1	Supporting Information
2	
3	The adhesive and cohesive properties of a bacterial polysaccharide adhesin are modulated by a
4	deacetylase.
5	
6	Zhe Wan, Pamela J.B. Brown ¹ , Ellen N. Elliott ² , and Yves V. Brun*
7	
8	Department of Biology, Indiana University, Bloomington, IN 47405, USA.
9	
10	*Corresponding author. Mailing address: Department of Biology, Indiana University, 1001 E. 3 rd St.,
11	Bloomington, Indiana 47405, USA. Phone: 812-855-8860. Fax: 812-855-6705. Email:
12	ybrun@indiana.edu.
13	
14	1. Current address: Division of Biological Sciences, University of Missouri, 105 Tucker Hall,
15	Columbia, MO 65211-7400
16	2. Current address: University of Pennsylvania School of Medicine, 12-165 Translational Research Center, 3400
17	Civic Center Boulevard, Philadelphia, PA 19104, USA

1 SUPPORTING EXPERIMENTAL PROCEDURES

2

3 Formic acid treatment of HfaA and HfsD samples.

4

5 Cell fractionation and protein analysis were performed as previously described (Hardy et al., 6 2010). Cell pellets from 20 ml of exponentially growing cells normalized to $OD_{600} = 0.6$ were 7 resuspended in 1 ml of 20 mM Tris buffer pH = 8 suspended, and lysed by FastPrep®-24 Instrument 8 (MP Biomedicals LLC) in 2.0 ml Lysing Matrix tube containing specialized Lysing Matrix beads for 9 45 sec. Unbroken cells were removed by centrifugation at 16,000 g at 4°C for 2 min. The supernatant was removed and centrifuged at 100,000 x g at 4°C for 30 min. The pellet was suspended in 500 µl 20 10 11 mM Tris, pH 8.0 and 1% sodium lauryl sarcosine, rocked at RT for 45 min, and centrifuged at 100,000 12 x g for 30 min. The pellet comprises the OM fraction which contains HfaA and HfaD and was treated 13 with 90% formic acid for 2h at room temperature at dark prior to analysis by SDS-PAGE. After 14 incubation with formic acid, all samples were lyophilized until dry. Two volumes of deionized water 15 were added to each formic acid sample, which was lyophilized again to remove traces of formic acid. 16 Samples were suspended in equal volumes of 1 M Tris, pH 8 and 2X SDS-PAGE sample buffer (0.125 17 M Tris, 4% w/v SDS, 25% v/v glycerol, 4% w/v dithiothreitol, 10% v/v β-mercaptoethanol, and 0.2% 18 w/v bromophenol blue) and boiled for 5 min prior to electrophoresis where each loaded sample was 19 equivalent to 25 ml cell culture at OD600=0.6.

20

21 Western Blot Analysis

22

23 Protein samples were resuspended in 50 µl 10 mM Tris pH 8.0, and 50 uL of 2x SDS sample buffer

24 was added to the suspension. Samples were then boiled for 5 min before being run on a 12% w/v

25 polyacrylamide gel, and transferred to nitrocellulose membranes. Membranes were blocked for 1 h in

1	5% w/v nonfat dry milk in TBST (20 mM Tris, pH 8, 0.05% v/v Tween 20), and incubated with M2-
2	HRP at a concentration of 1:1000 overnight at 4°C. Then, a 1:10,000 dilution of secondary antibody,
3	horseradish peroxidase (HRP)-conjugated goat anti-rabbit immunoglobulin, was incubated with
4	membranes at room temperature for 1h. Membranes were developed with SuperSignal West Dura
5	Substrate (Thermo Scientific, Rockford, IL).
6	
7	Epifluorescence microscopy and image analysis
8	
9	Microscopy was performed on a Nikon Eclipse 90i equipped with Chroma 83000 filter set, a 100X
10	(DIC or phase-contrast) oil objective, and a Photometrics Cascade 1K EMCCD camera. Images were
11	captured using Nikon NIS Elements advance research version 4.0
12	
13	Cell fractionation and protein analysis.
14	
15	Cell pellets from 20 ml of exponentially growing cells normalized to $OD_{600} = 0.6$ were resuspended in
16	1 ml of 20 mM Tris buffer pH = 8 suspended, and lysed by FastPrep®-24 Instrument (MP Biomedicals
17	LLC) in 2.0 ml Lysing Matrix tube containing specialized Lysing Matrix beads for 45 sec. Unbroken
18	cells were removed by centrifugation at 16,000 x g at 4°C for 2 min. The supernatant was removed and
19	centrifuged at 100,000 x g at 4°C for 30 min. The supernatant containing the soluble proteins and the
20	pellet containing the insoluble membrane proteins were stored at -80°C.

1 SUPPORTING TABLES

2

3 **Table S1.** Comparison of the genes involved in holdfast biosynthetis in *C. crescentus* and their

4 homologs in close relatives of *Caulobacter*.

C. crescentus CB15		A. biprosthecum C19		H. baltica		B. diminuta	
Holdfast gene	Predicted gene function	Locus tag	% Ident.*	Locus tag	% Ident.*	Locus tag	% Ident.*
hfsE (CC2425)	Glycosyltransferase	NA**	53	NA**	43	1681	49
hfsF (CC2426)	Flippase	42660	46	100	37	17320	52
hfsG (CC2427)	Glycosyltransferase	42650	59	1964	41	17330	60
hfsH (CC2428)	Polysaccharide deacetylase family protein	42640	51	1965	33	22530	37
hfsC (CC2429)	Polysaccharide polymerase	42530	45	1972	31	18490	43
hfsB (CC2430)	Polysaccharide autokinase-related protein	42620	44	1967	37	17340	47
hfsA (CC2431) Chain length determinant family protein		42610	41	1968	34	17350	42
hfsD (CC2432)	Polysaccharide biosynthesis/export family proteins	42600	50	1969	41	17360	49

5

6 * Gene is found in the region without annotation.

7 ** % identity to gene homolog in *C. crescentus* CB15.

2 **TABLE S2.** Bacterial strains and plasmids

	Derivation/phenotype/genotype	Reference/Source
E. coli		
Alpha select	F- deoR endA1 recA1 relA1 gyrA96 hsdR17(rk-, mk+) supE44 thi-1	Bioline
	phoAΔ(lacZYAargF)U169 φ80lacZΔM15 λ -	
BL21(DE3)	F- ompT hsdSB (rB-mB-) gal dcm (λDE3)	
C. crescentus		
YB135	CB15 wild-type	(Poindexter, 1964)
YB2857	CB15 $\Delta h fs DAB$	Brun lab
YB6364	CB15 $\Delta h fsD-E$	June Javens
YB2198	CB15 $\Delta h fs H$	Toh et al, 2008
YB4251	CB15 $\Delta h f a B$	Hardy et al, 2010
YB4284	CB15 hfaB::pCHYChfaAB	Hardy et al, 2010
YB6886	CB15 AhfsH hfaB::pCHYChfaAB	This work
YB2578	CB15 hfaA::pJM23hfaA	Brun lab
YB5622	CB15 \Delta hfaA:::pJM23hfaA	This work
YB2579	CB15 hfaD::pJM23hfaD	Brun lab
YB5624	CB15 \Delta hfaD::pJM23hfaD	This work
YB6887	CB15 $\Delta h fs H$ pMR10 $h fs H$	This work
YB6888	CB15 ΔhfsH pMR10hfsH-D48A	This work
A. biprosthecum		
YB642	C19 wild type	(Larson and Pate, 1975)
YB5191	C19nal; parent strain of transposon mutants	This study
YB5649	C19nal <i>hfsH</i> ::MarTn	This study
YB5650	C19nal hfsE::MarTn	This study
YB5651	C19nal hfsA::MarTn	This study
YB6593	C19nal hfsD::MarTn	This study

Hirschia baltica

YB5842

ATCC49814

(Chertkov et al., 2011)

Brevundimonas diminuta

YB5193 ATCC11568

Plasmids

pET28a hfsH	Protein overexpression vector that carries the hfsH gene	This work
pET28a <i>hfsHD48A</i>	Protein overexpression vector that carries the hfsH gene with single amino	This work
	acid mutation from Asp48 to Ala.	
pMR10	shuttle plasmid for <i>E. coli</i> and <i>Caulobacter</i> , Km ^R	Roberts et al., 1996
pMR10 hfsH	Complementation vector that carries the native $hfsE$ promoter and the $hfsH$	Toh et al, 2008
	gene	
pMR10 hfsHD48A	Complementation vector that carries the native $hfsE$ promoter and the $hfsH$	This study
	gene with single amino acid mutation from Asp48 to Ala.	
pUJ142	High copy number plasmid that is a derivative of pBBR1MCS with a	U. Jenal, unpublished
	xylose inducible promoter. Cm ^R	
pUJ142 hfsH	Complementation vector that carries the $hfsH$ gene	This study

1 SUPPORTING FIGURE LEGENDS

characterized CE4 esterase family members. The conserved motifs are indicated by squares. Motif 2
(black box) contains the zinc binding triad. The conserved acetate binding residues (blue triangles) are
required for enzymatic activity and include the site of the point mutation (blue star). From the top to
the bottom, the polysaccharide deacetylases compared are as follows: C. crescentus CB15 HfsH
(accession number AAK24399.1), A. biprosthecum HfsH (accession number AAK24399.1),
Streptococcus pneumonia PgdA (accession number CAB96552.1), Bacillus subtilis PdaA (accession
number O34928.1), and Colletotrichum lindemuthianum CDA (accession number AY63365).
Figure S2. Circular dichroism spectra of wild-type HfsH-WT(wild-type) (pink) and HfsH-D48A
(green) in 50 mM sodium phosphate pH 7.4. Samples have a concentration of 0.17 mg ml ⁻¹ , and were
measured in a 0.1-cm cell.
Figure S3 . Analysis of holdfast anchoring machinery in a $\Delta hfsH$ mutant. (A) Western Blots of outer
Figure S3 . Analysis of holdfast anchoring machinery in a $\Delta hfsH$ mutant. (A) Western Blots of outer membrane fractions. HfaA forms SDS/heat high-molecular weight (HMW) complexes in wild-type
Figure S3 . Analysis of holdfast anchoring machinery in a $\Delta hfsH$ mutant. (A) Western Blots of outer membrane fractions. HfaA forms SDS/heat high-molecular weight (HMW) complexes in wild-type (WT) and $\Delta hfsH$ mutant cells expressing HfaA-M2 or HfaD-M2, and these HMW complexes
Figure S3 . Analysis of holdfast anchoring machinery in a $\Delta hfsH$ mutant. (A) Western Blots of outer membrane fractions. HfaA forms SDS/heat high-molecular weight (HMW) complexes in wild-type (WT) and $\Delta hfsH$ mutant cells expressing HfaA-M2 or HfaD-M2, and these HMW complexes disassociate into monomers after formic acid (FA) treatment. Blots were probed with M2-specific
Figure S3 . Analysis of holdfast anchoring machinery in a $\Delta hfsH$ mutant. (A) Western Blots of outer membrane fractions. HfaA forms SDS/heat high-molecular weight (HMW) complexes in wild-type (WT) and $\Delta hfsH$ mutant cells expressing HfaA-M2 or HfaD-M2, and these HMW complexes disassociate into monomers after formic acid (FA) treatment. Blots were probed with M2-specific antibody. Lane 1) CB15 wild-type (WT) treated with SDS and heat; 2) CB15 treated with SDS, heat
Figure S3 . Analysis of holdfast anchoring machinery in a $\Delta hfsH$ mutant. (A) Western Blots of outer membrane fractions. HfaA forms SDS/heat high-molecular weight (HMW) complexes in wild-type (WT) and $\Delta hfsH$ mutant cells expressing HfaA-M2 or HfaD-M2, and these HMW complexes disassociate into monomers after formic acid (FA) treatment. Blots were probed with M2-specific antibody. Lane 1) CB15 wild-type (WT) treated with SDS and heat; 2) CB15 treated with SDS, heat and formic acid; Lane 3) $\Delta hfsH$ wild-type treated with SDS and heat; 4) $\Delta hfsH$ treated with SDS, heat
Figure S3 . Analysis of holdfast anchoring machinery in a $\Delta hfsH$ mutant. (A) Western Blots of outer membrane fractions. HfaA forms SDS/heat high-molecular weight (HMW) complexes in wild-type (WT) and $\Delta hfsH$ mutant cells expressing HfaA-M2 or HfaD-M2, and these HMW complexes disassociate into monomers after formic acid (FA) treatment. Blots were probed with M2-specific antibody. Lane 1) CB15 wild-type (WT) treated with SDS and heat; 2) CB15 treated with SDS, heat and formic acid; Lane 3) $\Delta hfsH$ wild-type treated with SDS and heat; 4) $\Delta hfsH$ treated with SDS, heat and formic acid; (B) HfaD forms HMW complexes in wild-type and $\Delta hfsH$ mutant cells. Blots are
Figure S3 . Analysis of holdfast anchoring machinery in a $\Delta hfsH$ mutant. (A) Western Blots of outer membrane fractions. HfaA forms SDS/heat high-molecular weight (HMW) complexes in wild-type (WT) and $\Delta hfsH$ mutant cells expressing HfaA-M2 or HfaD-M2, and these HMW complexes disassociate into monomers after formic acid (FA) treatment. Blots were probed with M2-specific antibody. Lane 1) CB15 wild-type (WT) treated with SDS and heat; 2) CB15 treated with SDS, heat and formic acid; Lane 3) $\Delta hfsH$ wild-type treated with SDS and heat; 4) $\Delta hfsH$ treated with SDS, heat and formic acid; (B) HfaD forms HMW complexes in wild-type and $\Delta hfsH$ mutant cells. Blots are arranged in the same order as (A). (C) Overlay micrographs of differential interference contrast (DIC)

- hfaB::pCHYChfaAB, and the right panel is CB15 $\Delta hfsH hfaB::pCHYChfaAB$. The localization of
- 2 HfaBmCherry (in red) in indicated by white arrows.

4	Figure S4. HfsH localizes to the soluble fraction of cells. Total whole cells (WC) were separated into
5	soluble fraction (Soluble) and insoluble membrane fraction (Insoluble) fraction. McpA (membrane
6	positive control), and CtrA (soluble fraction positive control) are shown.
7	
8	
9	
10	

1 SUPPORTING REFERENCES 2

- Chertkov, O., P. J. Brown, D. T. Kysela, M. A. de Pedro, S. Lucas, A. Copeland, A. Lapidus, T. G. Del
 Rio, H. Tice, D. Bruce, L. Goodwin, S. Pitluck, J. C. Detter, C. Han, F. Larimer, Y. J. Chang, C.
 D. Jeffries, M. Land, L. Hauser, N. C. Kyrpides, N. Ivanova, G. Ovchinnikova, B. J. Tindall, M.
 Goker, H. P. Klenk & Y. V. Brun, (2011) Complete genome sequence of *Hirschia baltica* type
 strain (IFAM 1418(T)). *Standards in genomic sciences* 5: 287-297.
- 8 Hardy, G. G., R. C. Allen, E. Toh, M. Long, P. J. B. Brown, J. L. Cole-Tobian & Y. V. Brun, (2010) A
 9 localized multimeric anchor attaches the Caulobacter holdfast to the cell pole. *Mol Microbiol*10 76: 409-427.
- Larson, R. J. & J. L. Pate, (1975) Growth and morphology of *Asticcacaulis biprosthecum* in defined
 media. *Arch Microbiol* 106: 147–157.
- Poindexter, J. S., (1964) Biological Properties and Classification of the Caulobacter Group.
 Bacteriological reviews 28: 231-295.
- 15
- 16

Fig. S1

			Motif 1	
CbHfsH	33	<mark>PAK</mark> VALE	RPMVSF <mark>SFDDA</mark> PAT-ACEA	GARALE 63
AbiHfsH	29	<mark>PIGM</mark> <mark>PGIR</mark>	RPMLTVSFDDAPAS- <mark>SAR</mark> N	<mark>IGAAILK</mark> 60
SpPdaA	251 <mark>lef</mark>	K <mark>D</mark> A <mark>ALYQ</mark> -SYFDKKH	QKVVALTFDD <mark>GPNP</mark> ATTPQ	VLETLA 291
BsPdaA	49 <mark>NSI</mark>	LI- <mark>EKYD</mark> A <mark>FYLGNTKI</mark>	EKTIYL <mark>TFD</mark> N <mark>GYEN</mark> GYTPF	<mark>(VLDVLK</mark> 89
ClCDA	30	<mark>PVGT</mark> - <mark>PILQCTQ</mark>	PGLVAL <mark>TYDD</mark> GPFT-FTPÇ	<mark>)LLDILK</mark> 64
cons	253		*	* 294
CbHfsH	64 ARC	GLRGTYY <mark>FAAGL</mark> TGR	DGPM <mark>GRYATGE</mark> DARRLHEA	GHEIAC 105
AbiHfsH	61 SHO	GVTGTWFISAGMMGO	DSHMGPMTSGDDIRALYAA	GFEIGC 102
SpPdaA	292 KYI	DIKATFFVLGK <mark>N</mark>	<mark>VS</mark> GNEDLVKRIKSE	GHVVGN 325
BsPdaA	90 <mark>KH</mark>	RVTGTFFVTGHF-VK	D <mark>QPQL</mark> IKRMSDE	GHIIGN 123
ClCDA	65 <mark>QNI</mark>	DVRATFFVNGNN <mark>-WA</mark>	NI <mark>EAGSNP</mark> DTIRRMRAL	<mark>GHLVGS</mark> 103
cons	295	: .*::	1 1 1	*. :. 336
	Mc	otif 2		Motif 3
CbHfsH	106 <mark>HT</mark>	YSHLDCGQSSQTETL	ADVDRNAESLAAWGAGD- <mark>F</mark>	VSFA <mark>YP</mark> 146
AbiHfsH	103 <mark>HT</mark>	YGHLDCGRAGKDEID	<mark>KAIE</mark> DNQSVLHSLGIPM- <mark>E</mark>	<mark>'RTFAYP</mark> 143
SpPdaA	326 <mark>HSV</mark>	WSHPILSQLSLDEAK	<mark>KQITDTEDVLT</mark> KVLGSS <mark>-</mark> S	KLMRPP 366
BsPdaA	124 <mark>HS</mark>	FHHPDLTTKTADQIQ	<mark>DELDSVNEE</mark> VYKITGKQD <mark>N</mark>	ILYLRPP 165
ClCDA	104 <mark>HT</mark>	YAHPDLNTLSSADRI.	<mark>SQMRH</mark> VEEATRRIDGFA- <mark>F</mark>	<mark>'KYMR</mark> AP 144
cons	337 <mark>*:</mark> :	: * :		: * 378
	Motif	f 3	Motif	4
CbHfsH	147 <mark>YG</mark> I	DVAAPAKTALSG	RF <mark>KTLRALHHGLITI</mark> GADI	NQTPAV 185
AbiHfsH	144 <mark>YG</mark>	DVSAQAKAVVDK:	RY <mark>LASRA</mark> LHHGLIVEGTDI	NQAPAV 182
SpPdaA	367 <mark>YG</mark>	AITDDIRNSLDL	<mark>SFIMWDVDSL</mark> DW	<mark>iks</mark> knea 398
BsPdaA	166 <mark>RG</mark>	VFSEYVLKE <mark>T</mark> KR <mark>LG</mark> Y	QT <mark>VFWSVAF</mark> VDW	194
ClCDA	145 YL	SCDAGCQGDLG <mark>GL</mark> GY.	H <mark>I</mark> <mark>IDTNLDTK<u>DYEN</u></mark>	<mark>NKPETT</mark> 181
cons	379			420
			 Motif 5	
CbHfsH	186 <mark>GTF</mark>	EGEDGETVAKAWLDK	-AKARKAWLILYTHDZAGO	PSOWGC 226
AbiHfsH	183 GTF	EGEDGERVAMSWLER	AAKTPOSWLVLYTHDVRKA	PSPFGC 224
SpPdaA	399 ST	LTEIO	HOVANGSIVIMHDTHSF	42.2
BsPdaA	195 KTN	NNOKGKKYAYDHMTK	-OAHPGAIYILHTVSR	227
CICDA	182 HLS	SAEKFNNEL	SADVG <mark>A</mark> NSYIVISHDVHEQ	211
cons	421 :		: *:	462

C.

