
1 Methods

1.1 Haplotype Frequency Estimation

The MM principle involves two steps. In maximization, we first minorize and then maximize. In minimization,

we first majorize and then minimize. Because we are interested in penalized maximum likelihood estimation, we

interpret MM in the former sense. The minorization step creates a surrogate function q 7→ g(q |qn) anchored at

the current iterate q
n of a parameter search. The surrogate function falls below the objective function f(q) and

is tangent to it at the current point q
n. Formally, these conditions amount to

f(qn) = g(qn | q
n)

f(q) ≥ g(q | q
n), q 6= q

n.

The maximization step of the MM algorithm solves for the parameter vector q
n+1 maximizing the surrogate

function g(q | q
n). In the process the objective function f(q) is sent uphill.

The traditional EM algorithm for haplotype frequency estimation can be interpreted as an MM algorithm.

Let q be the vector of haplotype frequencies and Hi be the set of ordered haplotype pairs (k, l) consistent with

subject i’s observed multilocus genotype. In this notation i’s likelihood is written as

ℓi(q) =
∑

(k,l)∈Hi

qkql.

The full loglikelihood across all independent samples equals

L(q) =
∑

i

ln ℓi(q).

To encourage parsimony, we subtract a penalty that tends to eliminate haplotypes with low explanatory power.

The penalty is defined by a threshold δ, a tuning constant λ scaling the strength of the penalty, and the penalty

function

p(q) =















q q ≤ δ

δ q > δ.
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Accordingly, the haplotype frequency vector q is estimated by maximizing the objective function

f(q) = L(q) − λ
∑

j

p(qj). (1)

The concavity of the natural logarithm entails the minorization

L(q) ≥
∑

i

∑

(k,l)∈Hi

qn
k qn

l

ℓi(qn)
ln

[

ℓi(q
n)

qn
k qn

l

qkql

]

=
∑

k

cn
k ln qk + cn

0

where

cn
k =

∑

i

∑

l

[

1(k,l)∈Hi
+ 1(l,k)∈Hi

] qn
k qn

l

ℓn
i (qn)

cn
0 =

∑

i

∑

(k,l)∈Hi

qn
k qn

l

ℓi(qn)
ln

[

ℓi(q
n)

qn
k qn

l

]

.

The penalty p(qj) is majorized by the linear function qj when qn
j < δ. It is majorized by the constant δ when

qn
j ≥ δ. Multiplying the penalty majorization by −λ gives a valid minorization of −λp(qj). Finally, adding the

minorization of L(q) and the minorizations of the penalty terms −λp(qj) gives the overall minorization

f(q) ≥
∑

j

cn
j ln qj + cn

0 − λ
∑

j:qn
j

<δ

qj − λ
∑

j:qn
j
≥δ

δ (2)

of the objective function (1). This completes the description of the minorization step of the MM algorithm. The

maximization step involves solving a sequence of quadratic equations that respect the constraints qj ≥ 0 for all j

and
∑

j qj = 1. Details are presented in our earlier paper [Ayers and Lange, 2008]. The bottom line is that the

explicit MM updates are only slightly more complicated than the standard EM updates.

1.2 Genotype imputation and haplotype phasing

Our algorithms for imputing genotypes operate on a sliding window of constant width. Fixing the number

of markers per window simplifies implementation. Constraining the maximum number of haplotypes considered

per window to a constant hmax controls computational complexity. Within this overall framework, we implement

two strategies that differ in their reliance on reference haplotypes and in the number of SNP positions imputed
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per window. In both strategies we first estimate haplotype frequencies within the window using the iterative MM

algorithm just discussed.

The first strategy, introduced in our previous paper [Ayers and Lange, 2008], is relevant when there are no

reference haplotypes to inform imputation. Even when reference haplotypes are available, an agnostic mode of

imputation may be helpful in imputing variants that are not polymorphic in the external data. The drawback of

ignoring reference haplotypes is that it is hard to guess in advance which haplotypes are pertinent to a window.

In mitigation the window is slowly moved SNP by SNP across a genomic region, and partial haplotypes from

the previous window are propagated and expanded to fill the current window. Because the window advances a

single SNP at a time, only the central SNP of the window is imputed. Imputation is done by computing posterior

probabilities. Let rim(s, t) denote the penetrance (likelihood) of person i’s observed genotype at the central SNP

m of the window given an underlying ordered genotype (s, t). Soft penetrances are generally preferable to hard

genotype calls because noise is better taken into account. The posterior probability of an ordered genotype (s, t)

at SNP m amounts to nothing more than the ratio

1

ℓi(q)

∑

(km,lm)=(s,t)

qkqlrim(s, t),

where the sum ranges over all ordered haplotypes (k, l) displaying the ordered genotype (s, t) at the central SNP,

and ℓi(q) is the likelihood of i’s observed multilocus genotypes in the window. The posterior probabilities of the

various genotypes are translated into a posterior mean count of the number of minor or reference alleles at the

central SNP. If hard imputations are desired, then the unordered genotype with the maximum posterior probability

is reported.

Haplotype phasing operates in essentially the same manner as genotype imputation. Indeed, both procedures

rely on the same algorithms for estimating haplotype frequencies and aggregating posterior evidence over pairs

of haplotypes. The subtle difference is that during phasing, one distinguishes the two ordered genotypes of

a heterozygote at a SNP and reports the ordered genotype with the higher posterior probability. In practice

estimated haplotype frequencies are substituted for theoretical frequencies, and the likelihood ℓi(q) is computed

with penetrances inserted. Likewise, the MM algorithm is performed with penetrances inserted.

Once imputation is complete at the central SNP, the existing set of haplotypes is modified in preparation for the

next window. Modification is guided by several rules. First, any haplotype whose frequency falls below a threshold,

say 10−8, is pruned from the list of competing haplotypes. Second, if the number of remaining haplotypes is still

greater than 1
2hmax, further rare haplotypes are pruned until this constraint is met. The remaining haplotypes
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are then copied to the next window and edited. The first edit crops the leftmost SNP. If haplotypes coincide

after cropping, redundant copies are deleted. The second edit duplicates each remaining haplotype and appends

a 0 to the right end of one member of the duplicated pair and a 1 to the right end of the other member of the

duplicated pair. (Internally, the two alleles of a SNP are always represented as 0’s and 1’s.) The next round of

haplotype frequency estimation and genotype imputation can now proceed with the revised list of haplotypes.

When reference haplotypes are available, our second strategy produces further gains in computational efficiency.

The list of competing haplotypes now is equated to the unique haplotypes in the reference set spanning the current

window. Instead of imputing a single SNP, we now employ a middle-third tactic. Thus, all w SNPs in the middle

third of a window of width 3w are simultaneously imputed by posterior probabilities. Advancing to the next

window requires deleting the left third and adding a new right third. The former right third now occupies the

middle. Because haplotype frequency estimation is considerably more expensive than imputation and identification

of the unique reference haplotypes spanning a window, this approach saves substantial computing.

1.3 GPU algorithms

Algorithms written for GPUs have moved well beyond computer games and animation, making inroads into

diverse problems in computational biology such as proteomics [Hussong et al., 2009], phylogenetics [Suchard and

Rambaut, 2009; Zhou et al., 2011a], gene-expression analysis [Magis et al., 2011; Kohlhoff et al., 2011; Buckner

et al., 2010], high dimensional optimization [Zhou et al., 2010; Chen, 2012], epistasis modeling [Chikkagoudar

et al., 2011; Greene et al., 2010; Kam-Thong et al., 2011; Yung et al., 2011; Ritchie and Venkatraman, 2010;

Hemani et al., 2011], sequence alignment [Blom et al., 2011; Campagna et al., 2009; Vouzis and Sahinidis,

2011; Liu et al., 2012b], and systems biology [Klingbeil et al., 2011; Vigelius et al., 2011; Liu et al., 2012a;

Zhou et al., 2011b; Liepe et al., 2010]. Our algorithms for haplotype frequency estimation and imputation offer

ample opportunities for acceleration. The sheer amount of parallelism exposed at key steps of the algorithms is

impressive. Because GPU cores are optimized for parallel arithmetic operations, we expect and realize in practice

major computing gains.

There are currently two development frameworks for writing code for GPU devices. CUDA is a proprietary

framework from nVidia that has garnered considerable interest in the scientific community [nVidia, 2011]. OpenCL

is a specification backed by nVidia, ATI, and others that offers superior code portability. Indeed, OpenCL programs

will run on nVidia and ATI GPUs and even Intel and AMD multi-core CPUs. Nevertheless, it has proved less

popular than CUDA, perhaps due to its lack of utilities and a steeper learning curve [Khronos, 2011]. Since we

considered portability crucial, we based our software on OpenCL.
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Programming a GPU device requires more attention to the underlying hardware than programming a CPU. In

particular, OpenCL specifies a memory model in which programmers explicitly direct where data is to be stored

among three layers of memory at each state of a run. The system RAM typically accessed by conventional CPU

programs is by far the most abundant (64GB on typical high-end servers), but it has much higher latency (access

times) when data is transmitted to a GPU device over a low bandwidth PCIx bus (the slot on a motherboard

where a GPU device is attached). Global memory has much lower latency since it is physically located on the

GPU device, but is relatively scarce (2GB on high-end GPUs). Local memory, shared across cores, is far scarcer

(generally 16-64 KB per GPU) than global memory but has very low latency because it is mounted adjacent to

the arithmetic cores on each GPU. Hence, good GPU programming strategy involves writing code that accesses

RAM and global memory infrequently and performs the bulk of computations in local memory.

It is helpful to demonstrate these concepts in practice through actual code. Listing 1 is a short excerpt from

our kernel computing haplotype pair penetrances under our first imputation scheme. Prior to computations, data

is transferred from global to local memory in a coalesced manner to maximize available bandwidth (efficiency of

data transfers). In other words, data is read from or written to global memory in a block of some fixed number of

elements as a single instruction that runs in parallel across cores. There are 32 elements on the majority of nVidia

GPUs. In our code, we set the constant BLOCK WIDTH equal to 256, a multiple of 32, in order to minimize

memory transfers that are not fully coalesced. For downstream computations, staying within the confines of local

memory can lead to more than a ten-fold speed improvement over code accessing global memory.

Listing 1: Coalesced memory reads

// get s u b j e c t i d e n t i f i e r , mapping to workgroup

i n t s u b j e c t = g e t g r o u p i d ( 0 ) ;

// get th r ead ID , mapping to work i tem

i n t t h r e a d i n d e x = g e t l o c a l i d ( 0 ) ;

// i t e r a t e i n chunks o f BLOCK WIDTH

f o r ( i n t chunk=0;

chunk<(max hap lo types /BLOCK WIDTH)+1;

++chunk ){

i n t hap index = chunk∗BLOCK WIDTH+th r e ad i n d e x ;

i f ( hap index<max hap lo types ){
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Figure 1: Speedup as a function of haplotype diversity

l o c a l a c t i v e h a p l o t y p e [ hap index ]

= a c t i v e h a p l o t y p e [ hap index ] ;

}

}

We have implemented serial versions of the core algorithms in C++. Code written in FORTRAN90 handles

the entry point of our program and orchestrates calling of the various C++ routines. If a GPU device is available,

users can activate a flag to enable execution of our OpenCL kernels, which are dispatched by the C++ routines.

2 Results

2.1 Scalability properties of the GPU implementation

We first verified the correctness of our GPU code by comparing its results to the results of the corresponding

CPU code. Once we were convinced that the GPU code was correct, we ran benchmarking tests on real data to

measure performance gains on our GPU device, the nVidia Tesla C2050, which has 448 cores and 2.5 GB of global

memory. We downloaded the March 2012 release of Phase 1 of the 1000 Genomes Project (KGP) [Altshuler

et al., 2010] from the IMPUTE2 website [Howie et al., 2009]. Three imputation runs, using our first imputation
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scheme (no external haplotypes), were carried out on a subset of the KGP data consisting of 1,092 individuals

typed across a random 1MB region on Chr 22. For each run, we set hmax to 128, 192, and 256 and recorded

the total execution times on both the standard serial version (running on the CPU) and the GPU version. The

GPU version required 10, 14, and 20 minutes respectively, while the serial version required 215, 465, and 895

minutes. We observed super-linear speedups with respect to problem size as shown in Figure 1. In other words,

speedups increase as more parallelism is exposed to the device. This phenomenon is explained by the fact that

when the ratio of computation to data transfers increases (as problem size increases), latency in computations in

some threads are more effectively masked by data transfer in other threads.

2.2 Simulation of test data

To keep imputation times manageable, we restricted analysis to the random 1MB region on Chr 22 from

the KGP data just mentioned [Altshuler et al., 2010]. The underlying 2,184 haplotypes constitute a unique

resource for further simulation. To mimic low-coverage sequencing, we post-processed the KGP data, assuming

that the haplotypes originally deduced by KGP were true haplotypes. (Since MACH and IMPUTE2 were used

in defining these haplotypes, the failure of this assumption may work to the advantage of these programs in our

later assessments of imputation accuracy.) To determine sequencing depth at each person-SNP combination, we

sampled from a gamma distribution with shape 3.5 and scale 0.8. Rounding the generated random deviates to

the nearest integer gives an average depth of coverage of 2.8x with a standard deviation of 1.5, roughly consistent

with the 2-4x coverage of Phase 1 of KGP. Finally, to regenerate the allele counts (a, b) for the two possible alleles

A and B of each person-SNP combination, we sampled from the conditional binomial distributions

Pr(a, b|A/A) =

(

a + b

a

)

(1 − ǫ)aǫb

Pr(a, b|A/B) =

(

a + b

a

)

(1/2)(a+b)

Pr(a, b|B/B) =

(

a + b

a

)

ǫa(1 − ǫ)b,

where ǫ is the reading error rate. In all simulations ǫ was fixed at 0.01. The binomial penetrances of each sampled

pair were passed to Mendel-GPU and comparison programs for imputation and haplotyping.
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Table 1: Accuracy and runtime as a function of MM tuning constants
Accuracy Total

Imputation Phasing Runtime
λ

δ 10 1000 105 10 1000 105 10 1000 105

.1 .928 .928 .915 .945 .946 .943 20:04 19:25 17:23
.001 .929 .929 .928 .944 .945 .943 20:03 19:44 19:22
10−5 .928 .928 .928 .945 .945 .944 20:03 20:01 20:01

2.3 Selection of tuning constants

Based on the post-processed KGP data, we explored the impact of window width (the number of flanking

markers) and the MM tuning constants δ and λ on performance. One metric of genotype imputation quality is

heterozygote accuracy. This metric is preferred for rare SNPs since simply guessing the wild-type homozygote for

all subjects can lead to deceptively high accuracies. Heterozygote accuracy is computed by taking the proportion

of true heterozygote sites that are correctly imputed. We also evaluated the quality of haplotype phasing by

monitoring switch errors over long genomic regions [Browning and Browning, 2011]. To compute switch error

rates, we considered only intervals between sites where the imputed haplotype pair and the true haplotype pair

are both heterozygous and hence informative. A switch error occurs on an interval if a crossover event must be

included in the imputed data to be consistent with the phase of the previous interval. Switch accuracy is simply

defined as one minus switch error rate.

Figure 2 plots two curves, heterozygote and switch accuracy, as a function of the number of flanking markers

per window. Consistent with findings from our earlier paper [Ayers and Lange, 2008], accuracy of both phasing

and imputation initially increases as window width increases. Beyond a certain point, imputation accuracy falters.

A good balance between phasing and imputation accuracy can be struck by limiting the number of flanking

markers to the range of 40 to 90. Given 90 flanking markers, we tracked accuracy and runtimes over a grid of

nine pairs (δ, λ), with δ drawn from the set {10−5, 0.001, .1} and λ from the set {105, 1000, 10}. Heterozygote

accuracies were virtually identical (.928-.929) except when δ and λ were set to their maximum values; in this

case accuracy fell slightly to .925. Phasing accuracies were consistently in the range of .943 to .946 across

all nine parameter pairs. Runtimes drop slightly with larger values of λ and δ. In particular, the combination

(λ, δ) = (105, .1) strongly emphasizes the penalty and drops execution time to slightly over 17 minutes. Based

on these observations, window width has a small but somewhat larger impact on accuracy and speed than the

MM tuning constants. Overall, we see the kind of robustness one seeks in a penalty driven method.
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Figure 2: Accuracy as a function of number of flanking markers per window

2.4 Program settings

We compared the performance of our program Mendel-GPU to leading programs for genotype imputation: in

particular MaCH, thunder, IMPUTE2, and BEAGLE. For all tests, we fixed the number of flanking markers at

90, δ at .001, λ at 1000, and hmax (the maximum number of allowed haplotypes) at 256. thunder, an extension

of MaCH, supports input of genotype penetrances but does not accommodate reference haplotypes. We applied

the recommended settings for each comparison programs. Specifically, we set the number of haplotype states to

200 and total MCMC rounds to 30 for MaCH and thunder. For IMPUTE2, we requested 80 haplotype states

and 30 MCMC rounds. Finally, we set the number of sampled haplotype pairs per subject to 4 and total MCMC

iterations to 10 for BEAGLE.

2.5 Comparison metrics

For each scenario, we tracked overall computational efficiency and accuracy. Memory usage was taken as

the peak demand on RAM. Peak demand is important because users need to decide in advance how much

memory to reserve for jobs on compute clusters. It is noteworthy that BEAGLE, a Java program, fluctuated

greatly in its memory usage; average usage was substantially lower than peak usage. Runtimes were reported

via the time command in Linux. In addition to calculating heterozygote accuracy as described earlier, we also

considered the ℓ1 norm of dosage errors. This measure of imputation accuracy is defined as the sum of the

absolute differences between imputed allele counts and true allele counts. Allele dosages are preferable to hard

imputations in association studies because they properly account for imputation uncertainty.
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Table 2: Genotype imputation in a study based on Illumina 2.5M microarray data using KGP reference haplotypes

Program Hetero. ℓ1 norm Total Max Memory
Accuracy of errors Runtime Footprint

Mendel-GPU .872 1975975.417 14:22 575MB
BEAGLE .893 1739268.964 13:06:23 3.2GB
IMPUTE2 .901 1575050.833 8:25:00 1.5GB
MaCH .882 2053479.833 11:40:00 1.1GB

2.6 Simulating data sets with reference haplotypes

To simulate experiments with reference haplotypes, we reserved one half of the entire KGP Phase 1 data as

the set of reference haplotypes and the remaining half as a hypothetical study dataset. Each ethnic group was

evenly divided over the two halves. To keep run times within reasonable bounds for all programs, we restricted

analyses to a randomly selected 7 MB region on chromosome 22. The primary (study) data is assumed to be

generated from a low-pass sequencing assay. The idea is to leverage ethnically matched reference haplotypes to

improve confidence in genotypes called with low certainty. To prepare the primary dataset, we applied the same

procedure as described earlier for simulating coverage depth from a gamma distribution. Since MaCH supports

only discrete genotypes in its input and thunder does not support reference haplotypes, neither of these programs

could be included in comparisons based on sequencing data in the study.

2.7 Imputation where GWAS data is derived from microarray chip

Here we consider a traditional configuration for genotype imputation. We suppose that GWAS data was

generated by a high-coverage genotyping microarray, in particular Illumina’s Infinium 2.5M Duo product, which

features approximately 2.4 million SNPs. The goal here is to impute genotypes for SNPs that are present in the

reference haplotype panel, but not on the chip. We split the KGP data into two halves in the same manner as

above, and restricted analysis to a 7MB region. Genotypes in the hypothetical study were masked (set to missing)

at a SNP unless it was listed in Illumina’s manifest file for the 2.5M Duo. Table 2 presents speed, memory usage,

and our two measures of accuracy. BEAGLE and IMPUTE2 had slightly higher accuracies than Mendel-GPU and

MaCH. Comparing just the latter two programs, Mendel-GPU gave better dosage predictions, while MaCH gave

a higher heterozygote concordance rate. In terms of speed however, Mendel-GPU was 55, 35, and 48 times faster

than BEAGLE, IMPUTE2, and MaCH, respectively. Mendel-GPU required only half as much memory as MaCH,

the most efficient consumer of memory among the three contenders.
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