Missense substitutions reflecting regulatory control of transmitter phosphatase activity in two-component signaling

TuAnh Ngoc Huynh,^{1†} Chris E. Noriega,^{2‡} and Valley Stewart^{1,2*}

¹*Food Science Graduate Group and* ²*Department of Microbiology & Molecular Genetics, University of California, Davis, CA* 95616-8665, USA.

*For correspondence. E-mail vjstewart@ucdavis.edu; Tel. (+1) 530 754 7994; Fax (+1) 530 752 9014. [†]Present address: Department of Microbiology, University of Washington, Seattle, WA 98195-7735 USA. [‡]Present address: BP Global Technology Center, San Diego, CA 92121-3829 USA.

Supplementary Material

Fig. S1. Correlation between nitrite hypersensitivity and P⁻ phenotypes. Data from **Table 2** are plotted, with the X axis showing values for the positive function assay (cultures grown with nitrite), and tye Y axid showing values for the negative function assay (cultures grown in the absence of nitrate). Corresponding data for the D558V mutant are from **Table S1**. The diagonal line shows the position of 1:1 correspondence, and is *not* a statistical construct drawn from the data. Symbols are: **I**, *narX*⁺; **•**, *narX* null; \Box , DHp domain helix α 1 mutants; \bigcirc , DHp domain helix α 2 mutants; **•**, CA domain single substitution mutants;

Fig. S2. Autophosphorylation by C415R and Y551F mutant versions of MBP-NarX₂₂₇ in vitro. \Box , NarX⁺; O, C415R; \diamondsuit , Y551F; \bullet , His₆-NarL.

Fig. S3. In vivo functionality of NarX-T25 fusion proteins. LacZ synthesis results from expression of the chromosomal $\Phi(narG-lacZ)$ reporter in the *narX narQ* double null strain VJS3041. Striped and filled bars show data from cultures grown in the absence and presence of nitrate, respectively. Plasmid pVJS2474 encodes wild-type NarX. Plasmid pKNT25 is the empty T25 fusion vector.

Fig. S4. CA domain sequences. Conserved motifs are as described (Grebe and Stock, 1999). Residues that match the motif sequence are enclosed in black boxes. Substitutions resulting in the $K^+ P^-$ phenotype are shown above the sequence. For NarX, double substitutions are enclosed in boxes.

Fig. S5. Concentration dependence of MBP-NarX₂₂₇ transmitter phosphatase activity in vitro. [³²P]-Phospho-NarL was prepared, added to different concentrations of NarX dimers, and sampled for analysis as described in Experimental Procedures.

A. •, no sensor; \blacksquare , 0.5 μ M μ M NarX⁺ (dimers; standard concentration for all other experiments); O, 5.0 μ M.

B. •, no sensor; \diamondsuit , 0.01 μ M NarX⁺ (dimers); \triangle , 0.05 μ M; \Box , 0.1 μ M.

C. •, no sensor; \blacktriangle , 0.2 μ M NarX⁺ (dimers); \blacksquare , 0.5 μ M (standard concentration for all other experiments); \bigtriangledown , 1.0 μ M.

	Region ^c	β-Galactosidase ^a						
Allele ^b		Negative Function ^d			Positive Function ^e			
		None	Nitrate	Ratio	None	Nitrate	Nitrite	
pHG165		1,170	1,100	0.9	11 ^f	10 ^f	17 ^f	
narX [‡]	_	330	1,310	4.3	17	1860	240	
Q412R	DHp helix α1	370	1,210	3.3	60 ^f	2,090 ^f	220 ^f	
V413M	DHp helix α1	3,200	1,040	0.3	120 ^f	2,330 ^f	1,250 ^f	
Q412R+V413M	DHp helix α1	1,710	1,070	0.6	100 ^f	1,530 ^f	1,300 ^f	
D558V	CA	2,390	1,020	0.4	130	1,710	1,920	
S508C + D558V	CA	2,380	1,070	0.4	2,470	2,120	2,250	

Table S1. Effects of *narX* missense substitutions on $\Phi(narG-lacZ)$ expression.

^a Activity was measured as described in Materials and Methods, and is expressed in Miller units.

^b Amino-acyl residue substitutions. *narX* alleles located on plasmid pVJS1241 or pVJS2474 derivatives.

^c Location within NarX protein structure; see text for details.

^d Negative function assayed in strain VJS4033 [Φ(*narG-lacZ*) *narL505* (V88A) *narP*⁺ Δ*narX nar*Q::Tn10 *pcnB*⁺].

^e Positive function assayed in strain VJS5054 [$\Phi(narG-lacZ)$ narL⁺ narP⁺ $\Delta narX$ narQ::Tn10 pcnB1].

^f Positive function data from reference (Noriega *et al.*, 2010).

Strain	Genotype	Source
E. coli K-12	strains:	
VJS2197	$F^- \lambda^-$ prototroph Δ(<i>argF-lac</i>) <i>U169</i> λΦ(<i>narG-lacZ</i>)250	(Rabin and Stewart, 1993)
VJS10304	$F^- \lambda^-$ prototroph Δ <i>cya-854</i> Δ <i>narX</i> Δ <i>nar</i> Q	This study
Derivatives	of VJS2197:	
VJS4033	∆ <i>narX242 narL505</i> (V88A) <i>ychO2084</i> ∷Ω-Cm <i>nar</i> Q251::Tn <i>10</i> d(Tc)	(Rabin and Stewart, 1993)
VJS5054	∆narX242 narQ251::Tn10d(Tc) pcnB1	(Williams and Stewart, 1997b)
V/ IS5720	Zad-987:::In10d(Km)	(Williams and Stewart 1007b)
V333720	<i>nar</i> Q251::Tn10d(Tc) <i>pcnB1 zad-981</i> ::Tn10d(Km)	
Plasmids:		
pHG165	Ap ^r ; <i>ori</i> pMB1; <i>lacZ</i> α pUC8 polylinker	(Stewart <i>et al.</i> , 1986)
pUT18C	Ap ^r ; T18 fragment (amino acids 225 to 399 of CyaA)	(Karimova <i>et al.</i> , 1998)
pKNT25	Km ^r ; T25 fragment (the first 224 amino acids of CyaA)	(Karimova <i>et al.</i> , 1998)
pVJS1241	As pHG165 but <i>narX[†]</i>	(Williams and Stewart, 1997b)
pVJS2474	As pHG165 but <i>narX</i> [‡]	(Appleman and Stewart, 2003)

Table S2. Strains and plasmids.

pHG165	Ap ^r ; <i>ori</i> pMB1; <i>lacZ</i> α pUC8 polylinker	(Stewart <i>et al.</i> , 1986)
pUT18C	Ap ^r ; T18 fragment (amino acids 225 to 399 of CyaA)	(Karimova <i>et al.</i> , 1998)
pKNT25	Km ^r ; T25 fragment (the first 224 amino acids of CyaA)	(Karimova <i>et al.</i> , 1998)
pVJS1241	As pHG165 but $narX^{\dagger}$	(Williams and Stewart, 1997b)
pVJS2474	As pHG165 but <i>narX</i> [‡]	(Appleman and Stewart, 2003
pVJS5321	As pKNT25 but <i>narX</i> [⁺]	This study
pVJS5753	As pUT18C but <i>narL</i> ' (REC domain)	This study