Supplementary Information for

Mutations in *EDM2* selectively affect silencing states of transposons and induce plant developmental plasticity

Tokuji Tsuchiya and Thomas Eulgem*

Institute for Integrative Genome Biology, Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California at Riverside, Riverside, CA 92521, USA

* To whom correspondence should be addressed: Thomas Eulgem Tel: +1 951 827 7740; Fax: +1 951 827 5155; E-mail: thomas.eulgem@ucr.edu

Supplementary Figure S1. Transcript levels of *EDM2* in *EDM2*_{pro}:*HA-EDM2*.

Supplementary Figure S2. Effects of *EDM2* on transcriptional silencing in *soloLTR* and *ING5* loci.

Supplementary Figure S3. Melting curves for *Mu1*, *COPIA4* and *Actin8* in qRT-PCRs.

Supplementary Figure S4. H3K4me3 levels at *Mu1* and *COPIA4* determined by ChIP.

Supplementary Figure S5. H3K27me3 levels at *Mu1* and *COPIA4* determined by ChIP.

Supplementary Figure S6. Reduced fertility of *edm2* mutant plants documented by reduced quantity of seeds.

Supplementary Figure S7. Variation in the timing of floral transition of *edm2* mutant plants.

Supplementary Figure S8. Transcript levels of SUVR4 and DML3 in edm2-2.

Supplementary Table S1. No significant transcript level changes of histone H3K9, H3K27 or DNA (de-)methyltransferase genes in *edm2-2*.

Supplementary Table S2. Oligonucleotides used in this study.

Supplementary Figure S1. Transcript levels of EDM2 in EDM2_{pro}:HA-EDM2. Transcript levels of EDM2 were determined by qRT-PCR.

Supplementary Figure S2. Effects of *EDM2* on transcriptional silencing in soloLTR and ING5 loci. Transcript levels of the respective loci were determined by RT-PCR. ACTIN 8 (ACT8) served as an internal control. Transcriptional repression of soloLTR A (framed by grey line) are clearly affected by EDM2. E2pro:HA-E2: EDM2 complementation lines expressing in the edm2-2 background HA-tagged EDM2 driven by the native EDM2 promoter (E2pro). soloLTR, intergenic transcript initiated from a flanking retroposon long terminal repeat¹. solo IGN5, INTERGENIC REGION 5¹.

Supplementary Figure S3. Melting curves for *Mu1*, *COPIA4* and *Actin8* in qRT-PCRs. Melting curves were generated with PCR amplicons incorporating SYBR green dye at the end of the real-time PCR measurements shown in Figure 2a and d.

Supplementary Figure S4. H3K4me3 levels at *Mu1* and *COPIA4* determined by ChIP. ChIP combined with qPCR to measure H3K4me3 levels at *Mu1* (a) and *COPIA4* (b). In *Mu1* four and in *COPIA4* three different regions marked by roman numbers were tested. TIR: terminal inverted repeat, LTR: Long Terminal Repeat. Y axes in (a) and (b) represent "% input". Two biological replicates gave similar results.

Supplementary Figure S5. H3K27me3 levels at *Mu1* and *COPIA4* determined by ChIP. ChIP combined with qPCR to measure H3K27me3 levels at *Mu1* (a) and *COPIA4* (b). In *Mu1* four and in *COPIA4* three different regions marked by roman numbers were tested. TIR: terminal inverted repeat, LTR: Long Terminal Repeat. Y axes in (a) and (b) represent "% input". Two biological replicates gave similar results.

Supplementary Figure S6. Reduced fertility of *edm2* mutant plants documented by reduced quantity of seeds. Seeds were harvested from a bulk of 3 plants per replicate. Total of 6 replicates was taken and average weight is shown. Error bars represent standard deviations.

Supplementary Figure S7. Variation in the timing of floral transition of *edm2* mutant plants. The number of rosette leaves formed until bolting is used as a proxy for the transition from vegetative to reproductive growth. The shown data are from experiments described previously², where they were, however, displayed as averages with Standard errors of the mean.

Supplementary Figure S8. Transcript levels of SUVR4 and DML3 in edm2-2. Transcript levels of SUVR4 (a) and DML3 (b) were determined by qRT-PCR.

References for supplementary figures

 Wierzbicki, A.T., Haag, J.R. & Pikaard, C.S. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. *Cell* 135, 635-48 (2008).
Tsuchiya, T. & Eulgem, T. The Arabidopsis defense component EDM2 affects the floral transition in an FLC-dependent manner. *Plant J* 62, 518-28 (2010).

Supplementary Table S1

Gene	AGI number	ATH1 probe	Fold change	P-value (FDR)			
H3K9 methyltransferases and demethylase							
KYP/SUVH4	AT5G13960	250212_at	1.1278	0.5288			
SUVH5	AT2G35160	266539_at	0.9238	0.8010			
SUVH6	AT2G22740	265347_at	1.0910	0.8801			
SUVR4	AT3G04380	no probes on	ATH1				
SUVR5	AT2G23740	267290_at	1.1398	0.7869			
		267291_at	1.0573	0.9144			
		267292_at	0.9851	0.9709			
SUVH2	AT2G33290	255796_at	1.0787	0.8270			
IBM1	AT3G07610	259252_at	1.0261	0.9487			
H3K27me1 methyltransferases							
ATXR5	AT5G09790	250492_at	1.0654	0.7945			
ATXR6	AT5G24330	249788_at	1.1307	0.4572			
DNA methylt	ransferases, (demethylases	and related				
MET1	AT5G49160	248597_at	0.9717	0.9471			
CMT3	AT1G69770	260417_at	1.2581	0.2309			
DRM2	AT5G14620	250139_at	0.9797	0.9694			
		250140_at	0.8686	0.6982			
DRM3	AT3G17310	258416_at	1.2473	0.5781			
DME	AT5G04560	250834_at	1.0289	0.9130			
		250835_at	1.1950	0.5535			
		250836_at	1.0771	0.9418			
ROS1	AT2G36490	263909_at	1.1341	0.7536			
DML2	AT3G10010	258931_at	0.9673	0.9189			
DML3	AT4G34060	no probes on	ATH1				
ROS3	AT5G58130	247849_at	1.1278	0.6582			

P-value (FDR): False Discovery Rate adjasted P-value.

No significant changes of transcript levels in edm^2-2 are represented by P-values > 0.05).

Supplementary Table S2. Oligonucleotides used in this study.

Primer name	Sequences (5'->3')	Comments
	Primers for genotyping of T-DNA mutants	
SALK_0145 20 LP	TAGCCGTCTTGTGACACAGTG	edm2-2 genotyping
SALK_0145 20 RP	CCGATGAAGATGAATTGGATG	edm2-2 genotyping
SALK_1459 92 LP	ATCGCCATTGTAGGTGAAGTG	elp1-1 genotyping
SALK_1459 92 RP	TCTTCTTTACCTTGATCCATCG	elp1-1 genotyping
SALK_0414 74 LP	ACTGGTGAACCAGCTGGTATG	kyp-6 genotyping
SALK_0414 74 RP	TGAGGGGTACCTGTTCAATTG	kyp-6 genotyping
LB salk	ACCACCATCAAACAGGATTTTC	T-DNA left border primer for SALK lines
	Primers for <i>EDM2_{pro}:HA-EDM2</i> construct	
HA:EDM2G W-F1	ATGTACCCATACGATGTTCCAGATTACGCTATGACGTTCGTT	Amplify full-length <i>EDM2</i> cDNA containing the HA- tag sequence. Used with EDM2GW-R in primary PCR
HA:EDM2G W-F2	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCACAATGTACCCATAC GATGTTCCAGA	Amplify full-length <i>EDM2</i> cDNA containing the HA- tag sequence. Used with EDM2GW-R in secondary PCR
EDM2GW-R	GGGGACCACTTTGTACAAGAAAGCTGGGTCCTAGTCATTAATCCAA CCGCC	Amplify full-length <i>EDM2</i> cDNA containing the HA-tag sequence.
NOS _{term} -F	AAA <u>ACTAGT</u> GAATTTCCCCGATCGTTCAAACAT	Amplify NOS terminator sequence. Contains <u>Spel</u> site.
NOS _{term} -R	AA <u>GAGCTC</u> AGTAACATAGATGACACCGCGC	Amplify NOS terminator sequence Contains <u>Sacl</u> site.
EDM2 _{pro} -F	AAAA <u>AAGCTT</u> GAAGCAGCTAACGAATAGAGCA	Amplify native EDM2 promoter sequence. Contains <u>Hind</u> III site.
EDM2 _{pro} -R	TT <u>GGCGCGCC</u> TCAATCCCAAAATTCCCTTAACC	Amplify native EDM2 promoter sequence. Contains <i>Asc</i> I site.
	Primers for RT-PCR	
Mu1-F	TTGAATGAGGAACCACATACTTG	RT-PCR for <i>Mu1</i> Real-time PCR
Mu1-R	GAATTAATGACTTCGCTCTTGCT	RT-PCR for <i>Mu1</i> Real-time PCR
COPIA4-F	GCAAACGCTGCATCTGAAGTT	RT-PCR for <i>COPIA4</i> Real-time PCR
COPIA4-R	TGTTGCGAACGAAATGGTAGTC	RT-PCR for COPIA4 Real-time PCR

JP1565	GATTCTTACTGTAAAGAACATGGCATTGAGAGA	RT-PCR for Ta3 ¹
JP1500	TUCAAATTTUUTGAGGTGUTTGTAAUU	RI-PCR IOI 783
0045		
5P15	AACAAAAGCATCATTCTACTTAAC	RT-PCR for CACTA1
SP40	AGGCCTACAATGGAAATGACG	RT-PCR for CACTA1
ATS15	ACCAACGTGCTGTTGGCCCAGTGGTAAATC	RT-PCR for SN1 ³
AtSN1-F4	AAAATAAGTGGTGGTTGTACAAGC	RT-PCR for SN1
LINE1-4-F	ATATIGCAGGGGAAGAAAAACCA	RT-PCR for LINE 1-4
LINE1-4-R	GACTGTGCCGTGTTGTGTGAGA	RT-PCR for LINE1-4
TSR1	CGTGAATCAAACAATGCATC	Reverse-transcription for TSI ⁴
TSP1F	GAACTCATGGATACCCTAAAATAC	RT-PCR for TSI
TSP1R	CTCTACCCTTTGCATTCATGAATC	RT-PCR for TSI
IGN5_B-F	CGCAGCGGAATTGACATCCTATC	RT-PCR for <i>IGN5</i> region B
		² . Used for reverse-
IGN5 B-R		RT-PCR for IGN5 region B
soloLTR_A	ATCAATTATTATGTCATGTTAAAACCGATTG	RT-PCR for soloLTR
A221		region A [°] . Used for
		reverse-transcription
SOIOLTR_A	IGTTCGAGTTTATCTCTCTAGTCTTCATT	RI-PCR for soloLIR
FVVA-F		WAGENINGEN
FWA-R	AGTTGAGAGTCATTCGCTGTGCT	RT-PCR for FLOWERING
		WAGENINGEN
BNS-F		RT-PCR for BONSAI
BNS-R	AGGCAAAGTGTCCCTCATCCAC	RT-PCR for BONSAI
DTDCD504		
RIPCR551	GGATGCGATCATACCAG	RT-PCR IOI 55 IDIVA
5SUNIV2	CGAAAAGGTATCACATGCC	RT-PCR for 5S rDNA.
		Used for reverse-
		transcription
106B-F	TTGATTGATAGATCCCTTCTGGA	RT-PCR for 106B repeats
106B-R	CGAGGATGGGGTAATTGAGT	RT-PCR for 106B repeats.
		Used for reverse-
		transcription
180(all)-F	ACCATCAAAGCCTTGAGAAGCA	RT-PCR for 180bp
		centromer repeat ⁶ . Used
		for reverse-transcription
180(all)-R	CCGIAIGAGICIIIGTCTTTGTATCTTCT	RI-PCR for 180bp
SUVR4-F	TATTGACCAACACGGAGTTATACGAT	RI-PCK for SUVR4
		Real-time PCR

SUVR4-R	TGTGATTGATAAACCTTGCGACA	RT-PCR for SUVR4
		Real-time PCR
DML3-F	TTTAAACTTTTAGACACAAGACGGAT	RT-PCR for DML3
DML3-R		RI-PCR for DML3
		Real-time PCR
EDM2-R	TTAAGAGATTATGTCCGCTAGGTT	RT-PCR for <i>FDM2</i>
		Real-time PCR
ACT8-F1	ATGAAGATTAAGGTCGTGGCAC	RT-PCR for ACTIN8
ACT8-R1	GTTTTTATCCGAGTTTGAAGAGGC	RT-PCR for ACTIN8
ACT8-F2	CAGIGICIGGAIIGGIGGIICIAIC	RI-PCR for ACTIN8
ACTO-RZ	ATCCCGTCATGGAAACGATGT	Real-time PCR
	Primers for chon-PCR	
Mu1 meth-	TAGGCAACTGTTTGTGGTTAAGACATC	Chop-PCR for HpyCH4IV
F1		and <i>BgI</i> II sites in <i>Mu1</i>
Mu1 meth-	GACACCATTTTCCAACGCTCT	Chop-PCR for <i>Hpy</i> CH4IV
R1		and Bg/II sites in Mu1
Mu1 meth-	IGGGTTTTGAGAATGAATTTCTTCAACAT	Chop-PCR for Af/II site in
112		F1
COPIA4	ACCACTTTCGTCTATGTACTTGTCT	Chop-PCR for <i>Hpy</i> CH4IV
meth-F1		and Bg/II sites in COPIA4
COPIA4	TTTGTTCGGGTTGCTTCTATACCAA	Chop-PCR for HpyCH4IV
meth-R1		and Bg/II sites in COPIA4
COPIA4	CICACICAAGCIICGGIICC	Chop-PCR for HaeIII site
		Chop PCP for Haplil site
meth-R2		in COPIA4
	Primers for Bisulfite sequencing	
Mu1 ConF1	TTTAGTTATGGGTTGGTAATTGTA	Bisulfite sequencing for
		Mu1 '
Mu1 ConR		Bisulfite sequencing for
COPIA4-		Bisulfite sequencing for
BS-F		COPIA4
COPIA4-	ATAACTRAACCACARATTCARACCCATTTTCATTT	Bisulfite sequencing for
BS-R		COPIA4
	Primers for ChIP	
Mu1 ChIP	CACAGGTCAAGCCCTCGATT	ChIP for Mu1 region I
L_F		
Mu1 ChIP	CAGCCCTTTTAAGATATCACTCGTTG	ChIP for Mu1 region I
I_R		
Mu1 ChIP	GATTTIGTATTAATTTATCTTGTTCGGA	ChIP for Mu1 region II
		ChIP for Mut region II
II_R		

Mu1 ChIP	ACATTAGTCTGGAAATTGGCTT	ChIP for <i>Mu1</i> region III.
III_F		Also used for Chop-PCR
Mud ChiD		ChID for Mut region III
		Chip for Mull region III.
···_ĸ		Also used for Chop-PCR
Mud OhiD		
	AATTCCCTAAAGAGAAGGTACCGAG	ChiP for Mu1 region IV
IV_F		
Mu1 ChIP	AGCCTTCTTTTCAATCTGAGTAAGCAA	ChIP for <i>Mu1</i> region IV
IV_R		
COPIA4	GCAAACAATCTTCAACATTAACACGTCT	ChIP for COPIA4 region I
ChIP I_F		
COPIA4	AGCAGGAGTCTCGATAGAACCATC	ChIP for COPIA4 region I
ChIP I_R		
COPIA4	ATGGCTCAGACCTTACACTCACA	ChIP for COPIA4 region II.
ChIP II_F		Also used for Chop-PCR
_		internal control
COPIA4	AAAGGAGGCTTCATCAAACACGAC	ChIP for COPIA4 region II.
ChIP II_R		Also used for Chop-PCR
_		internal control
COPIA4	GCAAACGCTGCATCTGAAGTT	ChIP for COPIA4 region III
ChIP III_F		
COPIA4	TGTTGCGAACGAAATGGTAGTC	ChIP for COPIA4 region III
ChIP III_R		
ACT8 ChIP	CTAAAGAGACATCGTTTCCATGACGG	ChIP for ACT8
_F		
ACT8 ChIP	TCCTTAGACATCTCTCCAAACGC	ChIP for ACT8
R		

References for supplementary tables

- Johnson, L., Cao, X. & Jacobsen, S. Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation. *Current biology : CB* 12, 1360-7 (2002).
- Kato, M., Miura, A., Bender, J., Jacobsen, S.E. & Kakutani, T. Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. *Current biology : CB* 13, 421-6 (2003).
- Herr, A.J., Jensen, M.B., Dalmay, T. & Baulcombe, D.C. RNA polymerase IV directs silencing of endogenous DNA. *Science (New York, NY)* 308, 118-20 (2005).
- Numa, H. *et al.* Transduction of RNA-directed DNA methylation signals to repressive histone marks in Arabidopsis thaliana. *EMBO J* 29, 352-62 (2010).
- Wierzbicki, A.T., Haag, J.R. & Pikaard, C.S. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. *Cell* **135**, 635-48 (2008).

- Vaillant, I., Schubert, I., Tourmente, S. & Mathieu, O. MOM1 mediates DNA-methylation-independent silencing of repetitive sequences in Arabidopsis. *EMBO Rep* 7, 1273-8 (2006).
- Zhu, J., Kapoor, A., Sridhar, V.V., Agius, F. & Zhu, J.K. The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. *Curr Biol* 17, 54-9 (2007).