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1 The Usage of gamboostLSS for Boosted Beta Regression

The gamboostLSS algorithm was originally developed by Mayr et al. [1] to fit the class of GAMLSS
(generalized additive models for location, scale and shape, [2]) using boosting techniques. In contrast
to classical mean regression (where only the conditional mean E(Y |X) is modeled), GAMLSS follow the
idea to regress all parameters of the conditional distribution of Y (including scale and shape parameters)
to the predictor variables. As beta regression is a special case of GAMLSS, the gamboostLSS algorithm
can be adapted to simultaneously estimate the predictor effects in a beta regression model for the mean µ
as well as for the precision parameter φ.

In the context of maximum likelihood estimation, the optimization problem for beta regression can
be formulated as
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with ϕ(·) being the density of the beta distribution as in eq. (2) of the paper, ηµ and ηφ the additive
predictors for mean and dispersion parameters as in eqs. (5) and (6) of the paper, respectively, and (Y,X)
the random variables for the response and the covariates, respectively.

In practice, the random variables Y and X are replaced by a set of sample values (yi, xi), i = 1, . . . , n.
This leads to the minimization of the empirical risk
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where the theoretical expectation in (1) is replaced by the empirical mean of log(ϕ(·)).
The gamboostLSS algorithm builds on an earlier method by Schmid et al. [3], who proposed a

component-wise gradient boosting algorithm for statistical models with more than one predictor ηµ.
The basic idea of gradient boosting is to iteratively optimize an empirical risk criterion (as given in (1))
by using gradient descent in function space. The function space is defined by a set of so-called base-
learners, which are simple regression-type functions that are used to fit the negative gradient vector of
the loss function in each iteration of the boosting algorithm. For example, if the risk function is based
on the negative beta log-likelihood (as in (2)), the negative gradient is simply the partial derivative of

the risk with respect to ηµ or ηφ (evaluated at the current estimates η̂
[m]
µ and η̂

[m]
φ in iteration m).

In the case of component-wise boosting, each of the base-learners depends on a small set of the
predictor variables. For example, the set of base-learners can be specified such that each base-learner
refers to exactly one predictor variable. The type of base-learner used for a predictor variable defines the
type of effect this variable will have on the predictors ηµ and ηφ. In case of a linear effect, for example,
simple least-squares regression models can be used as base-learners. Similarly, P-spline base-learners are
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a popular choice for incorporating non-linear effects [4]. When applying component-wise boosting, only
the best performing base-learner and hence only the most influential predictor variable is added to ηµ
and ηφ in each iteration. This strategy ensures that boosting carries out variable selection during the
model fitting process [5].

The basic idea of gamboostLSS is to descend along the gradient of the empirical risk by circling
through the different dimensions of the parameter space (in this case µ and φ). In each iteration, one of
the additive predictors (i.e, ηµ or ηφ) is updated using the best performing base-learner while the other
predictor is kept fixed. In the next step, the second predictor is updated while the first predictor is kept
fixed, and so on. A schematic overview of the update process in two sequential boosting iterations is as
follows:

Iteration m :
∂

∂ηµ
l(y, µ̂[m−1], φ̂[m−1])

update−→ η̂[m]
µ

g−1(η̂[m]
µ )

−−−−−→ µ̂[m] ,

∂

∂ηφ
l(y, µ̂[m], φ̂[m−1])

update−→ η̂
[m]
φ

g̃−1(η̂
[m]
φ )

−−−−−→ φ̂[m]
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Boosted beta regression is formally given by the following algorithm:

Initialization

(1) Initialize the additive predictors

η̂[0]
µ =

(
η̂[0]
µi

)
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and η̂
[0]
φ =

(
η̂

[0]
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)
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with offset values, where the subscript i refers to the i-th observation in the sample.

(2) Specify a set of base-learners for the parameters µ and φ. Denote the base-learners for µ
and φ by hµ1(·), . . . , hµpµ(·) and hφ1(·), . . . , hφpφ(·), respectively, where pµ and pφ are the
cardinalities of the two sets of base-learners. Note that pµ = pφ = p if one base-learner is used
for each of the predictor variables. Set the iteration counter m to 0.

Boosting

(3) Start a new boosting iteration: Increase m by 1.

Boosting update for µ

(4) (a) Compute the partial derivative ∂
∂ηµ

l and plug in the current estimates η̂
[m−1]
µi and φ̂

[m−1]
µi .

This results in the vector
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.
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(b) Fit the gradient vector u
[m−1]
µ to each of the base-learners specified for µ in step (2).

(c) Select the component j∗ that best fits the negative partial-derivative vector according to
the least-squares criterion. More formally, select the base-learner hµj∗ defined by

j∗ = argmin
1≤j≤pµ

n∑
i=1

(u
[m−1]
µi − hµji(·))2 ,

where hµj = (hµji)i=1,...,n are the fitted values of the base-learner hµj for observations
i = 1, ..., n.

(d) Update the additive predictor η̂µ as follows:

η̂[m]
µ = η̂[m−1]

µ + sl · hµj∗(·) ,

where sl is a small step-length (0 < sl� 1).

Boosting update for φ

(5) (a) Compute the partial derivative ∂
∂ηφ

l and plug in the current estimates η̂
[m]
µi and φ̂
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µi .

This results in the vector
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(b) Fit the gradient vector u
[m−1]
φ to each of the base-learners specified for φ in step (2).

(c) Select the component j∗ that best fits u
[m−1]
φ according to the least-squares criterion:

j∗ = argmin
1≤j≤pφ

n∑
i=1

(u
[m−1]
φi − hφji(·))2 ,

where hφj = (hφji)i=1,...,n are the fitted values of the base-learner hφj for observations
i = 1, ..., n.

(d) Update the additive predictor η̂φ as follows:

η̂
[m]
φ = η̂

[m−1]
φ + sl · hφj∗(·) .

Iteration process

(6) Iterate steps 3 - 5 until m > mstop.

The most important tuning parameter of gamboostLSS is the stopping iterationmstop. If the algorithm
is stopped before each base-learner is selected at least once, the predictor variables corresponding to
the non-selected base-learners are effectively excluded from the model. Similarly, mstop controls the
smoothness of non-linear effects, where small values of mstop result in very smooth estimates with a
relatively large bias but little variation. The selection of mstop hence reflects the common bias/variance
trade-off in statistical modeling: Small values of mstop lead to sparse models with smooth functional
terms. In contrast, large values of mstop lead to more complex models with more included predictors and
rougher functional terms. The latter models are typically less stable but have a smaller bias with respect
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to the underlying training data. In practice, the selection of mstop is usually based on resampling or
cross-validation schemes, in order to optimize the predictive risk on observations left out from the fitting
process.

The gamboostLSS algorithm is implemented in the freely available R add-on package gamboost-
LSS [6]. To fit beta regression models, the corresponding distribution has to be specified via families

= BetaLSS() in the fitting functions glmboostLSS() for linear predictors and gamboostLSS() for
non-linear additive predictors. The fitting functions of gamboostLSS build up on the infrastructure
provided by the package mboost [7] for component-wise gradient boosting. For a detailed overview on
boosting and the usage of the corresponding implementations, we refer to Bühlmann & Hothorn [8] and
Hofner et al. [9]. In the following we provide R-Code to fit a simplified boosted beta regression model
using a hypothetical data set named “dat”. Note that continuous predictors should be mean centered
before running gamboostLSS.

## Install newest version of gamboostLSS:

R> install.packages("gamboostLSS",

+ repos = "http://R-Forge.R-project.org")

## Load library:

R> library(gamboostLSS)

## Transform response y with values

## between 0 and 100 to (0,1):

R> dat$y <- (dat$y / 100 *

+ (length(dat$y) - 1) + 0.5) / length(dat$y)

## Build intercept variable:

R> dat$INT <- rep(1, nrow(dat))

## Build model formula for boosting:

## base-learner: bols (linear effect)

## bbs (smooth effect)

## bspatial (spatial effect)

## With the options center = TRUE and df = 1 the flexibilities

## of smooth and spatial base-learners are reduced to avoid

## selection bias towards linear terms.

R> fm <- as.formula(y ~ bols(INT, intercept = FALSE) +

+ bols(cov1, intercept = FALSE) +

+ bbs(cov1, center = TRUE, df = 1) +

+ bols(lon, intercept = FALSE) +

+ bols(lat, intercept = FALSE) +

+ bols(lonlat, intercept = FALSE) +

+ bspatial(lon, lat, center = TRUE,

+ df = 1))

## Fit the model:

## Specify beta regression via families = BetaLSS(); The

## function boost_control is used to set the tuning parameters

## of boosting algorithm. With the argument mstop the stopping

## iteration is specified, nu defines the step length.
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R> model1 <- gamboostLSS(formula = fm, families = BetaLSS(),

+ data = dat,

+ control = boost_control(mstop = 100,

+ nu = 0.01 ))

2 List of Predictor Variables

Tables 1 to 3 contain the full list of predictor variables used for modeling the percentage of benthic
macroinvertebrate taxa (EPHEptax) in Section 3 of the paper. In addition, the three tables contain
the respective data sources. “NLA” refers to USA EPA National Lakes Assessment, “CH” refers to
Charles Hawkins, Western Center for Monitoring and Assessment of Freshwater Ecosystems at Utah
State University.
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name of predictor variable unit / levels source

basin area km2 NLA
percent of basin area as Developed (NLCD21+
NLCD22+NLCD23+NLCD24) NLA
percent of basin area as Planted/Cultivated
(NLCD81+NLCD82) NLA
percent of basin area as Forested Upland
(NLCD41+NLCD42+NLCD43) NLA
percent of basin area as Wetlands (woody + herbaceous) NLA
lake polygon area from NHD km2 NLA
maximum observed lake depth m NLA
site elevation from the National Elevation Data Set m NLA
field pH from Profile DO data NLA
conductivity µS/cm @ 25 ◦C NLA
Acid Neutralizing Capacity (ANC) µ eq/L NLA
turbidity Nephelometric Turbidity

Units (NTUs) NLA
dissolved organic carbon mg/L NLA
nitrate mg/L NLA
total phosporus µg/L NLA
chloride mg/L NLA
sulfate mg/L NLA
calcium mg/L NLA
potassium mg/L NLA
total nitrogen mg/L NLA
sodium mg/L NLA
magnesium mg/L NLA
silica mg/L SiO 2 NLA
ammonium mg/L NLA
chlorophyll a concentration µg/L NLA
shoreline development index (lake polygon perimeter/
2
√

lake polygon area · π) m/m2 NLA
lake origin Factor with levels

“man-made” and “natural”
(including natural lakes
augmented by dams) NLA

mean station depth m NLA
coefficient of variation of littoral depth NLA
fractional areal cover of bottom substrate that is silt and sand NLA
fractional areal cover of bottom substrate that is silt NLA
fractional areal cover of bottom substrate that is organic NLA
fractional areal cover of bottom substrate that is bedrock NLA
fractional areal cover of bottom substrate that is boulders NLA
mean log10-transformed bottom substrate diameter (mineral) mm NLA
fractional areal cover of littoral floating + emergent macrophytes NLA
mean log10-transformed shoreline substrate diameter (mineral) mm NLA
mean log10-transformed shoreline substrate diameter (mineral) mm NLA
index of nonagricultural human influences (= sum of individual
weighted means of nonagricultural influences) NLA
index of agricultural human influences(= sum of individual
weighted means of agricultural influences) NLA
index of total riparian areal cover from woody vegatation NLA
count of values of riparian ground areal cover from standing
water/innudated vegetation NLA

Table 1. Predictor variables used for modeling EPHEptax in the results section of the paper.
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name of predictor variable unit / levels source

index of littoral fish cover from natural structures NLA
index of total littoral fish cover NLA
fractional cover of littoral fish cover that is brush NLA
fractional cover of littoral fish cover that is snags NLA
count of values of riparian canopy areal cover
from large trees (> 30 cm dbh) NLA
fractional areal cover of shoreline substrate from bedrock NLA
fractional areal cover of shoreline substrate from boulders NLA
weighted presence of all human influences NLA
mean horizontal distance to highwater mark m NLA
mean vertical height to highwater mark m NLA
lake polygon perimeter from NHD km NLA
ratio of drainage basin area to lake surface area NLA
watershed mean of the high values of available water
capacity (fraction) of soils from the State Soil
Geographic (STATSGO) Database CH
watershed mean of the high values of soil bulk density of
soils from the State Soil Geographic (STATSGO) Database g/cm3 CH
watershed mean of the high value of organic matter content of
soils from State Soil Geographic (STATSGO) Database percent by weight CH
watershed mean of the high values of permeability
of soils from the State Soil Geographic (STATSGO) Database inches / hour CH
watershed mean of the high values of depth to bedrock
of soils from the State Soil Geographic (STATSGO) Database inches CH
percent of the bedrock geology in the watershed
classified as sedimentary forms derived from a simplified version
of the Generalized Geologic Map of the Conterminous U.S. CH
geology type with largest percent coverage within the watershed
derived from a simplified version of the Generalized
Geologic Map of the Conterminous United States factor with levels

“Gneiss”, “Granitic”,
“Mafic UltraMaf”,
“Quaternary”,
“Sedimentary”
and “Volcanic” CH

watershed mean of the soil erodibility factor of soils from the
State Soil Geographic (STATSGO) Database CH
sampling point long-term annual precipitation, values based on
30 years (1971-2000) of PRISM climate estimates mm CH
sampling point maximum temperature ◦C CH
sampling point minimum temperature ◦C CH
average temperature of the specific summer that field sampling
was done at site ◦C CH
total average precipitation for the specific summer that field
sampling was done at site mm CH
total precipitation for previous year at sampling point
(estimated total precipitation for the 12 months
prior to the field sampling season) mm CH

Table 2. Predictor variables used for modeling EPHEptax in the results section of the paper.
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name of predictor variable unit / levels source

N:P ratio (Total Nitogen/Total Phosphorus) this study
distance to the nearest NHDplus waterbody m this study
surface area of nearest NHDplus waterbody km2 this study
distance to the nearest large (> 1 km2 surface area)
NHDplus waterbody m this study
surface area of nearest large (> 1 km2 surface area)
NHDplus waterbody km2 this study
number of NHDplus waterbodies within a 1 km radius
of sampling site this study
total surface area of NHDplus waterbodies within a 1 km
radius of sampling site km2 this study
number of NHDplus waterbodies within a 20 km
radius of sampling site this study
total surface area of NHDplus waterbodies within a 20 km radius
of sampling site km2 this study
NHDplus HUC2 drainage basin intersected with Köppen-Geiger
Climate Classification factor variable (see

Kottek et al. [10] for
definitions of
factor levels) this study

Table 3. Predictor variables used for modeling EPHEptax in the results section of the paper.


