonuclease superfamily. This protein is the predicted main REase subunit of the					
	system.					
PSHAb0092-	Loosely associate gene, belongs to the MutL-related paraMORC family; proteins of this family					
like	are encoded in the vicinity of many R-M systems (4)					

^aIdentification of protein domains and functional prediction for experimentally uncharacterized proteins was based on the results of protein sequence and structure database searches using the PSI-BLAST and HHPred methods (5,6).

Family	Comment and references					
	Core genes					
pfam08665	PglZ, alkaline phosphatase family enzyme					
COG1002	Methylase subunit associated with R-M systems; often encoded in a separate locus					
COG4930	ATP-dependent Lon-type protease					
	Associated gene families					
pfam08747	Uncharacterized protein					
COG0553	Superfamily II DNA helicase; often fused to a methylase domain					
pfam08849	Similar to an uncharacterized family DUF3387 which is often fused to R-M. Structure is solved -					
pdb: 3bhw; DALI reveals structural similarity with recognition domains of R-M systems						
COG1201	Lhr-like helicase					
pfam10923	ATPase domain-containing protein					
COG0863	DNA modification methylase					
COG1479/	RloF-like component of potential R-M system found in predicted operon for type I R-M system					
COG3472	(7); contains N-terminal DGQHR (ParB family nuclease) domain and C-terminal HNH-type					
	nuclease domain					
COG1061	Superfamily II DNA helicase					
COG2865	Transcriptional regulator containing an HTH domain and diverged ATP-binding domain					
	(Schlafen-like)					
COG0515	Duplicated serine/threonine protein kinase domains; some contain nuclease-related NERD					
	domain					

Table S2. Genes in the genomic neighborhoods of the Pgl defense system^a

^aIdentification of protein domains and functional prediction for experimentally uncharacterized proteins was based on the results of protein sequence and structure database searches using the PSI-BLAST and HHPred methods (5,6).

Table S3. Poorly characterized and recently predicted TA systems^a

TOXINS Family and genes	Predicted or solved (PDB) structure and activity	ANTITOXIN Family and genes	Predicted or solved (PDB) structure	Comments and references			
	Target is unknown						
HEPN COG2250/ COG2445/ COG2361	Ribonuclease (1jog)	MNT, COG1708/ COG1669	Nucleotidyl- transferase (1no5)	HEPN of the COG2250 family is one of the most prominent genomic determinants of the thermophilic life style			
COG2856	Zn-dependent protease (3dtk)	Xre	HTH fold	Often fused to antitoxin domain. Frequently associated with RelE and PIN toxins			
COG3832	Cyclase/dehydratas e family protein, START domain superfamily (1xuv)	ArsR-like	HTH fold				
GNAT	GNAT acetyltransferase	Xre and RHH	HTH fold and RHH fold	(8)			
COG2929/ DUF497	No prediction or structure	COG5304 and COG3514	RHH fold	Toxin sequences are compatible with RelE secondary structure			
RES COG5654	RES domain superfamily	Xre COG5642	HTH fold	(8)			
DUF397	No prediction or structure	Xre	HTH fold	Potential pleiotropic regulator that affects morphogenesis, antibiotic production, and catabolite control in Streptomyces (9)			
AbiG, AbiE DUF1814/ COG2253/ COG4849/ COG4914	Nucleotidyltransfer ase	COG5340/ COG4861	Contains HTH domain	See also ABI systems			
MAE_32580 COG4634/ DUF82	Compatible with PIN structure and motifs	COG2442	winged HTH – HTH fold	(1)			
GinC COG4476 DUF1071	Unique BH2638- like fold (20y9)	COG1393, ArsC, Arsenate reductase	Thioredoxin – fold	Thioredoxin-like proteins involved in transcriptional regulation, (10) shown to be antitoxins (11)			
DUF4160, MAE_01690	Metal-dependent enzyme, possibly a nuclease	DUF3532/ DUF2442	NE0471 N- terminal domain-like fold (2auw) and (in some) xre family HTH fold	(1)			
	I	Mechanism of ar	ntitoxin is unkno	wn			
RnlA/IsoA	RNase LS (N-terminal TBP- like substrate- binding, C-terminal HEPN domain	RnlB/IsoB	No prediction	TA system that cleaves bacteriophage T4 mRNAs (12) and contributes to mRNA turnover in <i>E. coli</i> (13), often associated wirh RNAse H			

	ribonuclease)			
HicA	Translation-	HicB	RNAse H-like	HicA has a bacteriostatic rather than a
COG1724	independent		domain. Often	bactericidal effect (14)
	mRNA interferase;		fused to a	
	RBD-like fold		DNA-binding	
	(1whz)		domain, either	
			RHH or HTH	
			/or mechanism o	
YafO	No prediction or structure, ribosome dependent mRNA interferase	YafN	PHD/YefM	(15); (16)
YeeV	Inhibits cell	YeeU	Antitoxin	(17) Structure of YeeU has been
DUF1219	division by		homologous to	solved (18), Proposed TA system type
CbtA/YkfI/Y	targeting FtsZ and		toxins YoeB	IV: antitoxin protects target but does
pjF toxin	MreB		and RelE	not bind the toxin (19)
family COG4396	Antiparallel coiled-	COG4712/	(2inw) Rad52/22	Toxic effect demonstrated (11). GinA
GinA	coil fold (2p2u)	DUF1071	family; dsRNA-	is a close homolog of phage Mu host-
Gam	con ioid (2p2u)	Sak-like	binding	nuclease inhibitor protein Gam which
Gam		Juk like	domain-like fold	inhibits RecBCD binding to dsDNA ends (20);
				Sak is single-strand annealing protein
				(21); present predominantly in
				Firmicutes
DUF3169,	Membrane protein	COG1476	Xre family –	Experimentally validated using
GinD			HTH fold	genetic approach (11) Also often
				encoded in one operon with
				membrane associated metal-
				dependent protease of DUF3267
				(peptidase M50) (22)
GhoT/YjdO,	Membrane protein	GhoS/YjdK,	Ferredoxin fold	Proposed type V toxin-antitoxin
DUF2566		DUF2622 endo-	(2llz)	system, antitoxin cleaves toxin mRNA
		ribonuclease		(23), Specific for Gamma-
				proteobacteria

^aIdentification of protein domains and functional prediction for experimentally uncharacterized proteins was based on the results of protein sequence and structure database searches using the PSI-BLAST and HHPred methods (5,6).

Name	Source	Reference	Phyletic spread	Comments and additional references
AbiA/ abi829	Lactococcus lactis plasmid pCI829	(24,25)	Several diverse Firmicutes	RT domain fused to C-terminal HEPN domain (2); also pTR2030;affects phage DNA replication (26)
AbiB/ abi416	L.lactis subsp. lactis IL416 genome	(27,28)	Lactococcus only	AbiB prevents phage growth by promoting degradation of phage transcripts by endonucleolytic cleavage. Putative PD-(D/E)xK family nuclease (motif and secondary structure prediction)
AbiC	L.lactis pTN20	(29)		See AbiP; interferes with capsid production
AbiD1 AbiD (abi_2)	<i>L.lactis</i> plasmids pBF61 pIL105	(30-33)	Abundant in bacteria	HEPN domain, predicted ribonuclease (2) Over-production of AbiD1 shown to possess bacteriostatic effect; expression of the <i>abiD1</i> gene is specifically translationally activated by phage and is temperature-dependent; affects expression of Lactococcus phage bIL66 orf3, RuvC resolvase, necessary for phage replication
AbiE	L.lactis subsp. lactis biovar diacetylactis DRC3 plasmid pNP40	(34)		See AbiG; interferes with DNA packaging
AbiF	L.lactis subsp. lactis biovar diacetylactis DRC3 plasmid pNP40	(34)		See AbiD
AbiG (AbiGi and AbiGii)	<i>L. lactis subsp.</i> <i>cremoris</i> UC653 pCI750	(35)	Abundant in bacteria and archaea	Predicted toxin-antitoxin system: toxin is a predicted nucleotidyltransferase (COG2253/COG4849/COG4914 families) and antitoxin is an HTH domain-containing protein (COG5340/COG4861 families); constitutively expressed; inhibits synthesis of both early and late phage c2 transcripts
AbiH	<i>L.lactis ssp. lactis</i> biovar. <i>diacetylactis</i> S94 chromosome	(36)	Abundant in bacteria	Predicted nuclease of the Sir2 family
AbiI	L.lactis subsp. lactis M138 plasmid pND852	(37)	Abundant in bacteri, also present in several archaea and phages (Gp21 protein [Listeria phage 2389)	Ribonuclease H superfamily, related to DUF3800 family; interferes with DNA packaging
AbiJ	L.lactis biovar. diacetylactis UK12922	(38)	Abundant in bacteria	C-terminal HEPN domain, predicted ribonuclease, also known as Abi-859 (2)

A 1- 17	plasmid pND859	(20)		and AliA, DT damain interferre with these DNA
AbiK	pSRQ800 10708383	(39)		see AbiA; RT domain; interferes with phage DNA replication
AbiLi AbiLii	L. lactis diacetylactis pND861	(7,40)	Abundant in bacteria, also present in several archaea	AbiLi: ATPase (COG4637 or COG1106 family); AbiLii: Toprim domain, homolog of <i>rloB</i> , the gene found within Type I R-M system locus in <i>Campylobacter jejuni</i> (7)
AbiN	L.lactis subsp. cremoris S114 prophage	(41)	Diverse bacteria, several archaea and phages	Membrane-associated coiled-coil protein homologous to N-terminal domain present in RNase Y family (42)
AbiO	L.lactis ssp. lactis MG1363 plasmid pPF144	(43)	Mostly diverse Firmicutes, Mollicutes and several phages	PD-(D/E)xK-family nuclease domain fused to a helicase (COG3410)
AbiP	<i>L. lactis sp. lactis</i> IL1403 plasmid pIL2614	(44)	Patchy distribution in diverse bacterial lineages	See AbiC; membrane anchored protein, shown to bind nucleic acids with an approximately 10-fold preference for RNA relative to ssDNA; interferes with phage DNA replication
AbiQ	<i>L. lactis</i> LM0230 plasmid pSRQ900	(45,46)	Patchy distribution in diverse bacterial lineages	Type III TA system with a ToxN toxin related to MazF superfamily type II toxins (47) and a RNA antitoxin interacting with the ToxN protein; interferes with DNA packaging
AbiR	L. lactis subsp. lactis bv.diacetylactis KR2 plasmid pKR223	(48)	Abundant in bacteria and in archaea (COG0553)	ORF1,2,3 (COG0553),4 are involved; inhibits phage DNA replication; always associated with R- M systems
AbiS	L. lactis subsp. cremoris W56 plasmid pAW601	(49,50)	Unique	Not associated with any protein coding region, mostly functional against lactococcal 936-phages probably because of repeated DNA sequences are similar to cos regions of these phage; repeated DNA sequences may titer factors necessary for phage development
AbiT	<i>L. lactis</i> W51 plasmid pED1	(51)	Patchy distribution in bacteria	AbiTi and AbiTii are fused in many cases; hydrophobic region in AbiTi protein is important for antiphage defense; interferes with phage DNA replication; AbiTii domain could fused to HEPN domain and DNA-binding HHH domain
AbiU1/ AbiU2 RloA	L.lactis subsp. lactis UK21371 Plasmid pND001	(52)	Abundant in bacteria (AbiU1); patchy distribution in bacteria (AbiU2)	AbiU1/AIPR N-terminal domain PD-(D/E)xK- family nuclease; C-terminal domain, ParB-like nuclease fold (DGQHR/AIPR domain); AbiU2: HEPN domain (2)
AbiV	L.lactis subsp. cremoris MG136	(53,54)	Patchy distribution in	AbiV belongs to the HEPN superfamily (2); Sav is a phage gene, that is affected by AbiV mechanism

	chromosomally- encoded		bacteria	
AbiZ	<i>L.lactis</i> DPC3147 plasmid pTR2030	(55)	Lactococcus and Enterococcus only	Small, mostly helical protein. AbiZ possibly interacts with holin to cause premature cell lysis
RexA/ RexB	bacteriophage lambda	(56)	RexA shows a patchy distribution in bacteria; only a few homologs of RexB identified	RexA senses infection and activates RexB, a membrane protein that reduces membrane potential and causes cell death; RIIA and RIIB proteins of phage T4 abrogate this effect
PrrC/ RloC	Escherichia coli K- 12	(57,58)	Patchy distribution in bacteria	ATP-dependent anticodon tRNase associated with type Ic R-M systems; N-terminal domain: AAA superfamily ATPase (COG4694); C-terminal tRNAse domain is a diverged member of the HEPN superfamily (2); PrrC is activated by Stp, the T4-encoded PrrI restriction nuclease inhibitor
Lit	Escherichia coli K- 12	(59)	Mostly in Proteobacteri a and several Bacteroidetes	Metallopeptidase U49 homologous to DUF955 associated with toxin-antitoxin systems; activated by the major head protein of T4 phage; cleaves host translation factor EF-Tu leading to cell death
PifA	<i>Escherichia coli</i> K- 12 F-plasmid	(60)	Abundant in bacteria	Membrane-associated P-loop NTPase (COG4928), involved in phage T7 exclusion through membrane damage; <i>E.coli</i> membrane protein FxsA sequesters PifA and prevents phage exclusion (61)

^aIdentification of protein domains and functional prediction for experimentally uncharacterized proteins was based on the results of protein sequence and structure database searches using the PSI-BLAST and HHPred methods (5,6).

References

- Makarova, K.S., Wolf, Y.I., Snir, S. and Koonin, E.V. (2011) Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. *J Bacteriol*, **193**, 6039-6056.
- Anantharaman, V., Makarova, K.S., Burroughs, A.M., Koonin, E.V. and Aravind, L.
 (2013) HEPN: A major nucleic-acid targeting domain involved in intra-genomic conflicts, defense, pathogenesis and RNA processing. *Biology Direct*, in press.

- Hu, W., Wang, C., Liang, J., Zhang, T., Hu, Z., Wang, Z., Lan, W., Li, F., Wu, H., Ding,
 J. *et al.* (2012) Structural insights into DndE from Escherichia coli B7A involved in DNA phosphorothioation modification. *Cell Res*, 22, 1203-1206.
- 4. Iyer, L.M., Abhiman, S. and Aravind, L. (2008) MutL homologs in restrictionmodification systems and the origin of eukaryotic MORC ATPases. *Biol Direct*, **3**, 8.
- Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res*, 25, 3389-3402.
- Soding, J., Biegert, A. and Lupas, A.N. (2005) The HHpred interactive server for protein homology detection and structure prediction. *Nucleic Acids Res*, 33, W244-248.
- Miller, W.G., Pearson, B.M., Wells, J.M., Parker, C.T., Kapitonov, V.V. and Mandrell, R.E. (2005) Diversity within the Campylobacter jejuni type I restriction-modification loci. *Microbiology*, 151, 337-351.
- 8. Makarova, K.S., Wolf, Y.I. and Koonin, E.V. (2009) Comprehensive comparativegenomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. *Biol Direct*, **4**, 19.
- 9. Pope, M.K., Green, B. and Westpheling, J. (1998) The bldB gene encodes a small protein required for morphogenesis, antibiotic production, and catabolite control in Streptomyces coelicolor. *J Bacteriol*, **180**, 1556-1562.
- Nakano, S., Erwin, K.N., Ralle, M. and Zuber, P. (2005) Redox-sensitive transcriptional control by a thiol/disulphide switch in the global regulator, Spx. *Mol Microbiol*, 55, 498-510.

- Leplae, R., Geeraerts, D., Hallez, R., Guglielmini, J., Dreze, P. and Van Melderen, L.
 (2011) Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. *Nucleic Acids Res*, **39**, 5513-5525.
- 12. Koga, M., Otsuka, Y., Lemire, S. and Yonesaki, T. (2011) Escherichia coli rnlA and rnlB compose a novel toxin-antitoxin system. *Genetics*, **187**, 123-130.
- Otsuka, Y. and Yonesaki, T. (2005) A novel endoribonuclease, RNase LS, in Escherichia coli. *Genetics*, 169, 13-20.
- Jorgensen, M.G., Pandey, D.P., Jaskolska, M. and Gerdes, K. (2009) HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea. *J Bacteriol*, **191**, 1191-1199.
- Zhang, Y., Yamaguchi, Y. and Inouye, M. (2009) Characterization of YafO, an Escherichia coli toxin. *J Biol Chem*, 284, 25522-25531.
- Zhang, F., Xing, L., Teng, M. and Li, X. (2012) Crystallization and preliminary crystallographic studies of the YafN-YafO complex from Escherichia coli. *Acta Crystallogr Sect F Struct Biol Cryst Commun*, 68, 894-897.
- Tan, Q., Awano, N. and Inouye, M. (2011) YeeV is an Escherichia coli toxin that inhibits cell division by targeting the cytoskeleton proteins, FtsZ and MreB. *Mol Microbiol*, **79**, 109-118.
- Arbing, M.A., Handelman, S.K., Kuzin, A.P., Verdon, G., Wang, C., Su, M., Rothenbacher, F.P., Abashidze, M., Liu, M., Hurley, J.M. *et al.* (2010) Crystal structures of Phd-Doc, HigA, and YeeU establish multiple evolutionary links between microbial growth-regulating toxin-antitoxin systems. *Structure*, **18**, 996-1010.

- Masuda, H., Tan, Q., Awano, N., Wu, K.P. and Inouye, M. (2012) YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli. *Mol Microbiol*, 84, 979-989.
- Murphy, K.C. (2007) The lambda Gam protein inhibits RecBCD binding to dsDNA ends.
 J Mol Biol, **371**, 19-24.
- Scaltriti, E., Moineau, S., Launay, H., Masson, J.Y., Rivetti, C., Ramoni, R., Campanacci,
 V., Tegoni, M. and Cambillau, C. (2010) Deciphering the function of lactococcal phage
 ul36 Sak domains. *J Struct Biol*, **170**, 462-469.
- Kinch, L.N., Ginalski, K. and Grishin, N.V. (2006) Site-2 protease regulated intramembrane proteolysis: sequence homologs suggest an ancient signaling cascade. *Protein Sci*, 15, 84-93.
- Wang, X., Lord, D.M., Cheng, H.Y., Osbourne, D.O., Hong, S.H., Sanchez-Torres, V.,
 Quiroga, C., Zheng, K., Herrmann, T., Peti, W. *et al.* (2012) A new type V toxinantitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. *Nat Chem Biol.*
- Coffey, A.G., Fitzgerald, G.F. and Daly, C. (1991) Cloning and characterization of the determinant for abortive infection of bacteriophage from lactococcal plasmid pCI829. J *Gen Microbiol*, 137, 1355-1362.
- Tangney, M. and Fitzgerald, G.F. (2002) Effectiveness of the lactococcal abortive infection systems AbiA, AbiE, AbiF and AbiG against P335 type phages. *FEMS Microbiol Lett*, **210**, 67-72.
- O'Sullivan, D.J. and Klaenhammer, T.R. (1998) Control of expression of LlaI restriction in Lactococcus lactis. *Mol Microbiol*, 27, 1009-1020.

10

- Cluzel, P.J., Chopin, A., Ehrlich, S.D. and Chopin, M.C. (1991) Phage abortive infection mechanism from Lactococcus lactis subsp. lactis, expression of which is mediated by an Iso-ISS1 element. *Appl Environ Microbiol*, 57, 3547-3551.
- Parreira, R., Ehrlich, S.D. and Chopin, M.C. (1996) Dramatic decay of phage transcripts in lactococcal cells carrying the abortive infection determinant AbiB. *Mol Microbiol*, **19**, 221-230.
- Durmaz, E., Higgins, D.L. and Klaenhammer, T.R. (1992) Molecular characterization of a second abortive phage resistance gene present in Lactococcus lactis subsp. lactis ME2. *J Bacteriol*, **174**, 7463-7469.
- Bidnenko, E., Ehrlich, D. and Chopin, M.C. (1995) Phage operon involved in sensitivity to the Lactococcus lactis abortive infection mechanism AbiD1. *J Bacteriol*, **177**, 3824-3829.
- Anba, J., Bidnenko, E., Hillier, A., Ehrlich, D. and Chopin, M.C. (1995) Characterization of the lactococcal abiD1 gene coding for phage abortive infection. *J Bacteriol*, **177**, 3818-3823.
- 32. Bidnenko, E., Chopin, A., Ehrlich, S.D. and Chopin, M.C. (2009) Activation of mRNA translation by phage protein and low temperature: the case of Lactococcus lactis abortive infection system AbiD1. *BMC Mol Biol*, **10**, 4.
- 33. Bidnenko, E., Ehrlich, S.D. and Chopin, M.C. (1998) Lactococcus lactis phage operon coding for an endonuclease homologous to RuvC. *Mol Microbiol*, **28**, 823-834.
- Garvey, P., Fitzgerald, G.F. and Hill, C. (1995) Cloning and DNA sequence analysis of two abortive infection phage resistance determinants from the lactococcal plasmid pNP40. *Appl Environ Microbiol*, 61, 4321-4328.

- O'Connor, L., Tangney, M. and Fitzgerald, G.F. (1999) Expression, regulation, and mode of action of the AbiG abortive infection system of lactococcus lactis subsp. cremoris UC653. *Appl Environ Microbiol*, 65, 330-335.
- Prevots, F., Daloyau, M., Bonin, O., Dumont, X. and Tolou, S. (1996) Cloning and sequencing of the novel abortive infection gene abiH of Lactococcus lactis ssp. lactis biovar. diacetylactis S94. *FEMS Microbiol Lett*, **142**, 295-299.
- Su, P., Harvey, M., Im, H.J. and Dunn, N.W. (1997) Isolation, cloning and characterisation of the abiI gene from Lactococcus lactis subsp. lactis M138 encoding abortive phage infection. *J Biotechnol*, 54, 95-104.
- Deng, Y.M., Harvey, M.L., Liu, C.Q. and Dunn, N.W. (1997) A novel plasmid-encoded phage abortive infection system from Lactococcus lactis biovar. diacetylactis. *FEMS Microbiol Lett*, 146, 149-154.
- 39. Boucher, I., Emond, E., Dion, E., Montpetit, D. and Moineau, S. (2000) Microbiological and molecular impacts of AbiK on the lytic cycle of Lactococcus lactis phages of the 936 and P335 species. *Microbiology*, **146** (Pt 2), 445-453.
- 40. Deng, Y.M., Liu, C.Q. and Dunn, N.W. (1999) Genetic organization and functional analysis of a novel phage abortive infection system, AbiL, from Lactococcus lactis. *J Biotechnol*, **67**, 135-149.
- Prevots, F., Tolou, S., Delpech, B., Kaghad, M. and Daloyau, M. (1998) Nucleotide sequence and analysis of the new chromosomal abortive infection gene abiN of Lactococcus lactis subsp. cremoris S114. *FEMS Microbiol Lett*, **159**, 331-336.
- 42. Lehnik-Habrink, M., Newman, J., Rothe, F.M., Solovyova, A.S., Rodrigues, C.,
 Herzberg, C., Commichau, F.M., Lewis, R.J. and Stulke, J. (2011) RNase Y in Bacillus

subtilis: a Natively disordered protein that is the functional equivalent of RNase E from Escherichia coli. *J Bacteriol*, **193**, 5431-5441.

- Prevots, F. and Ritzenthaler, P. (1998) Complete sequence of the new lactococcal abortive phage resistance gene abiO. *J Dairy Sci*, **81**, 1483-1485.
- 44. Domingues, S., McGovern, S., Plochocka, D., Santos, M.A., Ehrlich, S.D., Polard, P. and Chopin, M.C. (2008) The lactococcal abortive infection protein AbiP is membraneanchored and binds nucleic acids. *Virology*, **373**, 14-24.
- 45. Emond, E., Dion, E., Walker, S.A., Vedamuthu, E.R., Kondo, J.K. and Moineau, S.
 (1998) AbiQ, an abortive infection mechanism from Lactococcus lactis. *Appl Environ Microbiol*, 64, 4748-4756.
- 46. Fineran, P.C., Blower, T.R., Foulds, I.J., Humphreys, D.P., Lilley, K.S. and Salmond,
 G.P. (2009) The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. *Proc Natl Acad Sci U S A*, **106**, 894-899.
- 47. Blower, T.R., Pei, X.Y., Short, F.L., Fineran, P.C., Humphreys, D.P., Luisi, B.F. and Salmond, G.P. (2011) A processed noncoding RNA regulates an altruistic bacterial antiviral system. *Nat Struct Mol Biol*, **18**, 185-190.
- 48. Twomey, D.P., De Urraza, P.J., McKay, L.L. and O'Sullivan, D.J. (2000)
 Characterization of AbiR, a novel multicomponent abortive infection mechanism encoded by plasmid pKR223 of Lactococcus lactis subsp. lactis KR2. *Appl Environ Microbiol*, 66, 2647-2651.
- Kong, J., Josephsen, J. and Ma, G.R. (2002) [The resistance conferred by the R/M system LlaBIII against bacteriophages]. *Wei Sheng Wu Xue Bao*, 42, 246-250.

- 50. Holubova, J. and Josephsen, J. (2007) Potential of AbiS as defence mechanism determined by conductivity measurement. *J Appl Microbiol*, **103**, 2382-2391.
- Bouchard, J.D., Dion, E., Bissonnette, F. and Moineau, S. (2002) Characterization of the two-component abortive phage infection mechanism AbiT from Lactococcus lactis. J *Bacteriol*, 184, 6325-6332.
- Dai, G., Su, P., Allison, G.E., Geller, B.L., Zhu, P., Kim, W.S. and Dunn, N.W. (2001) Molecular characterization of a new abortive infection system (AbiU) from Lactococcus lactis LL51-1. *Appl Environ Microbiol*, 67, 5225-5232.
- Haaber, J., Moineau, S., Fortier, L.C. and Hammer, K. (2008) AbiV, a novel antiphage abortive infection mechanism on the chromosome of Lactococcus lactis subsp. cremoris MG1363. *Appl Environ Microbiol*, 74, 6528-6537.
- 54. Haaber, J., Rousseau, G.M., Hammer, K. and Moineau, S. (2009) Identification and characterization of the phage gene sav, involved in sensitivity to the lactococcal abortive infection mechanism AbiV. *Appl Environ Microbiol*, **75**, 2484-2494.
- 55. Durmaz, E. and Klaenhammer, T.R. (2007) Abortive phage resistance mechanism AbiZ speeds the lysis clock to cause premature lysis of phage-infected Lactococcus lactis. J Bacteriol, 189, 1417-1425.
- Parma, D.H., Snyder, M., Sobolevski, S., Nawroz, M., Brody, E. and Gold, L. (1992) The Rex system of bacteriophage lambda: tolerance and altruistic cell death. *Genes Dev*, 6, 497-510.
- Blanga-Kanfi, S., Amitsur, M., Azem, A. and Kaufmann, G. (2006) PrrC-anticodon nuclease: functional organization of a prototypical bacterial restriction RNase. *Nucleic Acids Res*, 34, 3209-3219.

- 58. Davidov, E. and Kaufmann, G. (2008) RloC: a wobble nucleotide-excising and zincresponsive bacterial tRNase. *Mol Microbiol*, **69**, 1560-1574.
- 59. Copeland, N.A., Bingham, R., Georgiou, T., Cooper, P. and Kleanthous, C. (2004)
 Identification of essential residues within Lit, a cell death peptidase of Escherichia coli
 K-12. *Biochemistry*, 43, 7948-7953.
- Schmitt, C.K., Kemp, P. and Molineux, I.J. (1991) Genes 1.2 and 10 of bacteriophages
 T3 and T7 determine the permeability lesions observed in infected cells of Escherichia
 coli expressing the F plasmid gene pifA. *J Bacteriol*, **173**, 6507-6514.
- 61. Cheng, X., Wang, W. and Molineux, I.J. (2004) F exclusion of bacteriophage T7 occurs at the cell membrane. *Virology*, **326**, 340-352.