
Online Appendix

A1. Derivation of selection gradient and stability with genetic assortment

At each generation, an individual is identical by descent to some number in its group in-

cluding itself (among the total group members N), which is a random variable K. We define

Pr(k) as the probability that a rare mutant in the population has exactly k−1 other genetically

identical mutants in its group. Thus, 〈K〉 = ∑
N
k=1 kPr(k) is the expectation of the number

of mutants in a random mutant’s group, and 〈K〉/N is the likelihood that a recipient of the

mutant’s act is also a mutant, again assuming mutants are rare in the population. So with no

assortment Pr(1) = 1, and with assortment Pr(1) < 1. Our expression for relatedness of a

rare mutant to a random individual in its group is just the expected genotype of a recipient’s

genotype to that of the actor (unity) (Grafen 1985) which is:

rw =
〈K〉
N

=
N

∑
k=1

k
N

Pr(k). (A1)

This is whole-group relatedness (rw) which is of interest since cooperators get a direct benefit

from their own cooperation. (Others-only relatedness, or ro, is relatedness to recipients other

than the focal cooperator itself with rw = ro
N−1

N + 1
N (Pepper 2000). This value is the same

as 〈ρ〉 in the main text). The expected payoff of an individual with trait y in a monomorphic

population with trait value x is given by

P(y,x) =
N

∑
k=1

Pr(k)B(ky+(N− k)x)
N

−C(y). (A2)
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From this, the selection gradient becomes:

D(x) =
N

∑
k=1

kPr(k)B′(Nx)
N

−C′(x) (A3)

= rwB′(Nx)−C′(x) =
B′(Nx)(1+ ro(N−1))

N
−C′(x), (A4)

The solutions of D(x∗) = 0 are the singular strategies. The condition for convergence stability

of a singular strategy is:

∂D
∂x
|x=x∗ = NB′′(Nx∗)rw−C′′(x∗) (A5)

= B′′(Nx∗)(1+ ro(N−1))−C′′(x∗)< 0, (A6)

Using ρ from the main text, this condition is simply:

∂D
∂x
|x=x∗ = NB′′(Nx∗)rw−C′′(x∗) (A7)

= B′′(Nx∗)(1+ 〈ρ〉(N−1))−C′′(x∗)< 0, (A8)

and for evolutionary stability:

∂ 2P
∂y2 |y=x∗ =

1
N

N

∑
k=1

Pr(k)k2B′′(Nx∗)−C′′(x∗) (A9)

=
B′′(Nx∗)

N

N

∑
k=1

Pr(k)k2−C′′(x∗)< 0. (A10)

Now

Var(K) =
N

∑
k=1

Pr(k)(k−〈K〉)2 (A11)

N

∑
k=1

Pr(k)k2 = 2
N

∑
k=1

Pr(k)k〈K〉−
N

∑
k=1

Pr(k)〈K〉2 +Var(K) (A12)
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N

∑
k=1

Pr(k)k2 = 〈K〉2 +Var(K) (A13)

By using ρ from the main text, the condition for evolutionary stability becomes:

B′′(Nx∗)
N

[(1+(N−1)〈ρ〉)2 +Var(ρ)(N−1)2]−C′′(x∗)< 0. (A14)

A2. Assuming linear costs and nondecreasing benefits, if a positive level of

cooperation evolves without assortment at some group size N0, then a positive

level of cooperation evolves in arbitrarily large group sizes when ro > 1/N0:

For some xo, N0,the selection gradient is positive:

B′(N0x0)

N0
− c > 0. (A15)

Now for some arbitrarily high N1, let x1 =
N0x0
N1

. The selection gradient now is

B′(N1x1)

N1
+

ro(N1−1)B′(N1x1)

N1
− c > 0. (A16)

which is equivalent to

roB′(N1x1)+
B′(N1x1)(1− ro)

N1
− c (A17)

Now, so long as ro > 1/No, this gradient is positive since the first term itself is greater

than c.
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A3. Variance can affect evolutionary branching

Here we show an example (fig A3) of a situation where 〈ρ〉 is constant but Var(ρ) is not, and

this distinction determines whether evolutionary branching occurs. When N = 4, variance

may be zero if every group has two individuals of one genotype and two of another, or it may

follow a binomial distribution with 〈ρ〉= 1/3. Both of these give 〈 rw〉= 1/2.

A4. Quorum sensing model

The payoff to an individual with trait values x and s in two distinct group sizes N1 and N2 is:

P1 =
B(Q(s1,N1)x1 + . . .+Q(sN1,N1)xN1)

N1
−C (Q(si,N1)xi) (A18)

P2 =
B(Q(s2,N2)x2 + . . .+Q(sN2,N2)xN2)

N2
−C (Q(si,N2)xi) (A19)

where Q(si,N) = 1/(1+esi−N) as in the main text. The expected payoff then for a pair (x,s),

given that the individual randomly joins one of the two group sizes is P = (P1 +P2)/2. The

singular strategies occur when ∂P
∂x = ∂P

∂ s = 0, and these zeros of these selection gradients

define the isoclines of figure 5. See (Geritz et al. 1997; Brown and Taylor 2010) for details

of analyzing systems of multiple trait evolution.
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