

Fig. S1. A. The level of Bud4 and GFP-Bud4 expressed from the *GAL1* promoter. The *BUD4 CDC3-mCherry* strain (HPY2008) carrying pRD53-BUD4 or pRD53-GFP-BUD4 was grown in SC-URA media containing 2% raffinose (-), and then galactose was added (+; final 2%) for 6 hrs. Bud4 and GFP-Bud4 were detected by immnuoblotting using polyclonal anti-Bud4 antibodies (upper panel); and Cdc3-mCherry was detected with anti-DsRED antibodies (lower panel). Numbers represent the relative protein levels normalized against Bud4 or Cdc3 shown in the first lane. The Bud4 and GFP-Bud4 levels were elevated about 12-fold and 3.3-fold, respectively, after induction with galactose, while the Cdc3-mCherry levels remained about the same. The lower level of GFP-Bud4 compared to Bud4 upon Gal induction might be partly due to degradation of GFP-Bud4 (see bands marked with arrows). **B.** The Cdc3-mCherry level in wild type and *bud4* mutants. Cdc3-mCherry was detected with anti-DsRED antibodies (upper panel), and Bem1 was detected with anti-Bem1 antibodies as a loading control (lower panel; marked with *). Numbers represent the relative Cdc3-mCherry protein levels normalized against that in the wild-type strain.

Fig. S2. Time-lapse images of cells expressing Cdc3-mCherry and (**A**) GFP-Bud4 (HPY2111) or (**B**) GFP-Bud4 Δ G1 (HPY2176). Images were captured at 23°C, and relative time (in min) after the first image is shown. Arrows depict splitting of the septin ring at the beginning of cytokinesis. Note: GFP-Bud4 appears to form a double ring at the mother-bud neck before septin ring splitting. Scale bar: 3μ m.

Strain		Relevant Genotype	Source/Comments
YEF473	a/a	<i>his3-$\Delta 200/his3-\Delta 200$ leu2-$\Delta 1/leu2-\Delta 1$ lys2-801/lys2-801 trp1-$\Delta 63/trp1-\Delta 63$ ura3-52/ura3-52</i>	(Bi and Pringle, 1996)
HPY210	a	1	(Singh et al., 2008)
HPY1023	a	$bud4\Delta$::LEU2	(Kang et al., 2012)
HPY1027	a	bud4_AG2-TRP1::bud4_A::LEU2	(Kang et al., 2012)
HPY1032	a	BUD4-TRP1::bud4A::LEU2	This study
HPY1034	a	GFP-BUD4-TRP1::bud4A::LEU2	(Kang et al., 2012)
HPY2000	a	bud4 <i>∆::kanMX</i> 4	This study
HPY2008	a	CDC3-mCherry-LEU2	This study
HPY2053	a	GFP-TUB1-URA3∷ura3∆ CDC3-mCherry-LEU2	This study
HPY2088	a	GFP - $TUB1$ - $URA3$:: $ura3\Delta$ CDC3-mCherry-LEU2 bud4 Δ :: $kanMX4$	This study
HPY2099	a	GFP - $TUB1$ - $URA3$:: $ura3\Delta$ CDC3- m Cherry-LEU2 bud4 Δ G2- TRP1::bud4 Δ :: $kanMX4$	This study
HPY2111	a	GFP-BUD4-TRP1::bud4 <i>A</i> ::LEU2 CDC3-mCherry-LEU2	This study
HPY2132	a	GFP -bud4 $\Delta N8$ -TRP1::bud4 Δ ::LEU2	This study
HPY2138	a	$bud4\Delta N5$ -TRP1:: $bud4\Delta$:: $LEU2$	This study
HPY2139	a	bud4∆A-TRP1::bud4∆::kanMX4 CDC3-mCherry-LEU2 GFP- TUB1-URA3	This study
HPY2141	a	bud4_A-TRP1::bud4_A::LEU2	This study
HPY2152	a	GFP -bud4 ΔA -TRP1::bud4 Δ ::LEU2 CDC3-mCherry-LEU2	This study
HPY2156	a	$bud4\Delta N6$ -TRP1:: $bud4\Delta$:: $LEU2$	This study
HPY2157	a	$bud4\Delta N8$ -TRP1:: $bud4\Delta$:: $LEU2$	This study
HPY2158	a	GFP -bud4 Δ N6-TRP1::bud4 Δ ::LEU2	This study
HPY2159	a	GFP -bud4 Δ N5-TRP1::bud4 Δ ::LEU2	This study
HPY2173	a	$bud4\Delta G1$ -TRP1:: $bud4\Delta$:: $LEU2$	(Kang et al., 2012)
HPY2176	a	GFP -bud4 $\Delta G1$ -TRP1::bud4 Δ ::kanMX4 CDC3-mCherry-LEU2	This study
HPY2180	a	bud4\DeltaB-TRP1::bud4\Delta::LEU2	This study
HPY2181	a	$bud4\Delta C$ - $TRP1::bud4\Delta::LEU2$	This study
HPY2202	a	GFP -bud4 ΔA -TRP1::bud4 Δ ::LEU2 BUD3-mCherry- kanMX4	This study

Table S1. Yeast strains used in this study

HPY2207	a	$bud4\Delta D$ -TRP1:: $bud4\Delta$:: $LEU2$	This study
HPY2217	a	GFP-BUD4-TRP1::bud4∆::LEU2 BUD3-mCherry- kanMX4	(Kang et al., 2012)
HPY2249	a	GFP -bud4 $\Delta G2$ -TRP1::bud4 Δ ::LEU2 BUD3-mCherry- kanMX4	This study
HPY2218	a	GFP -bud4 Δ E-TRP1::bud4 Δ ::kanMX4 CDC3-mCherry-LEU2	This study
HPY2219	a	GFP -bud4 ΔD -TRP1::bud4 Δ ::kanMX4 CDC3-mCherry-LEU2	This study
HPY2220	a	bud4ΔN7-TRP1::bud4Δ::LEU2	This study
HPY2225	a	bud4_AE-TRP1::bud4_A::LEU2	This study
HPY2226	a	GFP -bud4 Δ N7-TRP1::bud4 Δ ::kanMX4 CDC3-mCherry-LEU2	This study
HPY2229	a	$bud4\Delta F$ -TRP1:: $bud4\Delta$:: $LEU2$	This study
HPY2231	a	GFP -bud4 ΔB -TRP1::bud4 Δ ::kanMX4 CDC3-mCherry-LEU2	This study
HPY2232	a	GFP -bud4 Δ C-TRP1::bud4 Δ ::kanMX4 CDC3-mCherry-LEU2	This study
HPY2265	a	GFP -bud4 $\Delta G2$ -TRP1::bud4 Δ ::kanMX4 CDC3-mCherry-LEU2	This study
HPY2314	a	GFP -bud4 Δ F-TRP1::bud4 Δ ::kanMX4 CDC3-mCherry-LEU2	This study
HPY2323	a	GFP -bud4 Δ I-TRP1::bud4 Δ ::kanMX4 CDC3-mCherry-LEU2	This study
HPY2324	a	GFP -bud4 Δ H-TRP1::bud4 Δ ::kanMX4 CDC3-mCherry-LEU2	This study
HPY16*	a	ura3-52 trp1-Δ63 leu2 his3-Δ1 pep4-3	(Park et al., 1993)
HPY1511*	a	BUD3-Myc ₁₃ -kanMX6	(Kang et al., 2012)
HPY1514*	a	BUD3-Myc ₁₃ -kanMX6 bud4∆∷LEU2	(Kang et al., 2012)
HPY2254*	a	bud4_A-TRP1::bud4_A::LEU2_BUD3-Myc13-kanMX6	This study
HPY2255*	a	bud4ΔE-TRP1::bud4Δ::LEU2 BUD3-Myc ₁₃ -kanMX6	This study
HPY1991*	a	bud4ΔG2-TRP1::bud4Δ::LEU2 BUD3-Myc ₁₃ -kanMX6	This study

^a All strains except that those marked with asterisk (*) are congenic to YEF473 except as indicated. Strains marked with * are congenic to HPY16 except as indicated.

	J.	
Plasmid	Description ¹	Source/Comments
pRD53	URA3 (CEN), GAL1 promoter	R. Deshaies (California Institute of Technology)
pAFS125	pRS306-GFP-TUB1	(Straight et al., 1997)
pBS34	pFA6a-mCherry-kanMX6	YRC, Univ. of Washington, Seattle
pFJ115	pRS413-P _{ADH2} -HTB2-mCherry	(Egriboz et al., 2011)
pLP17	LEU2 (CEN), CDC12-GFP	(Lippincott and Li, 1998)
	YIplac128-CDC3-mCherry (LEU2)	(Tong et al., 2007)
pHP1392	pRS304*(= pRS304 lacking the <i>Not</i> I site)- <i>BUD4</i>	(Kang et al., 2012)
pHP1400	pRS304*-NotI-BUD4	(Kang et al., 2012)
pHP1851	pRS304*- <i>Not</i> I- <i>bud4</i> Δ <i>G1</i> (Δ aa 1175 - 1182)	(Kang et al., 2012)
pHP1395	pRS304*- <i>bud4</i> ΔG2 (Δ aa 1344 - 1404)	(Kang et al., 2012)
pHP1401	pRS304*-GFP-BUD4	(Kang et al., 2012)
pHP1854	pRS304*- <i>GFP-bud4∆G1 (</i> ∆ aa 1175 – 1182)	(Kang et al., 2012)
pHP1403	pRS304*- <i>GFP-bud4</i> Δ <i>G2</i> (Δ aa 1344 - 1404)	(Kang et al., 2012)
pHP1430	pRD53-BUD4	This study
pHP1819	pRD53*(= pRD53 lacking the <i>Not</i> I site)-GFP-BUD4	This study ³
pHP1800	pRS304*- <i>Not</i> I- <i>bud4</i> Δ <i>N5(</i> Δ aa 2 – 510)	This study ²
pHP1480	pRS304*- <i>Not</i> I- <i>bud4ΔN6(</i> Δ aa 2 – 883)	This study ²
pHP1887	pRS304*- <i>Not</i> I- <i>bud4ΔN7(</i> Δ aa 2 – 1000)	This study ²
pHP1481	pRS304*- <i>Not</i> I- <i>bud4</i> Δ <i>N8</i> (Δ aa 2 – 1081)	This study ²
pHP1845	pRS304*- <i>GFP-bud4</i> Δ N5(Δ aa 2 – 510)	This study ³
pHP1843	pRS304*- <i>GFP-bud4ΔN6 (</i> Δ aa 2 – 883)	This study ³
pHP1889	pRS304*- <i>GFP-bud4</i> Δ N7 (Δ aa 2 – 1000)	This study ³

pHP1834	pRS304*- <i>GFP-bud4</i> $\Delta N8$ (Δ aa 2 – 1081)	This study ³
pHP1835	pRS316*- <i>Not</i> I- <i>bud4</i> ΔA (Δ aa 1069 – 1163)	This study ⁴
pHP1836	pRS304*- <i>GFP-bud4ΔA (</i> Δaa1069 – 1163)	This study ⁴
pHP1837	pRS304*- <i>Not</i> I- <i>bud4</i> ΔA (Δaa1069 – 1163)	This study ⁴
pHP1864	pRS304*- <i>GFP-bud4ΔB (</i> Δ aa 805 – 997)	This study ⁵
pHP1866	pRS304*- <i>Not</i> I- <i>bud4ΔB (</i> Δ aa 805 – 997)	This study ⁵
pHP1865	pRS304*- <i>GFP-bud4</i> Δ <i>C</i> (Δ aa 989 – 1447)	This study ⁶
pHP1867	pRS304*- <i>Not</i> I- <i>bud4</i> Δ <i>C</i> (Δ aa 989 – 1447)	This study ⁶
pHP1881	pRS304*- <i>Not</i> I- <i>bud4</i> ΔD (Δ aa 530 – 811)	This study ⁷
pHP1886	pRS304*- <i>GFP-bud4ΔD (</i> Δ aa 530 – 811)	This study ³
pHP1882	pRS316*- <i>Not</i> I- <i>bud4</i> Δ <i>E</i> (Δaa1306 - 1328)	This study ⁸
pHP1885	pRS304*- <i>GFP-bud4ΔE (</i> Δ aa 1306 - 1328)	This study ⁸
pHP1888	pRS304*- <i>Not</i> I- <i>bud4</i> Δ <i>E</i> (Δaa 1306 - 1328)	This study ⁸
pHP1893	pRS304*- <i>Not</i> I- <i>bud4</i> Δ <i>F</i> (Δ aa 530 – 997)	This study ⁹
pHP1909	pRS304*- <i>GFP-bud4</i> Δ <i>F</i> (Δ aa 530 – 997)	This study ³
pHP1914	pRS304*- <i>GFP-bud4∆H</i> (aa 511 - 988)	This study ¹⁰
pHP1913	pRS304*- <i>GFP-bud4</i> ∆I (aa 511 - 804)	This study ¹¹

¹Residues deleted in each *bud4* allele are indicated after ' Δ aa' in each plasmid whereas the residues remaining in *bud4\DeltaH* and *bud4\DeltaI* are indicated after 'aa'.

² The *N*-terminal deletion mutations of *bud4* were generated by PCR. First, separate PCR reactions were carried out using pHP1392 as a template and primers oBUD412 (5'-CCGCGGATCCAAGCTTCCCAC CCTTACC-3') and oBUD431 (5'- GACACGCGGCCGCAGTGAAATTGGTGTCGAC-3') for *NotI-bud4* Δ *N5*; and primers oBUD412 and oBUD432 (5'- GTACCGCGGCCGCATAAGAAAGCAACC TATTG-3') for *NotI-bud4* Δ *N6*; and primers oBUD412 and oBUD455 (5'-CACACGCGGCCGCGTC GTGAAAGCTGGAAACAAAC -3') for *NotI-bud4* Δ *N7* and primers oBUD412 and oBUD433 (5'- G

AGAGGCGGCCGCACGCTTGCATTATATGGAAC-3') for *NotI-bud4* $\Delta N8$. The PCR products were digested with *NotI* and *BamHI*, and then ligated with pHP1400 digested with *NotI* and *BamHI*.

³ The 720-bp *Not*I fragment encoding GFP^{S65T,V163A, S175G} from pRS304-GFP-RSR1 (Park et al., 2002) was cloned into the *Not*I site for GFP-tagging.

⁴The *bud4*∆A mutation was generated by PCR using pHP1400 as a template and primers oBUD452 (5'-CACCTCCGGAATTGGTCGAAATAGTAGAC-3') and oBUD412. The PCR product was digested with *BspE*I and *BamH*I, and then cloned into the same sites of pRS316*(= pRS316 lacking the *Not*I site) -*Not*I-BUD4, yielding pHP1835. The 2.87-kb *Sal*I-*BamH*I fragment of pHP1403 was then replaced with the 2.77-kb *Sal*I-*BamH*I fragment of pHP1835, yielding pHP1836. The 720-bp *Not*I fragment encoding GFP from pHP1836 was removed, yielding pHP1837.

⁵ The *GFP-bud4*Δ*B* mutation was generated by two-step PCR strategy. First, separate PCR reactions were carried out using pHP1392 as a template and primers oBUD431 and oBUD448 (5'-GGTTCGCGC GCAATTTCAGCTTCGTCCTGGG -3'); and primers oBUD451 (5'-CGCGAGCGCGCCCTTTCAAG GTCGTGAAAGCTGGAAAC-3') and oBUD412. The PCR products were ligated together after *BssH*II digestion, and then used as template in the second PCR with primers oBUD431 and oBUD412. The resulting product was digested with *Sal*I and *BamH*I, and then replaced with the 3.05-kb *Sal*I-*BamH*I fragment of pHP1401, yielding pHP1864. The GFP moiety was then removed from pHP1864 by *Not*I digestion and self-ligation, yielding pHP1866.

⁶The *GFP-bud4*Δ*C* mutation was generated by two-step PCR strategy. First, separate PCR reactions were carried out using pHP1392 as a template and primers oBUD431 and oBUD450 (5'-GGTTGGCG CGCTATACTACGAACTGGAGTGG-3'); and primers oBUD454 (5'-GCAGGCGCGCGAAGTATA AATTTGAAAAGAAGTATGTACAG-3') and oBUD412. The PCR products were ligated together after *BssH*II digestion, and then processed for the second PCR with primers oBUD431 and oBUD412, and the resulting product was replaced with the 3.05-kb *SalI-BamH*I fragment of pHP1401 as described above ⁵, yielding pHP1865. The GFP moiety was then removed from pHP1865 as described above ⁵, yielding pHP1867.

⁷ The *bud4*Δ*D* mutation was generated by two-step PCR strategy. First, separate PCR reactions were carried out using pHP1343 as a template and primers oBUD419 (5'- GCCTGGGCGGCGCGCACGA CGCAGAGAGAGTACCGTAG-3') and oBUD446 (5'-GAGTCGCGCGCGCGCGCGCGAATGGTTCATTC ACTTCAG-3'); and primers oBUD449 (5'- GGAGGGCGCGCGCGCGGGGTGATATCACTTTTAATAGG GG-3') and oBUD412. The PCR products were ligated together after *BssH*II digestion, and then used as

template in the second PCR with primers oBUD419 and oBUD412. The PCR product was digested with *Sal*I and *BamH*I, and then cloned into the same sites of pHP1400, yielding pHP1881.

⁸ The *bud4*Δ*E* mutation was generated by two-step PCR strategy. First, separate PCR reactions were carried out using pHP1343 as a template and primers oBUD47 (5'-CCGCCACCTTCCATAAGAAAG

C-3') and oBUD456 (5'-GGTGGGCGCGCGCTTTATAGATATTTTGTTGCAACTTGTATTTGG-3'); and primers oBUD457 (5'-TCGGTGCGCGCGCGCGCGCAACTTTCTGGTTATC-3') and oBUD412. The PCR products were ligated together after *BssH*II digestion, and then used as template in the second PCR with primers oBUD47 and oBUD412. The PCR product was digested with *BspE*I and *BamH*I, and then cloned into the same sites of pRS316*-*Not*I-BUD4, yielding pHP1882. The 2.87-kb *SalI-BamH*I fragment of pHP1403 was then replaced with the 2.94-kb *SalI-BamH*I fragment of pHP1882, yielding pHP1885. The GFP moiety was removed from pHP1885 as described above ⁵, yielding pHP1888.

⁹ The *bud4* ΔF mutation was generated by combining *bud4* ΔB and *bud4* ΔD . The larger DNA fragment from pHP1866 digested with *Not*I and *BssH*II was ligated with the 1.6-kb DNA fragment from pHP1881 digested with the same enzymes, yielding pHP1893.

¹⁰ The *GFP-bud4*Δ*H* mutation was generated by PCR using pHP1867 as a template and primers oBUD431 and oBUD412. The PCR product was digested with *Sal*I and *BamH*I, and then replaced with the 3.05-kb *Sal*I-*BamH*I fragment of pHP1845.

¹¹ The *GFP-bud4* ΔI mutation was generated by two-step PCR strategy. First, separate PCR reactions were carried out using pHP1867 as a template and primers oBUD431 and oBUD448; and primers oBUD454 and oBUD412. The PCR products were ligated together after *BssH*II digestion, and then used as template in the second PCR with primers oBUD431 and oBUD412. The resulting product was digested with *Sal*I and *BamH*I, and then replaced with the 3.05-kb *Sal*I-*BamH*I fragment of pHP1845.