SUPPORTING INFORMATION

Structural Analysis of Aliphatic vs. Aromatic Substrate Specificity in a Copper Amine Oxidase from *Hansenula polymorpha*

Valerie J. Klema, Corinne J. Solheid, Judith P. Klinman, and Carrie M. Wilmot

structure	space group	unit cell lengths (Å)	β angle (°)
native HPAO-1	$P2_1$	a = 104.15, b = 223.08, c = 104.25	95.77
ethylamine-HPAO-1	$P2_1$	a = 104.41, b = 232.83, c = 105.12	96.66
benzylamine-HPAO-1	$P2_1$	<i>a</i> = 104.24, <i>b</i> = 233.71, <i>c</i> = 105.05	96.57

Table S1: Unit cell parameters for native-HPAO-1 and substrate-HPAO-1 complexes.

Table S2: Species in the substrate-HPAO-1 active sites. A = axial copper ligand, E = equatorial copper ligand, * = evidence of second overlapping binding site. Occupancies are listed in parentheses.

Substrate	Chain	Electronic form of cofactor	Chain	Copper ligands	Chain	Species bound in active site
ethylamine	all	aminoquinol (1)	А	$A = H_2O_2$	А	ethylamine (1)*
		• • • •	В	$A = H_2O_2$	В	ethylamine (1)
			С	$A = H_2O$	С	ethylamine (1)*
				$E = H_2O$		
			D	$A = H_2O$	D	ethylamine (1)*
			Е	$A = H_2O_2$	Е	ethylamine (1)
				$E = H_2O$		
			F	$A = H_2O_2$	F	ethylamine (1)*
benzylamine	all	aminoquinol (1)	А	$A = H_2O_2$	all	benzylamine (1)
			В	$A = H_2O_2$		
			С	$A = H_2O$		
				$E = H_2O$		
			D	$A = H_2O$		
			Е	$A = H_2O_2$		
			F	$A = H_2O_2$		

Active site constituent	Average B-value ($Å^2$)			
	ethylamine complex	benzylamine complex		
Copper ions	23.3	30.8		
H ₂ O copper ligands	41.3	29.4		
H ₂ O ₂ copper ligands	22.0	30.2		
ethylamine	35.2			
benzylamine		38.0		

Table S3: Average B-values for active site constituents.

Figure S1: Domain organization in HPAO-1. One monomer is drawn in cartoon and colored by domain (D2, purple; D3, green; D4, blue; connecting loops, yellow; β -hairpin arms, red). The second monomer is drawn as a semi-transparent surface rendering. TPQ atoms are drawn as space-filling spheres and colored by atom type (carbon, white), and copper ions are drawn as gold spheres.

Figure S2: Electron density suggesting an alternate ethylamine conformer. Peaks in the F_o - F_c map near the site of ethylamine binding in all polypeptide chains in the EtAm-HPAO-1 structure are superimposed onto one active site and shown as green mesh contoured to 3.5 σ .

