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Supplemental Experimental Procedures 

Assessing the Quality of the Genetic Interaction Data 
To ensure a high-quality dataset we examined several different quality control metrics: 

(i) Correlation of replicate colony size measurements:  Each query mutant in this screen was 
crossed against all array mutants six different times for each condition (Untreated, MMS, 
ZEO, and CPT). Figure S1A displays the histogram of the average correlation seen 
amongst the colony size measurements made across the six replicates for each query in 
each condition. The average Pearson’s correlation seen amongst replicates was 0.78. 

(ii) Correlation of NAT x KAN swaps: A subset of interactions in this dataset were screened 
twice with the only difference being the orientation of the drug resistance markers, i.e., 
xxx∆::KAN yyy∆::NAT versus xxx∆::NAT yyy∆::KAN. Each of these ‘swaps’ were 
scored independently. Across all four conditions, we observed a high correlation between 
the genetic interactions scores (S score) for these ‘swap’ replicates (Figures S1B-E). 
These correlation values are in line with previously published datasets (Collins et al., 
2006; Roguev et al., 2008).  

(iii) Examination of linkage plots: Although each query mutant was checked via colony PCR 
for insertion of the drug resistance marker at the proper genomic location, it is not 
uncommon for ~10-15% of strains screened to be incorrect (Collins et al., 2010; Collins 
et al., 2006). One useful tool for identifying these incorrect strains is to examine the 
interaction scores for pairs of genes that are located relatively close to one another in the 
genome. Due to linkage, such strains will fail to inherit both drug resistance markers 
following sporulation and as a result will appear as a negative interaction when plated on 
double selection media. As Figure S1F shows gene-pairs located within 100 kbp of each 
other tended to exhibit a much more negative S score, indicating that the majority of 
strains are indeed correct. Individual strains which deviated from this trend were 
identified and removed from the final dataset. 

(iv) Agreement with previously published low-throughput genetic interaction data: We 
downloaded all reported low-throughput genetic interactions from the BioGRID database 
(Stark et al., 2006) on May 7th, 2012 and examined how well our untreated static network 
could recover these interactions. As shown in Figure S1G, we see a high enrichment (> 5 
fold) for these ‘gold-standard’ interactions amongst the top 5% of our interactions, 
indicating good agreement. 

(v) Agreement with previously published high-throughput genetic interaction data: We 
examined how well the genetic interaction scores in our untreated network aligned with 
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genetic interaction data generated in five previously published E-MAP screens (Collins et 
al., 2007b; Fiedler et al., 2009; Hoppins et al., 2011; Wilmes et al., 2008; Zheng et al., 
2010). Our scores were highly correlated with this previously published data (r ≥ 0.5) and 
performed as well as the untreated network from our previously published dE-MAP 
(Bandyopadhyay et al., 2010) (Figure S1H). 

Next, we considered the possibility that our particular experimental design (i.e., a relatively 
small number of functionally related queries) may affect the quality of either the static or 
differential genetic interaction scores. However, we feel that this is unlikely to be a large issue 
for several reasons. First, a recent review paper analyzed what effect the number of query genes 
in a screen had on the quality of the data (Collins et al., 2010). The authors concluded that 
screens with <20 query genes may have substantial error, while each additional query beyond 40 
query genes provides only marginal improvement. With these considerations in mind we 
designed a screen involving 55 query genes, ensuring that our dataset would not be subject to 
this particular source of error. 
 Another potential issue is since our set of queries are somewhat functionally related, the 
situation may arise in which a given array gene would interact with a high percentage of all 
query genes. Since the E-MAP scoring methodology estimates the expected double mutant 
colony size for each array gene separately by using the peak of the distribution of all double 
mutant (containing the array gene in question) colony sizes, an array gene which interacts 
strongly with many queries would skew this distribution and hence the estimate of the expected 
double mutant colony size (Collins et al., 2006). However, the E-MAP scoring procedure 
features a number of computational procedures designed to explicitly account for this situation 
(Collins et al., 2006). Rather than use either the mean or median of the distribution double 
mutant colony sizes as the expected double mutant colony size, a kernel density estimation 
(Duda and Hart, 1973) is fit to the distribution and the peak value of this fitted distribution is 
subsequently used. In this way the estimate of the expected double mutant colony size is less 
sensitive to outliers (Collins et al., 2010; Collins et al., 2006). In addition, rather than using the 
actual variance of this distribution for each individual array gene in computing the S score, a 
pooled variance measure is used instead, which leverages information across all of the array 
genes in the screen. Again, this procedure helps to negate the effect of outliers in estimating the 
expected double mutant colony size and has been shown to significantly improve the 
reproducibility of genetic interactions (Baryshnikova et al., 2010; Collins et al., 2006).  
 Finally, the methodology we use to identify significant differential genetic interactions 
does not incorporate, either explicitly or implicitly, the dimensions or functional representation 
of the interaction screen. In brief, for each gene pair we compute the difference in S scores 
between treated and untreated conditions and assess the significance of this difference in 
reference to a null distribution of differences derived from replicate genetic interaction screens 
from the same condition (Bandyopadhyay et al., 2010). Moreover, as the various quality control 
metrics we have examined attest to the high quality and reproducibility of the static S scores 
(Figure S1), we do not feel that the experimental design affects the differential p-values 
calculated here.  
 
Assessing the False Discovery Rate (FDR) of Differential Genetic Interactions 
To assess the false discovery rate (FDR) of the differential genetic interactions, we corrected the 
differential p-value assigned to each gene-pair across all three conditions using the Benjamini-
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Hochberg procedure. At P≤0.002, the threshold used in this study, we observed an FDR of 6.2%, 
17.4%, and 13.2% respectively for the MMS, CPT, and ZEO differential networks (Figure S1I). 

Functional enrichment analysis 
Both static and differential genetic networks were examined for enrichment of interactions with 
various sets of functionally related genes (Table S3). Significance was assessed using the 
hypergeometric distribution where the four parameters were defined as follows: 

k. Total number of significant interactions containing a gene involved in a function of 
interest (e.g. DNA repair). 
m. Total number of tested interactions containing a gene involved in a function of 
interest. 
n. Total number of significant genetic interactions. 
N. Total number of tested genetic interactions. 

A significant differential genetic interaction was defined as having a differential p-value below 
0.002. A significant static genetic interaction was defined as S≥2.0 or S≤-2.5. The total number 
of tested interactions was the same across both static and differential networks (97,578). The 
enrichment results presented in Figure 2A were robust to the choice of significance threshold 
(Figures S2A–B) as well as alternate definitions of DNA repair genes or chromatin organization 
genes (Figure S2C).  

Clustering Analysis of Static and Differential Genetic Interactions 
To generate Supplemental Figures S2B–C, we hierarchically clustered the 220 (55 query genes x 
4 conditions) by 2022 (# of array genes) matrix containing static interaction scores as well as the 
165 (55 query genes x 3 pair-wise comparisons) by 2022 matrix containing differential 
interaction scores. Here, the differential interaction score is defined as:  
Differential Score = sign(Streated-Suntreated) x -log10(pdiff) 
where, 

Streated = S score (static interaction score) in a treated condition 
Suntreated = S score in untreated condition 
Pdiff = the differential p-value assigned to each interaction, which represents both the 
magnitude and confidence in the change in genetic interaction between treated and 
untreated conditions. 

The matrices were clustered using the hclust function in R (version 2.14.0) with default 
parameters (Euclidean distance, complete linkage), after which the leaves were re-ordered using 
the order.optimal function in the R package cba (Bar-Joseph et al., 2001). The resulting 
dendrogram was visualized using the ColorDendrogram function in the R package sparcl 
(version 1.0.2) (Witten and Tibshirani, 2010).  

Description of Single Mutant and Gene Expression Datasets Used In This Study 
We obtained single mutant data from a previously published chemogenetic screen which had 
examined the fitness of 4,722 homozygous diploid mutants in response to hundreds of different 
compounds (Hillenmeyer et al., 2008). To ensure the closest comparison with the perturbations 
in this study, we used fitness data generated under the following concentrations:  MMS (0.002%) 
and CPT (30 µg/mL). For ZEO, we used the fitness data generated under bleomycin (1.7 
µg/mL), a chemical compound which induces similar effects to zeocin. Differential gene 
expression data for MMS (0.12%) and ZEO (again using data generated under bleoymycin [0.15 
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U/ml]) were obtained from Caba and colleagues (Caba et al., 2005). Expression data for CPT 
were obtained from Travesa and colleagues (Travesa et al., 2012). 
 
Testing for Association Between Agent and DNA Repair Pathway 
For each experimental technology, we generated a 3x6 contingency table (C), where each cell 
(Ci,j) was defined as follows: 

Differential networks: Ci,j is the number of significant differential interactions observed 
in condition i containing a gene in pathway j. 

Single mutant data: Ci,j is the number of genes displaying a significant sensitivity in 
condition i which also fall in pathway j. 

Gene expression data: Ci,j is the number of differentially expressed genes observed in 
condition i which are also in pathway j where i ∈ {MMS, CPT, ZEO} and j  ∈ {Double-
strand break repair, DNA damage checkpoint, nucleotide excision repair, mismatch 
repair, post-replication repair, base excision repair}. All pathway definitions have been 
provided in Table S3. 

A standard chi-square statistic (Χ2) was then computed on this contingency table. To assess 
significance, the chi-square statistic was re-calculated over 1000 permutations in which the set of 
sensitive genes or differentially expressed genes were randomly re-assigned to a different 
compound, while ensuring (i) the total number sensitive/differentially expressed genes seen in 
the actual data was maintained in each permutation and, (ii) any dependencies seen amongst 
compounds was maintained in the permutation, i.e., if there were 40 differentially expressed 
genes seen in both MMS and CPT, the same number was maintained in each permutation. For 
the differential networks, we generated 1000 randomized networks by scrambling the node 
labels, after which the chi-square statistic was re-computed. This null distribution of chi-square 
statistics was subsequently used to assign each experimental technology a p-value for the 
association between agent and pathway. 
 
Constructing a map of DNA Damage Response Processes 
A list of biological processes was downloaded from the Gene Ontology (GO) database 
(Ashburner et al., 2000) on July 5th, 2012. This list was filtered to include only those terms which 
were below the ninth level of the GO hierarchy, contained at least two query or array genes, and 
had less than 100 genes annotated to it. The final list contained 632 biological processes (Table 
S6). Each process and pair of processes was then examined for an enrichment of differential 
genetic interactions as previously described (Hannum et al., 2009).  

We found that differential interactions were far more likely to span pairs of processes 
rather than enrich within individual processes. In total, we identified 687 pairs of functional 
processes spanned by a significant number of differential interactions (P′ < 0.05; P′ is a 
Bonferroni-corrected p-value) indicating extensive differential genetic crosstalk. On the other 
hand, our analysis found only 10 functional processes that were enriched for differential 
interactions (P′ < 0.05); in contrast, 49 distinct processes were enriched for static interactions. 
These results suggest that the crosstalk between discrete functional processes, rather than within 
these processes, is re-wired in response to these DNA damaging agents. This finding mirrors 
what we and others (Bandyopadhyay et al., 2010) have observed at the level of protein 
complexes. This map of functional processes has been provided as a Cytoscape session file 
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(Supplementary Data Set S1; available on our Supplementary Website – 
http://chianti.ucsd.edu/~rsrivas/guenole_2012/index.html) and can be viewed/searched using 
Cytoscape (version 2.8.2 or above), which is available as a free download from 
http://cytoscape.org/.  
 
Integrative analysis of differential genetic interactions and protein interactions  
Protein interactions were obtained from a previous integration of several primary protein 
interaction screens (Collins et al., 2007a), from which we selected interactions with PE >= 2.0. 
Each static network was analyzed using a previously published workflow to identify multi-genic 
modules, i.e. sets of genes spanned by many physical and genetic interactions (Srivas et al., 
2011), using the following parameters: module size reward = -1.6, network filter degree = 2, 
edge reporting = 0.1. This list was further augmented with a set of literature-curated protein 
complexes (Pu et al., 2009), resulting in a final set of 332 modules after removing overlapping 
modules (Table S4). To identify functional relationships between modules, we searched for 
enrichment of significant differential genetic interactions (both positive and negative) between 
each module pair. Significance was assessed using the hypergeometric distribution as previously 
described (Hannum et al., 2009). We then applied a threshold of P ≤ 0.05 to arrive at a final 
network consisting of 179 modules (color coded green in Table S4) and 452 inter-module links 
(Table S5).  
 To place our differential genetic interaction data within the context of the existing 
untreated static genetic interaction data available in S. cerevisiae, we obtained a nearly genome-
wide genetic interaction dataset from a recent publication (Ryan et al., 2012), which had 
integrated genetic interaction data from over nine different screens (Aguilar et al., 2010; 
Bandyopadhyay et al., 2010; Collins et al., 2007b; Costanzo et al., 2010; Fiedler et al., 2009; 
Hoppins et al., 2011; Schuldiner et al., 2005; Wilmes et al., 2008; Zheng et al., 2010). This 
merged dataset comprised over 4.7 million genetic interactions amongst 4,438 genes (~89% of 
all verified yeast genes). We analyzed this network as described above (using identical 
parameters) to identify multi-genic modules. This list of modules were subsequently merged 
with our previous set of modules (Table S4), after which we assessed each module pair for an 
enrichment of differential genetic interactions (in each of three conditions), as well as static 
genetic interactions. This resulted in a module map of 277 modules and 1895 inter-module links 
(again using a threshold of P ≤ 0.05). To enable readers to easily search and visualize the map, 
we have packaged it as a Cytoscape session file (Supplementary Data Set S2; available on our 
Supplementary Website – http://chianti.ucsd.edu/~rsrivas/guenole_2012/index.html). Unlike our 
previous module map (Figure 5A), this map contains inter-module links comprised of both 
untreated static genetic interactions (black edges) and differential genetic interactions (red 
edges). The inter-module links identified by the static and differential genetic networks were 
largely separate with only 33 common interactions (green edges), demonstrating the 
complementary nature of the two networks. 
 To further enhance the utility of this expanded module map, we integrated it with data 
obtained from a number of high-throughput screens including: (i) assignment of 799 genes to 
phases of the cell cycle (G1, G2, G2/M, S) based on their peak phase of expression (Spellman et 
al., 1998), (ii) single mutant sensitivity measurements for 4,722 genes in response to MMS, CPT, 
and ZEO (Hillenmeyer et al., 2008), (iii) over-expression growth rate measurements for 769 
genes (Sopko et al., 2006), and (iv) Effect of gene deletions on the levels of spontaneous Rad52 
foci formation (a metric of DNA repair activity) (Alvaro et al., 2007). For each of these 
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orthogonal datasets we have generated custom visualization styles. For example, applying the 
Rad52 Foci Overlay style, colors the modules according to the extent to which the module 
affects the assembly of Rad52 foci. Applying the Cell Cycle Phase Expression Overlay style, 
colors the modules according to the specific phase of the cell cycle in which peak expression is 
seen for its constitutive genes. Applying the Overexpression Phenotype Overlay style, colors 
modules according to their sensitivity seen due to over-expression of their constitutive genes. 
Applying the CPT Sensitivity Overlay, MMS Sensitivity Overlay, or ZEO Sensitivity Overlay 
visual style, colors modules according to their sensitivity to the respective DNA damaging agent. 
 



7 
 

 
Figure S1. Quality of genetic interaction data, Related to Figure 1 
(A) Each query mutant was crossed against the set of array mutants six different times. This 
histogram displays the average correlation seen in colony size measurements between the six 
replicates for each query across all four conditions (Untreated, MMS, CPT, and ZEO). The 
dotted red-line indicates the average correlation seen across all queries and all conditions (r = 
0.78). (B–E) Correlation of genetic interaction scores derived from ‘marker swap’ experiments 
for (B) Untreated, (C) CPT, (D) MMS, and (E) ZEO. (F) Genetic interaction scores for pairs of 
genes in linkage. (G) The fold-enrichment for low-throughput genetic interactions from the 
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Biogrid database (Stark et al., 2006) is shown. Fold-enrichment is defined as n/r, where n is the 
number of highest scoring static genetic interactions in untreated conditions (x-axis) found in the 
Biogrid database, while r is the number of overlapping interactions expected at random. (H) 
Correlation of S scores measured under untreated conditions from this study (dark grey) or a 
previously published dE-MAP (Bandyopadhyay et al., 2010) (light grey) versus five large 
genetic interaction screens. (I) The differential p-value (x-axis) is plotted versus the 
corresponding multiple hypothesis corrected false discovery rate (FDR) (corrected using the 
Benjamini-Hochberg procedure) for each condition.  
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Figure S2. Comparison of replicate differential genetic networks and robustness of 
functional enrichment results, Related to Figure 2 
(A-B) The significance of enrichment for interactions with either (A) DNA repair or (B) 
chromatin organization genes is plotted for all static and differential genetic networks across a 
range of thresholds. For static networks the absolute value of the S score is used as a threshold. 
For differential networks the -log10 (differential p-value) is used as a threshold. (C) Enrichment 
results using different databases to define gold-standard genes involved in DNA repair and 
chromatin organization. (D) The overlap in replicate differential networks seen amongst the 
same condition (black line) or between two different conditions (grey line). Replicate networks 
were derived by splitting the six replicates obtained for each double mutant into two sets and by 
scoring each set independently. Enrichment over random (y-axis) is defined as the ratio of 
overlapping interactions seen between replicate networks amongst the top percent of differential 
interactions (x-axis) to the number of overlapping interactions expected at random. (E) 
Dendrogram of each query gene in each of four conditions (Untreated, MMS, CPT, and ZEO) 
generated by hierarchically clustering their static genetic interaction patterns across 2022 array 
genes. The leaves of the dendrogram have been colored according to the condition. The insert 
shows an expanded view of one branch of the dendrogram. (F) As in E, except that the 
dendrogram is generated by hierarchically clustering the differential interaction profiles for each 
query gene in each of three pairwise differential comparisons (MMS vs. Untreated, CPT vs. 
Untreated, ZEO vs. untreated). Leaves of the dendrogram have been colored as in E.  
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Figure S3. Differential genetic hubs display greater DNA damage sensitivity and tend to 
display pleiotropy, Related to Figure 3 
(A) All genes considered in this screen are binned according to their single mutant sensitivity to 
MMS, CPT, or ZEO. The distribution of the normalized differential degree (# sig. interactions / # 
tested interactions) for the genes in each bin is summarized with a box-and-whisker plot. The 
inset shows the full range of the distribution of normalized degrees, while the main plot shows a 
zoomed-in portion. A p-value was calculated using the Mann-Whitney test. (B) The Hillenmeyer 
et al. study (Hillenmeyer et al., 2008) measured single-gene knockout sensitivities to over 400 
different compounds. The normalized degree for each gene considered in this study is plotted 
against the number of drugs for which the gene knockout is sensitive. 
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Figure S4. Neddylation regulates cell cycle progression after DNA damage, Related to 
Figure 4 
(A) Quantification of FACS data from Figure 4E. The bar-plot represents the percentage of wild-type 
(WT), rub1Δ and ubc12Δ cells in G1, S or G2 phase 90 minutes after their release from G1 in fresh 
medium containing CPT. Data represent the mean ± standard deviation from three independent 
experiments. (B) Exponentially (exp) growing WT, rub1Δ and ubc12Δ cells were arrested in G1 
with α-factor and released in fresh medium. Cells were analyzed by FACS at the indicated time 
points. (C-D) Exponentially (exp) growing WT and rub1Δ cells were arrested in G1 with α-
factor and released in fresh medium containing CPT (50 µM). MMS-treated exponentially 
growing cells served as a positive control. The phosphorylation status of (C) Rad53 and (D) 
Chk1 was monitored using Western blot analysis at the indicated time-points.  
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Figure S5. Irc21 localizes in both the cytoplasm and nucleus, shows differential genetic 
interactions with components of DNA damage checkpoints and may be linked to mTOR 
signaling, Related to Figure 5 
(A) Network of differential genetic interactions conserved in all three conditions (dark grey 
edges) or in two of three conditions (green edges = CPT & MMS; orange edges = CPT & ZEO; 
purple edges = ZEO & MMS). Triangular nodes represent genes known to be involved in DNA 
repair. (B) Western blot analysis of cells expressing Myc-tagged Irc21. Cells from non-tagged 
and Nhp10-Myc expressing strains were used as negative and positive controls, respectively. (C) 
IRC21 deletion rescues the viability of rad9Δ and ddc1Δ cells in the presence of DNA damaging 
agents. 10-fold serial dilutions of log-phase cells of the indicated genotypes were either spotted 
onto YPAD plates containing MMS or CPT, or spotted on YPAD and exposed to UV, and 
incubated for 3 days at 30°C. (D) Schematic of the Irc21 protein showing a cytochrome b5-like 
domain in its C-terminus. (E) Exponentially (exp) growing wild-type (WT), irc21Δ, rad17Δ, 
rad17Δirc21Δ cells were arrested in G1 with α-factor and released in fresh medium containing 
0.02% MMS and 15μg nocodazole. Cells were analyzed by FACS at the indicated time points. 
(F) Exponentially growing irc21Δ cells expressing Irc21-GFP and Nup49-RFP were treated with 
0.03% MMS for 1 hour and then examined for Irc21 localization. Wild-type cells expressing 
Rad52-YPF were treated similarly and examined for Rad52 focus formation. (G) Ectopic 
expression of Irc21-GFP in rad17Δirc21Δ renders cells as sensitive to UV as rad17Δ cells, 
demonstrating the functionality of GFP-tagged Irc21. 10-fold serial dilutions of log-phase cells 
of the indicated genotypes were spotted onto YPAD plates, exposed to UV and incubated for 3 
days at 30°C. (H) irc21∆ cells are hypersensitive to MMS when combined with the TOR 
inhibitor rapamycin (RAP). 10-fold serial dilutions of log-phase cells of the indicated genotypes 
were either spotted onto YPAD plates containing MMS, RAP or both and incubated for 3 days at 
30°C. 
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Figure S6. Integrative analysis of differential genetic interactions reveals a role for RTT109 
in translesion synthesis, Related to Figure 6 
(A) RTT109 displays epistatic interactions with components of the polymerase ζ complex 
(REV1, REV3, REV7) in the presence MMS. 10-fold serial dilutions of log-phase cells of the 
indicated genotypes were spotted onto YPAD plates containing MMS and incubated for 3 days at 
30°C. (B) MMS survival of NER-deficient rad14Δ, rad14Δrev3Δ, rad14Δrtt109Δ and 
rad14Δrev3Δrtt109Δ, and of (C) NER-deficient rad14ΔH3K56R and rad14Δrev3ΔH3K56R 
cells were examined. Log-phase cells were exposed for 20 minutes to the indicated MMS 
concentrations. Appropriate dilutions of were plated on SC(-Arg) and colony formation was 
scored. The data represent the mean ± 1 s.d. of three independent experiments. 
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Data Set S1. Related to Figure 6 
A Cytoscape session file which contains a map of DNA damage processes and the differential 
genetic crosstalk between these processes (available on our Supplementary Website - 
http://chianti.ucsd.edu/~rsrivas/guenole_2012/index.html). This file can be opened using 
Cytoscape version 2.8.2 or above. Cytoscape can be obtained as a free download from 
http://cytoscape.org/. 
 
Data Set S2. Related to Figure 6 
A Cytoscape session file which contains a module map constructed from previously published 
genetic interaction data in S. cerevisiae (available on our Supplementary Website - 
http://chianti.ucsd.edu/~rsrivas/guenole_2012/index.html). This file can be opened using 
Cytoscape version 2.8.2 or above. 
 



17 
 

Supplemental References 

Aguilar, P.S., Frohlich, F., Rehman, M., Shales, M., Ulitsky, I., Olivera-Couto, A., Braberg, H., 
Shamir, R., Walter, P., Mann, M., et al. (2010). A plasma-membrane E-MAP reveals links of the 
eisosome with sphingolipid metabolism and endosomal trafficking. Nature structural & 
molecular biology 17, 901-908. 
 
Alvaro, D., Lisby, M., and Rothstein, R. (2007). Genome-wide analysis of Rad52 foci reveals 
diverse mechanisms impacting recombination. PLoS genetics 3, e228. 
 
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., 
Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene ontology: tool for the unification of 
biology. The Gene Ontology Consortium. Nature genetics 25, 25-29. 
 
Bandyopadhyay, S., Mehta, M., Kuo, D., Sung, M.K., Chuang, R., Jaehnig, E.J., Bodenmiller, 
B., Licon, K., Copeland, W., Shales, M., et al. (2010). Rewiring of genetic networks in response 
to DNA damage. Science 330, 1385-1389. 
 
Bar-Joseph, Z., Gifford, D.K., and Jaakkola, T.S. (2001). Fast optimal leaf ordering for 
hierarchical clustering. Bioinformatics 17 Suppl 1, S22-29. 
 
Baryshnikova, A., Costanzo, M., Kim, Y., Ding, H., Koh, J., Toufighi, K., Youn, J.Y., Ou, J., 
San Luis, B.J., Bandyopadhyay, S., et al. (2010). Quantitative analysis of fitness and genetic 
interactions in yeast on a genome scale. Nature methods 7, 1017-1024. 
 
Caba, E., Dickinson, D.A., Warnes, G.R., and Aubrecht, J. (2005). Differentiating mechanisms 
of toxicity using global gene expression analysis in Saccharomyces cerevisiae. Mutation research 
575, 34-46. 
 
Collins, S.R., Kemmeren, P., Zhao, X.C., Greenblatt, J.F., Spencer, F., Holstege, F.C., 
Weissman, J.S., and Krogan, N.J. (2007a). Toward a comprehensive atlas of the physical 
interactome of Saccharomyces cerevisiae. Molecular & cellular proteomics : MCP 6, 439-450. 
 
Collins, S.R., Miller, K.M., Maas, N.L., Roguev, A., Fillingham, J., Chu, C.S., Schuldiner, M., 
Gebbia, M., Recht, J., Shales, M., et al. (2007b). Functional dissection of protein complexes 
involved in yeast chromosome biology using a genetic interaction map. Nature 446, 806-810. 
 
Collins, S.R., Roguev, A., and Krogan, N.J. (2010). Quantitative genetic interaction mapping 
using the E-MAP approach. Methods in enzymology 470, 205-231. 
 
Collins, S.R., Schuldiner, M., Krogan, N.J., and Weissman, J.S. (2006). A strategy for extracting 
and analyzing large-scale quantitative epistatic interaction data. Genome biology 7, R63. 
 
Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E.D., Sevier, C.S., Ding, H., Koh, 
J.L., Toufighi, K., Mostafavi, S., et al. (2010). The genetic landscape of a cell. Science 327, 425-
431. 



18 
 

 
Duda, R.O., and Hart, P.E. (1973). Pattern classification and scene analysis (New York,, Wiley). 
 
Fiedler, D., Braberg, H., Mehta, M., Chechik, G., Cagney, G., Mukherjee, P., Silva, A.C., Shales, 
M., Collins, S.R., van Wageningen, S., et al. (2009). Functional organization of the S. cerevisiae 
phosphorylation network. Cell 136, 952-963. 
 
Hannum, G., Srivas, R., Guenole, A., van Attikum, H., Krogan, N.J., Karp, R.M., and Ideker, T. 
(2009). Genome-wide association data reveal a global map of genetic interactions among protein 
complexes. PLoS genetics 5, e1000782. 
 
Hillenmeyer, M.E., Fung, E., Wildenhain, J., Pierce, S.E., Hoon, S., Lee, W., Proctor, M., St 
Onge, R.P., Tyers, M., Koller, D., et al. (2008). The chemical genomic portrait of yeast: 
uncovering a phenotype for all genes. Science 320, 362-365. 
 
Hoppins, S., Collins, S.R., Cassidy-Stone, A., Hummel, E., Devay, R.M., Lackner, L.L., 
Westermann, B., Schuldiner, M., Weissman, J.S., and Nunnari, J. (2011). A mitochondrial-
focused genetic interaction map reveals a scaffold-like complex required for inner membrane 
organization in mitochondria. The Journal of cell biology 195, 323-340. 
 
Pu, S., Wong, J., Turner, B., Cho, E., and Wodak, S.J. (2009). Up-to-date catalogues of yeast 
protein complexes. Nucleic acids research 37, 825-831. 
 
Roguev, A., Bandyopadhyay, S., Zofall, M., Zhang, K., Fischer, T., Collins, S.R., Qu, H., Shales, 
M., Park, H.O., Hayles, J., et al. (2008). Conservation and rewiring of functional modules 
revealed by an epistasis map in fission yeast. Science 322, 405-410. 
 
Ryan, C.J., Roguev, A., Patrick, K., Xu, J., Jahari, H., Tong, Z., Beltrao, P., Shales, M., Qu, H., 
Collins, S.R., et al. (2012). Hierarchical Modularity and the Evolution of Genetic Interactomes 
across Species. Molecular cell 46, 691-704. 
 
Schuldiner, M., Collins, S.R., Thompson, N.J., Denic, V., Bhamidipati, A., Punna, T., Ihmels, J., 
Andrews, B., Boone, C., Greenblatt, J.F., et al. (2005). Exploration of the function and 
organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 
123, 507-519. 
 
Sopko, R., Huang, D., Preston, N., Chua, G., Papp, B., Kafadar, K., Snyder, M., Oliver, S.G., 
Cyert, M., Hughes, T.R., et al. (2006). Mapping pathways and phenotypes by systematic gene 
overexpression. Molecular cell 21, 319-330. 
 
Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., 
Botstein, D., and Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes 
of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular biology of the cell 
9, 3273-3297. 
 



19 
 

Srivas, R., Hannum, G., Ruscheinski, J., Ono, K., Wang, P.L., Smoot, M., and Ideker, T. (2011). 
Assembling global maps of cellular function through integrative analysis of physical and genetic 
networks. Nature protocols 6, 1308-1323. 
 
Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., and Tyers, M. (2006). 
BioGRID: a general repository for interaction datasets. Nucleic acids research 34, D535-539. 
 
Travesa, A., Kuo, D., de Bruin, R.A., Kalashnikova, T.I., Guaderrama, M., Thai, K., Aslanian, 
A., Smolka, M.B., Yates, J.R., 3rd, Ideker, T., et al. (2012). DNA replication stress differentially 
regulates G1/S genes via Rad53-dependent inactivation of Nrm1. The EMBO journal. 
 
Wilmes, G.M., Bergkessel, M., Bandyopadhyay, S., Shales, M., Braberg, H., Cagney, G., 
Collins, S.R., Whitworth, G.B., Kress, T.L., Weissman, J.S., et al. (2008). A genetic interaction 
map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and 
mRNA export and splicing. Molecular cell 32, 735-746. 
 
Witten, D.M., and Tibshirani, R. (2010). A framework for feature selection in clustering. Journal 
of the American Statistical Association 105, 713-726. 
 
Zheng, J., Benschop, J.J., Shales, M., Kemmeren, P., Greenblatt, J., Cagney, G., Holstege, F., Li, 
H., and Krogan, N.J. (2010). Epistatic relationships reveal the functional organization of yeast 
transcription factors. Molecular systems biology 6, 420. 

 

 


