Online Appendix

A1l. Derivation of selection gradient and stability with genetic assortment

At each generation, an individual is identical by descent to some number in its group in-
cluding itself (among the total group members ), which is a random variable K. We define
Pr(k) as the probability that a rare mutant in the population has exactly k — 1 other genetically
identical mutants in its group. Thus, (K) = Y¥_ kPr(k) is the expectation of the number
of mutants in a random mutant’s group, and (K) /N is the likelihood that a recipient of the
mutant’s act is also a mutant, again assuming mutants are rare in the population. So with no
assortment Pr(1) = 1, and with assortment Pr(1) < 1. Our expression for relatedness of a
rare mutant to a random individual in its group is just the expected genotype of a recipient’s

genotype to that of the actor (unity) (Grafen 1985) which is:
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This is whole-group relatedness (r,,) which is of interest since cooperators get a direct benefit
from their own cooperation. (Others-only relatedness, or r,, is relatedness to recipients other
than the focal cooperator itself with r,, = roNT_l + 1Lv (Pepper 2000). This value is the same
as (p) in the main text). The expected payoff of an individual with trait y in a monomorphic

population with trait value x is given by

—C(y). (A2)
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From this, the selection gradient becomes:
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The solutions of D(x*) = 0 are the singular strategies. The condition for convergence stability

of a singular strategy is:
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=B"(Nx*)(1+71,(N—1))—-C"(x*) <0, (A6)

Using p from the main text, this condition is simply:
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=B"(Nx*)(14 {p)(N—1)) - C"(x*) <0, (A8)
and for evolutionary stability:
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i Pr(k)k* = (K)? + Var(K)
k=1

By using p from the main text, the condition for evolutionary stability becomes:

B// (Nx*)
N

[(1+(N—1){p))*+ Var(p)(N = 1)*] = C"(x") <0.

(A13)

(A14)

A2. Assuming linear costs and nondecreasing benefits, if a positive level of

cooperation evolves without assortment at some group size NO, then a positive

level of cooperation evolves in arbitrarily large group sizes when r, > 1/Np:

For some x,, Ny,the selection gradient is positive:

B'(N,
BNoxo) .,
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Now for some arbitrarily high Ny, let x; = N]‘\),—’ICO The selection gradient now is

B/(lel) 4 I’O(Nl — 1)Bl(N1X1)
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which is equivalent to
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Now, so long as r, > 1/N,, this gradient is positive since the first term itself is greater

than c.
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A3. Variance can affect evolutionary branching

Here we show an example (fig A3) of a situation where (p) is constant but Var(p) is not, and
this distinction determines whether evolutionary branching occurs. When N = 4, variance
may be zero if every group has two individuals of one genotype and two of another, or it may

follow a binomial distribution with (p) = 1/3. Both of these give ( r,,) = 1/2.

A4. Quorum sensing model

The payoff to an individual with trait values x and s in two distinct group sizes N; and N, is:

p = B(Q(s1,N1)x| +-1\-];+Q(SN1’N1)XN1> —C(Q(si,N1)x:) (A18)

P2 _ B (Q(SZ,NQ))Q + N2+ Q(SNzaNZ)xNZ) -C (Q(Si;NZ)xi) (A]g)

where Q(s;,N) = 1/(1+¢%~N) as in the main text. The expected payoff then for a pair (x,s),
given that the individual randomly joins one of the two group sizes is P = (P} + P,) /2. The
singular strategies occur when % = % = 0, and these zeros of these selection gradients

define the isoclines of figure 5. See (Geritz et al. 1997; Brown and Taylor 2010) for details

of analyzing systems of multiple trait evolution.



