Trihydroxamate Siderophore-Fluoroquinolone Conjugates are Selective Sideromycin Antibiotics that Target *Staphylococcus aureus*

Supporting Information

Timothy A. Wencewicz^a, Timothy E. Long^{a,b}, Ute Möllmann^c, and Marvin J. Miller^{a*} ^aDepartment of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA ^bCurrent address: Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA ^cLeibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany

Table of Contents

I.	Table of All Bacterial Strains from This Work	. Table S1; S2.
II.	Table of Antibiotic Susceptibility Testing in the Agar Diffusion Assay	. Table S2; S3.
III.	Table of Data for the Siderophore Competition Agar Diffusion Assay	. Table S3; S4.
IV.	Experimental Procedures and Compound Characterization Data	S5-S9.
V.	Copies of ¹ H-NMR and ¹³ C-NMR Spectra	S10-S43.
VI.	References	S44.

^{*}To whom correspondence should be addressed. M.J.M: phone, (574) 631-7571; fax, (574) 631-6652; email, mmiller1@nd.edu.

Table S1. Origins and markers of bacterial strains used in this work.									
Strain	Marker	Origin/Reference							
Gram-positive bacteria									
<i>Bacillus subtilis</i> ATCC 6633	wild type	American Type Culture Collection							
Enterococcus faecalis ATCC 49532	wild type	American Type Culture Collection							
Enterococcus faecium NCTC 7171	clinical isolate	National Collection of Type Cultures							
<i>Micrococcus luteus</i> ATCC 10240	wild type	American Type Culture Collection							
<i>Mycobacterium vaccae</i> IMET 10670	wild type	Hans Knöll Institute, Jena, Germany							
Staphylococcus aureus SG511	wild type	Hans Knöll Institute, Jena, Germany							
Staphylococcus epidermidis ATCC 14990	wild type	American Type Culture Collection							
Gram-negative bacteria									
Acinetobacter baumanii ATCC 17961	wild type	American Type Culture Collection							
Enterobacter aerogenes ATCC 35029	wild type quality control strain	American Type Culture Collection							
<i>Escherichia coli</i> ATCC 25922	wild type MIC standard strain	American Type Culture Collection							
Escherichia coli DC0	wild type	Richmond et al. 1976 ¹							
Escherichia coli DC2	antibiotic susceptible penetration mutant	Richmond et al. 1976 ¹							
Klebsiella pneumonia ATCC 700603	Produces β-lactamase SHV-18 MIC standard strain	American Type Culture Collection							
Klebsiella pneumonia ATCC 8308	wild type	American Type Culture Collection							
Pseudomonas aeruginosa ATCC 27853	wild type MIC standard strain	American Type Culture Collection							
Pseudomonas aeruginosa KW799/WT	wild Type	Zimmermann 1980 ²							
Pseudomonas aeruginosa KW799/61	antibiotic susceptible penetration mutant	Zimmermann 1980 ²							
Salmonella typhimurium ATCC 13311	wild type	American Type Culture Collection							
Salmonella typhimurium enb7	ent-, mutant dependent on siderophores for growth on low-Fe media	J. B. Nielands, Univ. of Cal. Berkeley, USA							

I. Table of All Bacterial Strains From This Work

					/				Test (Compoi	ınd	2								
	1a	2a	3a	3a-Fe	1	b	2	b	3	b	1	c	2	c	3	Be	Lo	or ^d	Cip	oro ^e
	2 mM	2 mM	2 mM	2 mM	1 n	nM	1 n	nМ	1 r	nM	0.5	mМ	0.5	mМ	0.5	mМ	0.1	mМ	5 μg	/mL
Test Organism	-Fe ^f	-Fe	-Fe	-Fe	+Fe ^g	-Fe	+Fe	-Fe	+Fe	-Fe	+Fe	-Fe	+Fe	-Fe	+Fe	-Fe	+Fe	-Fe	+Fe	-Fe
S. aureus SG511	0	0	0	0	27.8 (7)	27.5 (6)	21.2 (9)	22.8 (4)	20.5 (3)	21.5 (3)	14.7 (2)	18.6 (3)	11.6 (7)	17.9 (4)	26.5 (6)	29.5 (2)	25.8 (6)	25.7 (3)	23.3 (1)	23.4 (3)
S. epidermidis ATCC 14990	0	0	0	0	27	27	nt ^h	nt	15	17	18.5	21	nt	12	12	19	22	21.5	27	27
E. faecalis ATCC 49532	0	0	0	0	0	0	nt	nt	0	0	12*	13*	nt	12*	0	0	0	0	15	16
M. luteus ATCC 10240	0	0	0	0	37	42	nt	nt	11*	22	0	0	nt	0	0	0	39	40	0	0
B. subtilis ATCC 6633	0	0	0	0	23	25	nt	nt	12	17	22	22	nt	17	12	15	34	34	34	34.5
<i>M. vaccae</i> IMET 10670	0	0	0	0	nt	nt	nt	nt	nt	nt	nt	25	nt	0	nt	17*	nt	nt	nt	38
A. baumanii ATCC 17961	0	0	0	0	0	0	12.4 (5)	15.9 (5)	0	10.5 (1)	0	0	0	0	0	0	0^i	0^i	21.4 (2)	21.1 (3)
E. coli DC0	0	0	20*	0	13*	13*	nt	nt	0	13*	0	12*	nt	nt	0	12*	21	21	21	21
E. coli DC2	0	0	19*	0	18	20	nt	nt	11*	15*	13	15*	nt	nt	0	14*	20	20	26	26
P. aeruginosa 799/WT	0	0	0	0	0	10*	nt	nt	0	0	0	10*	nt	0	0	10*	0	0	25	26
P. aeruginosa 799/61	0	0	0	0	18*	18*	nt	nt	19*	23*	15*	15*	nt	0	0	11*	15*	14*	28	29
K. pneumonia ATCC 8308	0	0	0	0	13*	12*	nt	nt	0	11*	15*	15*	nt	nt	12*	14*	21.5	22	24.5	26
S. typhimurium ATCC 13311	0	0	0	0	21	20	nt	nt	13	14	22	24	nt	nt	19	20	23.5	23	32	33
S. typhimurium enb7	0	0	0	0	14	18	nt	nt	12*	17*	15.5	17	nt	16	14	23.5	22	22	29	30

II. Table of Antibiotic Susceptibility Testing in the Agar Diffusion Assay

Table S2. Diameter of growth inhibition zone (mm) in the agar diffusion antibiotic susceptibility assay.^{a,b,c}

^aExactly 50 μ L of each compound solution (dissolved in 10:1 MeOH:DMSO at concentrations provided in table) were added to 9 mm wells in agar media (MHII) inoculated with ~5x10³ CFU/mL. Diameters of growth inhibition zones were measured (mm) with an electronic caliper after incubation at 37 °C for 24 h.³ ^bCompounds with a standard deviation (shown in parentheses for the last significant digit) were tested in triplicate; otherwise, compounds were tested in a single trial. ^cData in this table was used to generate the bar graphs shown in Figures 6 and 7 in the main text. ^dLor: Lorabid[®] was used as a standard at 0.1 mM in H₂O or at concentration indicated for specific strains. ^eCipro: ciprofloxacin was used as a standard at 5 µg/mL in H₂O. ^f-Fe: Mueller-Hinton agar No. 2 + 100 µM FeCl₃. ^hnt: not tested. ⁱLorabid[®] used at 1.0 mM. *Indiacteas a partially unclear inhibition zone.

		Test Organism								
		Staphylococcus aureus SG511	Acinetobacter baumanii ATCC 17961							
Compound	Con. ^d	MHII – Fe ^e	MHII – Fe							
1b + 1a	1 mM	25.9(4)	0							
1b + DFO-B	1 mM	26.8(9)	nt^{f}							
2b + 2a	1 mM	22.9(7)	12.2(2)							
2b + DFO-B	1 mM	24.1(5)	nt							
3b + 3a	1 mM	22.5(8)	12.5(4)							
3b + 3a-Fe	1 mM	21.1(6)	12.2(3)							
3b + DFO-B	1 mM	19.6(5)	nt							
1c + 1a	0.5 mM	15.3(5)	nt							
1c + DFO-B	0.5 mM	16.4(2)	nt							
2c + 2a	0.5 mM	13.3(2)	nt							
2c + DFO-B	0.5 mM	11.7(2)	nt							
3c + 3a	0.5 mM	23.1(5)	nt							
3c + 3a-Fe	0.5 mM	21.6(9)	nt							
3c + DFO-B	0.5 mM	0	nt							
3c + FO-B	0.5 mM	0	nt							

III. Table of Data for the Siderophore Competition Agar Diffusion Assay

^aExactly 50 μ L of each compound solution (dissolved in 10:1 MeOH:DMSO at concentrations provided in table) were added to 9 mm wells in agar media (MHII) inoculated with ~5x10³ CFU/mL. Diameters of growth inhibition zones were measured (mm) with an electronic caliper after incubation at 37 °C for 24 h.³ ^bCompounds with a standard deviation shown in parentheses were tested in triplicate; otherwise, compounds were tested in a single trial. ^cData in this table was used to generate the bar graphs shown in Figures 6 and 7 in the main text. ^dCon.: all compound mixtures were tested as 1:1 molar mixtures both at the concentrations indicated. ^eMHII–Fe: Mueller-Hinton agar No. 2 + 100 μ M 2,2'-bipyridine. ^fnt: not tested. *Indiacteas a partially unclear inhibition zone.

IV. Experimental Procedures and Compound Characterization Data

N-Boc-*O*-PNB-Lorabid[®] (7) was a gift from Eli Lilly and Company. Compounds 4-6, 3a, and 3a-Fe were synthesized by previously reported methods.^{4,5} The experimental procedures for the syntheses of compounds 3a, 3a-Fe, 3b, 3c, 8, 10, 15, and 16 are provided in the main text.

Monohydroxamate siderophore (1a). bis-*O*-Benzyl-monohydroxamate **4** (105.0 mg, 0.26 mmol) was dissolved in 5 mL of MeOH in an HCl-washed, 10 mL round bottom flask sealed under argon. The flask was charged with 10% Pd-C (15.0 mg) and exposed to a balloon of hydrogen gas (~1 atm). Reaction progress was monitored by RP-C18 TLC (1.5:1 CH₃CN:H₂O; FeCl₃ stain) and after 6 h there was no remaining starting material (**4**). The flask was flushed with argon and the mixture was diluted with MeOH (10 mL), vacuum filtered through celite, and concentrated under reduced pressure. This gave the desired product (**1a**) in 88% yield as a tan semi-solid (50.6 mg, 0.23 mmol) with no need for purification. ¹H-NMR (600 MHz, CD₃OD) δ 3.60 (t, *J* = 6.9 Hz, 2 H), 3.55 (t, *J* = 6.6 Hz, 2 H), 2.75 (t, *J* = 6.9 Hz, 2 H), 2.56 (t, *J* = 6.9 Hz, 2 H), 1.64 (quin, *J* = 7.3 Hz, 2 H), 1.59–1.52 (m, 2 H), 1.40–1.33 (m, 2 H); ¹³C-NMR (150 MHz, CD₃OD) δ 177.0, 174.5, 62.9, 49.1, 33.4, 29.9, 28.6, 27.6, 24.1; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₉H₁₈NO₅: 220.1179, found 220.1172.

Bishydroxamate siderophore (2a). tris-*O*-Benzyl-monohydroxamate **5** (90.6 mg, 0.13 mmol) was dissolved in 8 mL of MeOH in an HCl-washed, 25 mL round bottom flask sealed under argon. The flask was charged with 10% Pd-C (19.0 mg) and exposed to a balloon of hydrogen gas (~1 atm). Reaction progress was monitored by RP-C18 TLC (1.5:1 CH₃CN:H₂O; FeCl₃ stain) and after 4.5 h there was no remaining starting material (**5**). The flask was flushed with argon and the mixture was diluted with MeOH (10 mL), vacuum filtered through celite, and concentrated under reduced pressure. The crude product was recrystallized from MeOH/Et₂O at -20 °C to give the desired product (**2a**) in 90% yield as a white powder (49.2 mg, 0.12 mmol). Mp 81–83 °C; ¹H-NMR (600 MHz, CD₃OD) δ 3.64–3.57 (m, 4 H), 3.55 (t, *J* = 6.5 Hz, 2 H), 3.16 (t, *J* = 6.6 Hz, 2 H), 2.80–2.72 (m, 4 H), 2.56 (t, *J* = 6.6 Hz, 2 H), 2.45 (t, *J* = 7.0 Hz, 2 H), 1.68–1.60 (m, 4 H), 1.59–1.48 (m, 4 H), 1.43–1.28 (m, 4 H); ¹³C-NMR (150 MHz, CD₃OD) δ 177.0, 175.1, 174.6, 62.9, 49.0, 40.4, 33.4, 31.6, 30.1, 30.0, 29.1, 28.6, 27.7, 27.5, 25.0, 24.1; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₁₈H₃₄N₃O₈: 420.2340, found 420.2354.

bis-O-Benzyl-monohydroxamate-O-PNB-Lorabid[®] **conjugate (11).** *O*-PNB-Lorabid[®] TFA salt (**8**; 87.5 mg, 0.15 mmol) was dissolved in 10 mL of anhydrous CH₂Cl₂ and *i*Pr₂EtN (0.1 mL, 0.57 mmol) was added slowly until the solution was basic (pH paper). Bis-O-Benzyl-monohydroxamate **4** (59.0 mg, 0.15 mmol), DMAP (5.0 mg, 0.04 mmol), and EDC-HCl (60.0 mg, 0.31 mmol) were then added, respectively. After 18 h at rt, TLC (6% MeOH in CH₂Cl₂; FeCl₃ stain) showed no remaining starting material (**4**). The mixture was diluted with CH₂Cl₂ (10 mL), washed with saturated aqueous NaHCO₃ (10 mL) and brine (10 mL), dried over anhydrous MgSO₄, filtered, and concentrated. The crude product was purified by silica gel column chromatography (0.5 x 5 in silica gel; 3% MeOH in CH₂Cl₂) to give the desired product (**11**) in 73% yield as a colorless, viscous oil (93.3 mg, 0.11 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 8.41 (d, *J* = 8.2 Hz, 1 H), 8.19 (d, *J* = 8.2 Hz, 2 H), 7.59 (d, *J* = 8.5 Hz, 2 H), 7.42–7.22 (m, 15 H), 6.57 (br s, 1 H), 5.50 (d, *J* = 6.2 Hz, 1 H), 5.43–5.38 (m, 2 H), 5.26 (d, *J* = 13.5 Hz, 1 H), 4.82 (d, *J* = 10.3 Hz, 1 H), 4.71 (d, *J* = 10.0 Hz, 1 H), 4.41 (s, 2 H), 3.89 (dd, *J* = 7.6, 4.1 Hz, 2

H), 3.47-3.39 (m, 2 H), 3.35-3.28 (m, 1 H), 2.93-2.81 (m, 2 H), 2.67-2.52 (m, 2 H), 2.32 (t, J = 5.1 Hz, 2 H), 1.95-1.88 (m, 1 H), 1.68-1.46 (m, 5 H), 1.34-1.28 (m, 2 H); 13 C-NMR (150 MHz, CDCl₃) δ 173.8, 172.2, 171.0, 170.9, 164.8, 160.0, 147.7, 142.2, 138.5, 136.7, 133.9, 130.7, 129.6, 129.3, 129.1, 128.8, 128.5, 128.2, 127.9, 127.8, 127.5, 127.3, 127.1, 127.0, 123.7, 123.6, 123.2, 73.3, 72.7, 70.1, 66.2, 59.5, 59.2, 58.5, 57.8, 53.0, 52.6, 44.6, 32.0, 30.9, 30.4, 29.3, 29.2, 29.1, 28.1, 27.4, 26.5, 26.4, 23.2, 21.4, 21.3; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₄₆H₄₉CIN₅O₁₀: 866.3162, found 866.3193.

Monohydroxamate-Lorabid[®] conjugate (1b). bis-O-Benzyl-monohydroxamate-Lorabid[®] conjugate 11 (84.0 mg, 0.10 mmol) and concentrated HCl (42.1 µL, 30.0 mmol) were dissolved in 1.4 mL of DMF:H₂O (95:5) in an HCl-washed, 10 mL round bottom flask sealed under argon. The flask was charged with 10% Pd-C (29.4 mg) and exposed to a balloon of hydrogen gas (~1 atm). Reaction progress was monitored by RP-C18 TLC (2.5:1 H₂O:CH₃CN; FeCl₃ stain) and after 41 h there was no remaining starting material (11). The flask was flushed with argon and the mixture was diluted with MeOH, vacuum filtered through celite, and concentrated using high vaccum rotary evaporation (~1 mm Hg). The crude product was purified by preparative HPLC using a 150 x 20 mm YMC-Pack Proc C18 column fit with a guard column, 0.1% TFA in H₂O (A) and 0.1% TFA in CH₃CN (B) as mobile phases, and a flow rate of 15 mL/min. A gradient was formed from 30%-60% of B over 4 min where the desired compound (1b) elutes at 3 min. Pure fractions were lyophilized and the obtained solid was recrystallized from MeOH/Et₂O to give the desired product (1b) in 38% yield as a tan solid (20.2 mg, 0.04 mmol). Mp 110–112 °C (color change), 190–195 °C (dec.); ¹H-NMR (600 MHz, CD₃OD) δ 7.44–7.31 (m, 5 H), 5.44– 5.42 (m, 1 H), 5.37 (d, J = 4.7 Hz, 1 H), 3.88 (dt, J = 11.5, 4.4 Hz, 1 H), 3.82 (ddd, J = 14.0, 7.3, 7.1 Hz, 1 H), 3.60–3.52 (m, 4 H), 3.30–3.25 (m, 1 H), 3.19–3.14 (m, 2 H), 2.86–2.82 (m, 2 H), 2.76 (t, J = 7.2 Hz, 2 H), 2.71–2.61 (m, 2 H), 2.60–2.51 (m, 3 H), 2.47 (t, J = 7.2 Hz, 2 H), 2.40 (dt, J = 14.9, 5.5 Hz, 1 H), 1.77–1.71 (m, 1 H), 1.67–1.47 (m, 9 H), 1.39–1.27 (m, 4 H); ¹³C-NMR (150 MHz, CD₃OD) δ 175.6, 175.1, 174.7, 174.6, 173.9, 166.3, 138.3, 130.0, 129.6, 129.4, 62.9, 59.9, 59.6, 54.1, 48.7, 40.5, 33.4, 32.5, 31.7, 31.3, 29.9, 29.0, 28.9, 27.6, 27.2, 24.8, 24.1, 23.1; HRMS-ESI (m/z): $[M+H]^+$ calcd. for C₂₅H₃₂ClN₄O₈: 551.1903, found 551.1889.

bis-O-Benzyl-monohydroxamate-O-benzylciprofloxacin conjugate O-Benzyl-(12). ciprofloxacin hydrochloride salt (10) was free-based using Amberlite IR400(OH⁻) resin in CHCl₃ The resulting O-benzyl-ciprofloxacin amine (53.1 mg, 0.13 mmol), bis-O-Benzylfor 4 h. monohydroxamate 4 (50.5 mg, 0.13 mmol), iPr₂EtN (0.05 mL, 0.29 mmol), DMAP (4.0 mg, 0.03 mmol), and EDC-HCl (36.2 mg, 0.189 mmol) were dissolved in 5 mL of anhydrous CH₂Cl₂, respectively. After 5 h at rt, TLC (6% MeOH in CH₂Cl₂; FeCl₃ stain) showed no remaining starting material 4. The mixture was diluted with CH₂Cl₂ (25 mL), washed with saturated aqueous NaHCO₃ (30 mL) and brine (30 mL), dried over anhydrous MgSO₄, filtered, and concentrated. The crude product was purified by silica gel column chromatography (0.75 x 4 in silica gel; 3% MeOH in CH₂Cl₂) to give the desired product (12) in 92% yield as a clear, yellow oil (93.3 mg, 0.12 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 8.54 (s, 1 H), 8.09–8.06 (m, 1 H), 7.52 (d, J = 7.6 Hz, 2 H), 7.43–7.24 (m, 14 H), 5.40 (s, 2 H), 4.93 (s, 2 H), 4.48 (s, 2 H), 3.87–3.84 (m, 2 H), 3.77–3.73 (m, 2 H), 3.66 (t, J = 6.6 Hz, 2 H), 3.46 (t, J = 6.5 Hz, 2 H), 3.43– 3.38 (m, 1 H), 3.31-3.27 (m, 2 H), 3.24-3.20 (m, 2 H), 2.89-2.83 (m, 2 H), 2.70 (t, J = 6.3 Hz, 2.20 (m, 2 H), 2.89-2.83 (m, 2 H), 2.70 (t, J = 6.3 Hz, 2.20 (m, 2 H), 2.89-2.83 (m, 2 H), 2.70 (t, J = 6.3 Hz, 2.20 (m, 2 H), 2.89-2.83 (m, 2 H), 2.70 (t, J = 6.3 Hz, 2.20 (m, 2 H), 2.89-2.83 (m, 2 H), 2.70 (t, J = 6.3 Hz, 2.20 (m, 2 H), 3.24-3.20 (m, 2 H), 3.24H), 1.71–1.60 (m, 4 H), 1.42–1.36 (m, 2 H), 1.30 (g, J = 6.7 Hz, 2 H), 1.14–1.10 (m, 2 H); ¹³C-NMR (150 MHz, CDCl₃) δ 173.5, 173.0, 170.5, 165.5, 153.3 (d, J = 248.5 Hz), 148.4, 144.1 (d,

J = 10.7 Hz), 138.5, 137.9, 136.4, 129.1, 128.8, 128.7, 128.5, 128.3, 128.0, 127.9, 127.6, 127.5, 123.5 (d, $J_{C-F} = 7.3$ Hz), 113.5 (d, $J_{C-F} = 23.6$ Hz), 110.2, 105.1, 76.3, 72.8, 70.1, 66.4, 50.2, 49.7, 45.5, 45.2, 41.5, 34.5, 29.4, 27.5, 27.3, 26.7, 23.4, 8.2; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₄₇H₅₂FN₄O₇: 803.3815, found 803.3825.

Monohydroxamate-ciprofloxacin conjugate (1c). bis-O-Benzyl-monohydroxamate-Obenzylciprofloxacin conjugate (12; 75.0 mg, 0.09 mmol) was dissolved in 8 mL of MeOH in an HCl-washed, 25 mL rb flask sealed under argon. The flask was charged with 10% Pd-C (15.0 mg) and exposed to a balloon of hydrogen gas (~ 1 atm). Reaction progress was monitored by RP-C18 TLC (1.5:1 CH₃CN:H₂O; FeCl₃ stain) and after 12 h there was no remaining starting material (12). The flask was flushed with argon and the mixture was diluted with MeOH. vacuum filtered through celite, and concentrated under reduced pressure. The resulting solid was dissolved in a minimal amount of MeOH and precipitated by addition of cold Et₂O. After trituration with Et_2O the desired product (1c) was obtained in 70% yield as a light tan solid (35.0 mg, 0.065 mmol). Mp 180–185 °C (dec.); ¹H-NMR (600 MHz, CD₃OD) δ 8.71 (s, 1 H), 7.84 (d, J = 13.2 Hz, 1 H), 7.55 (br s, 1 H), 3.88–3.78 (m, 4 H), 3.74 (br s, 1 H), 3.61 (t, J = 6.9 Hz, 2 H), 3.55 (t, J = 6.5 Hz, 2 H), 3.47-3.40 (m, 2 H), 3.40-3.33 (m, 2 H), 2.83 (t, J = 5.9 Hz, 2 H), 2.73(t, J = 6.2 Hz, 2 H), 1.65 (dt, J = 14.4, 7.2 Hz, 2 H), 1.59-1.53 (m, 2 H), 1.43-1.34 (m, 4 H),1.24–1.18 (m, 2 H); ¹³C-NMR (150 MHz, CD₃OD) δ 178.2, 174.7, 173.2, 170.0, 155.1 (d, J_{C-F} = 249.6 Hz), 149.3, 146.8 (d, $J_{C-F} = 10.7$ Hz), 140.8, 121.3, 112.7 (d, $J_{C-F} = 23.0$ Hz), 107.5, 62.9, 51.2, 50.7, 46.6, 42.9, 37.0, 33.4, 28.7, 28.6, 27.7, 24.1, 8.7; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₂₆H₃₄FN₄O₇: 533.2406, found 533.2415.

tris-O-Benzyl-bishydroxamate-O-PNB-Lorabid[®] conjugate (13). O-PNB-Lorabid[®] TFA salt (8; 87.9 mg, 0.15 mmol) was dissolved in 15 mL of anhydrous CH₂Cl₂ and *i*Pr₂EtN (0.13 mL, 0.75 mmol) was added slowly until the solution was basic (pH paper). Tris-O-Benzylbishydroxamate 5 (103.6 mg, 0.15 mmol), DMAP (5.0 mg, 0.04 mmol), and EDC-HCl (65.0 mg, 0.34 mmol) were then added, respectively. After 16 h at rt, TLC (6% MeOH in CH₂Cl₂; FeCl₃ stain) showed no remaining starting material (5). The mixture was diluted with CH₂Cl₂ (10 mL), washed with saturated aqueous NaHCO₃ (10 mL), 10% aqueous citric acid (10 mL), and brine (10 mL), dried over anhydrous MgSO₄, filtered, and concentrated. The crude product was purified by silica gel column chromatography (1 x 4 in silica gel; 3% MeOH in CH₂Cl₂) to give the desired product (13) in 66% yield as a colorless, viscous oil (114.7 mg, 0.10 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 8.58 (d, J = 7.3 Hz, 1 H), 8.22 (d, J = 8.5 Hz, 2 H), 7.72 (d, J = 6.7 Hz, 1 H), 7.61 (d, J = 8.5 Hz, 2 H), 7.45–7.21 (m, 20 H), 6.58 (br s, 1 H), 5.60 (d, J = 6.5 Hz, 1 H), 5.46–5.39 (m, 2 H), 5.30 (d, J = 13.2 Hz, 1 H), 4.88–4.79 (m, 3 H), 4.76 (d, J = 10.0 Hz, 1 H), 4.47 (s, 2 H), 4.04–3.96 (m, 1 H), 3.90 (dd, J = 11.0, 4.5 Hz, 1 H), 3.41 (t, J = 6.6 Hz, 2 H), 3.40-3.29 (m, 2 H), 3.22 (dt, J = 14.0, 5.0 Hz, 1 H), 2.96-2.80 (m, 3 H), 2.77-2.68 (m, 1 H), 1 H)2.68-2.37 (m, 6 H), 1.95-1.88 (m, 1 H), 1.82-1.75 (m, 2 H), 1.74-1.45 (m, 6 H), 1.44-1.33 (m, 3 H), 1.31–1.20 (m, 3 H), 1.19–1.09 (m, 1 H); ¹³C-NMR (150 MHz, CDCl₃) δ 174.4, 173.9, 172.5, 171.9, 171.5, 165.3, 160.0, 147.8, 142.0, 138.5, 136.7, 134.2, 134.0, 131.0, 129.2, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 127.8, 127.6, 127.5, 123.7, 76.3, 76.1, 72.8, 70.1, 66.2, 58.9, 57.9, 52.9, 45.4, 43.5, 39.2, 32.0, 30.4, 30.1, 29.3, 27.8, 27.6, 27.5, 26.5, 25.6, 23.3, 23.2, 21.9, 21.3; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₆₂H₇₁ClN₇O₁₃: 1156.4793, found 1156.4778.

Bishydroxamate-Lorabid[®] conjugate (2b). tris-O-Benzyl-bishydroxamate-Lorabid[®] conjugate 13 (103.0 mg, 0.09 mmol) and concentrated HCl (38.6 µL, 27.0 mmol) were dissolved in 1.3 mL of DMF:H₂O (95:5) in an HCl-washed, 10 mL round bottom flask sealed under argon. The flask was charged with 10% Pd-C (27.0 mg) and exposed to a balloon of hydrogen gas (~1 atm). Reaction progress was monitored by RP-C18 TLC (2.5:1 H₂O:CH₃CN; FeCl₃ stain) and after 24 h there was no remaining starting material (13). The flask was flushed with argon and the mixture was diluted with MeOH, vacuum filtered through celite, and concentrated using high vaccum rotary evaporation (~1 mm Hg). The crude product was purified by preparative HPLC using a 150 x 20 mm YMC-Pack Proc C18 column fit with a guard column, 0.1% TFA in H₂O (A) and 0.1% TFA in CH₃CN (B) as mobile phases, and a flow rate of 15 mL/min. A gradient was formed from 30%-60% of B over 4 min. Fractions containing pure compound 2b were lyophilized and the obtained solid was recrystallized from MeOH/Et₂O to give the desired product (2b) in 42% yield as an off-white solid (26.0 mg, 0.035 mmol). Mp 96-98 °C (color change), 160-165 °C (dec.); ¹H-NMR (600 MHz, CD₃OD) δ 7.44-7.31 (m, 5 H), 5.44-5.42 (m, 1 H), 5.37 (d, J = 4.7 Hz, 1 H), 3.88 (dt, J = 11.5, 4.4 Hz, 1 H), 3.82 (ddd, J = 14.0, 7.3, 7.1 Hz, 1 H), 3.60–3.52 (m, 4 H), 3.30–3.25 (m, 1 H), 3.19–3.14 (m, 2 H), 2.86–2.82 (m, 2 H), 2.76 (t, J = 7.2 Hz, 2 H), 2.71–2.61 (m, 2 H), 2.60–2.51 (m, 3 H), 2.47 (t, J = 7.2 Hz, 2 H), 2.40 (dt, J =14.9, 5.5 Hz, 1 H), 1.77–1.71 (m, 1 H), 1.67–1.47 (m, 9 H), 1.39–1.27 (m, 4 H); ¹³C-NMR (150 MHz, CD₃OD) δ 175.6, 175.0, 174.7, 174.6, 173.9, 166.3, 138.3, 130.0, 129.6, 129.4, 62.9, 59.9, 59.6, 54.1, 48.7, 40.5, 33.4, 32.5, 31.7, 31.3, 29.9, 29.0, 28.9, 27.6, 27.2, 24.8, 24.1, 23.1; HRMS-ESI (m/z): $[M+H]^+$ calcd. for C₃₄H₄₈ClN₆O₁₁: 751.3064, found 751.3051.

tris-O-Benzyl-bishydroxamate-O-benzylciprofloxacin conjugate (14). O-Benzylciprofloxacin hydrochloride salt (10; 70.0 mg, 0.15 mmol), tris-O-benzyl-bishydroxamate 5 (96.0 mg, 0.14 mmol), iPr₂EtN (0.1 mL, 0.57 mmol), DMAP (4.3 mg, 0.035 mmol), and EDC-HCl (53.3 mg, 0.28 mmol) were dissolved in 10 mL of anhydrous CH₂Cl₂, respectively. After 23 h at rt, TLC (6% MeOH in CH₂Cl₂; FeCl₃ stain) showed no remaining starting material 5. The mixture was diluted with CH₂Cl₂ (20 mL), washed with saturated aqueous NaHCO₃ (30 mL) and brine (30 mL), dried over anhydrous MgSO₄, filtered, and concentrated. The crude product was purified by silica gel column chromatography (1 x 4 in silica gel; 3% MeOH in CH₂Cl₂) to give the desired product (14) in 66% yield as a clear, colorless oil (101.0 mg, 0.09 mmol). ¹H-NMR (600 MHz, CDCl₃) δ 8.52 (s, 1 H), 8.09 - 8.05 (m, 1 H), 7.51 (d, J = 7.0 Hz, 2 H), 7.42 -7.23 (m, 19 H), 6.25 (br s, 1 H), 5.38 (s, 2 H), 4.90 (s, 2 H), 4.83 (s, 2 H), 4.46 (s, 2 H), 3.86-3.81 (m, 2 H), 3.76–3.72 (m, 2 H), 3.69–3.63 (m, 2 H), 3.63–3.56 (m, 2 H), 3.42 (t, J = 6.6 Hz, 2 H), 3.41–3.36 (m, 1 H), 3.31–3.26 (m, 2 H), 3.24–3.17 (m, 4 H), 2.85–2.80 (m, 2 H), 2.80–2.74 (m, 2 H), 2.69 (t, J = 6.0 Hz, 2 H), 2.45 (t, J = 6.6 Hz, 2 H), 1.68–1.56 (m, 6 H), 1.51–1.45 (m, 2 H), 1.38–1.24 (m, 6 H), 1.11–1.07 (m, 2 H); ¹³C-NMR (150 MHz, CDCl₃) δ 173.7, 173.0, 172.2, 170.4, 165.5, 153.3 (d, $J_{C-F} = 248.5$ Hz), 148.4, 144.1 (d, $J_{C-F} = 10.7$ Hz), 138.5, 137.9, 136.4, 134.5, 129.5, 129.2, 129.1, 128.9, 128.7, 128.6, 128.5, 128.3, 127.9, 127.8, 127.6, 127.5, 123.5 $(d, J_{C-F} = 6.7 \text{ Hz}), 113.5 (d, J_{C-F} = 23.0 \text{ Hz}), 110.2, 105.1, 76.3, 76.2, 72.8, 70.1, 66.4, 50.3, 50.2, 70.1, 66.4, 50.3, 50.2, 70.1, 66.4, 50.3, 50.2, 70.1, 66.4, 50.3, 50.2, 70.1, 66.4, 50.3, 50.2, 70.1, 66.4, 50.3, 50.2, 70.1, 66.4, 50.3, 50.2, 70.1, 66.4, 50.3, 50.2, 70.1, 66.4, 50.3, 50.2, 70.1, 66.4, 50.3, 50.2, 70.1, 66.4, 50.3, 50.2, 70.1, 66.4, 50.3, 50.2, 70.1, 66.4, 50.3, 50.2, 70.1, 66.4, 50.3, 50.2, 70.1, 66.4, 50.3, 50.2, 70.1, 66.4, 50.3, 50.2, 70.1, 66.4, 50.3, 50.2, 70.1, 50.2, 70.1, 50.2, 70.1, 50.2, 7$ 49.6, 49.5, 45.5, 45.2, 45.0, 41.5, 39.3, 34.5, 30.7, 29.3, 28.9, 28.2, 27.3, 27.2, 26.7, 26.4, 23.8, 23.4, 8.1; HRMS-ESI (m/z): $[M+H]^+$ calcd. for C₆₃H₇₄FN₆O₁₀: 1093.5445, found 1093.5457.

Bishydroxamate-ciprofloxacin conjugate (2c). tris-*O*-Benzyl-bishydroxamate-*O*-benzylciprofloxacin conjugate (14; 95.0 mg, 0.09 mmol) was dissolved in 8 mL of MeOH in an HCl-washed, 25 mL rb flask sealed under argon. The flask was charged with 10% Pd-C (15.0

mg) and exposed to a balloon of hydrogen gas (~1 atm). Reaction progress was monitored by RP-C18 TLC (1.5:1 CH₃CN:H₂O; FeCl₃ stain) and after 16 h there was no remaining starting material (**14**). The flask was flushed with argon and the mixture was diluted with MeOH, vacuum filtered through celite, and concentrated under reduced pressure. This gave the desired product (**2c**) in 86% yield as a light yellow solid (54.7 mg, 0.075 mmol) with no need for purification. Mp 77–79 °C (color change), 143–150 °C (dec.); ¹H-NMR (600 MHz, CD₃OD) δ 8.73 (s, 1 H), 7.85 (d, *J* = 13.2 Hz, 1 H), 7.57 (br s, 1 H), 3.88–3.79 (m, 4 H), 3.75 (br s, 1 H), 3.61 (t, *J* = 6.9 Hz, 2 H), 3.58 (t, *J* = 6.9 Hz, 2 H), 3.54 (t, *J* = 6.5 Hz, 2 H), 3.48–3.42 (m, 2 H), 3.40–3.35 (m, 2 H), 3.17 (t, *J* = 6.7 Hz, 2 H), 2.87–2.80 (m, 2 H), 2.78–2.69 (m, 4 H), 2.45 (t, *J* = 7.0 Hz, 2 H), 1.69–1.59 (m, 4 H), 1.58–1.49 (m, 4 H), 1.44–1.39 (m, 2 H), 1.38–1.30 (m, 4 H), 1.25–1.20 (m, 2 H); ¹³C-NMR (150 MHz, CD₃OD) δ 178.2, 174.9, 174.6, 174.4, 173.1, 169.6, 155.0 (d, *J*_{C-F} = 249.6 Hz), 149.3, 146.8 (d, *J*_{C-F} = 9.5 Hz), 140.7, 120.9 (d, *J*_{C-F} = 8.4 Hz), 112.5 (d, *J*_{C-F} = 23.0 Hz), 107.4, 62.8, 51.0, 50.6, 46.4, 42.7, 40.3, 36.9, 33.3, 31.5, 29.9, 28.9, 28.5, 28.4, 27.5, 27.3, 24.9, 24.0, 8.6; HRMS-ESI (m/z): [M+H]⁺ calcd. for C₃₅H₅₀FN₆O₁₀: 733.3567, found 733.3562.

V. Copies of ¹H-NMR and ¹³C-NMR Spectra

S43

VI. References

1. Richmond, M. H.; Clark, D. C.; Wotton, S. "Indirect method for assessing the penetration of beta-lactamase-nonsusceptible penicillins and cephalosporins in *Escherichia coli*." *Antimicrob. Agents Chemother.* **1976**, *10*, 215-218.

2. Zimmerman, W. "Penetration of β -lactam antibiotics into their target enzymes in *Pseudomonas aeruginosa*: Comparison of a highly sensitive mutant with its parent strain." *Antimicrob. Agents Chemother.* **1980**, *18*, 94-100.

3. An experimental procedure for this assay is provided in the main text. For literature example and general description of the modified Kirby-Bauer agar diffusion assay used in this study, see: (a) Afonin, S.; Glaser, R. W.; Berditchevskaia, M.; Wadhwani, P.; Gührs, K.-H.; Möllmann, U.; Perner, A.; Ulrich, A. S. "4-Fluoro-phenylglycine as a label for ¹⁹F-NMR structure analysis of membrane associated peptides." *ChemBioChem* **2003**, *4*, 1151-1163. (b) Wencewicz, T. A.; Yang, B.; Rudloff, J. R.; Oliver, A. G.; Miller, M. J. "N-O Chemistry for antibiotics: Discovery of *N*-alkyl-*N*-(pyridin-2-yl)hydroxylamine scaffolds as selective antibacterial agents using nitroso Diels-Alder and ene chemistry." *J. Med. Chem.* **2011**, *54*, 6843-6858.

4. Roosenberg, J. M., Jr.; Miller, M. J. "Total synthesis of the siderophore danoxamine." *J. Org. Chem.* **2000**, *65*, 4833-4838.

5. Wencewicz, T. A.; Oliver, A. G.; Miller, M. J. "Iron(III)-templated macrolactonization of trihydroxamate siderophores." *Org. Lett.* **2012**, *14*, 4390-4393.