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1. Introduction: hit early, hit hard?

Is it true that pathogen load decreases as antibiotic efficacy increases? This relationship appears self-evident.
Moreover, as antibiotic efficacy can be enhanced by appropriately combining two or more drugs into a single
therapy, it would also appear self-evident that the most effective way of deploying antibiotics is in combination.
The combinations of antibiotic drugs preferred in clinical practise are the so-called synergistic combinations in
which one antibiotic enhances the killing effect of another and vice versa [1]. Indeed, the search for synergy [2]
is the idea that we can screen for small antibiotic molecules that enhance each other’s killing effect [3] and use
these as the basis of antibacterial treatments in the clinic. The century-old rationale for deploying antibiotics
is simple, hit early and hit hard [4] and the use of synergistic combination therapies is a logical consequence of
assuming the validity of this rationale.

Hit early, hit hard provides a rational approach to antibiotic use even when accounting for de novo drug-
resistance evolution. If an allele confers increased drug resistance, it will sweep through a population after the
antibiotic has been administered. The more drug we apply, the greater the rate of sweep and so the earlier the
allele will fix in the pathogen population. The remedy, therefore, is to prevent resistance from arising in the
first place and to apply as much drug as possible, as early as possible to keep pathogen load to a minimum for
this minimises the probability of the novel allele arising in the first place.

1.1. Toy mathematical models: are synergistic drug combinations optimal? Let us test the robustness
of this argument using a very simple mathematical model. Imagine a single bacterial strain growing in a
competitive environment where the resources needed for growth are scarce. Suppose S(t) denotes the density
of a bacterial population per unit volume at time t and, in the absence of drug, the population dynamics of the
bacterium follow the following logistic equation:

(1)
d

dt
S = S(1− S), 0 < S(0)� 1.

The dynamics of equation (1) see the population grow to carrying capacity at some rate, here both these
parameters have been set to be unity. We now wish to clear the bacterium from its environment and so we
introduce an antibiotic, with killing efficacy a:

(2)
d

dt
S = S(1− S)− aS, 0 < S(0)� 1.

Suppose we now ask for the response time, t50, at which the bacterium achieves half its final carrying capacity,
so that S(t50) = 1/2. Due to the nature of the model, it is a trivial fact that the best therapy, the one that
maximises t50 is the one with the largest possible value of a. Thus equation (24) is consistent with the hit early,
hit hard rationale.

Now suppose we modify equation (24) by including a second drug. We suppose it has the same killing efficacy
as the first, but when we combine the two their total killing efficacy is increased. So, we now adapt the term
‘a’ to be a function of a variable θ between 0 and 1 such that a(0) = a(1) > 0. The idea here is that θ controls
the fraction of each drug used in a combination treatment, so θ = 0 represents the use of one drug only and
θ = 1 represents the use of the other drug. The quadratic function of θ,

a(θ) = 1 + θ(1− θ),

suffices to mimic two synergistic drugs of equal killing effect in the following model:

(3)
d

dt
S = S(1− S)− a(θ)S, 0 < S(0)� 1.

Again, it is trivial that t50 is minimised by solutions of (3) for the ‘50-50’ combination therapy, namely the
treatment that mixes both drugs in equal amounts, so that θ = 1/2. Thus, the structure of the model (3) is
again consistent with hit early, hit hard rationale.

Now suppose we invoke a further change to our model and explicitly include drug resistance adaptation.
To this end, without specifying an explicit physical mechanism supporting drug resistance at this point, we
suppose that a second phenotype, R(t), can be found in the population that is identical to the drug-susceptible
wild-type, S, but which is completely drug resistant:

d

dt
S = S(1− (S +R))− a(θ)S − µS, 0 < S(0)� 1,(4a)

d

dt
R = S(1− (S +R)) + µS, R(0) = 0.(4b)
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supplement fig. S1 – (Competitive Release and the Smile-Frown Transition) (a) Population density

(as a fraction of carrying capacity) on the y axis is plotted against the drug combination parameter, θ, on the

x axis for treatments of different duration. Two drugs are used, ‘D’ and ‘E’, whose synergy is apparent over

treatments of short duration because the population density is minimised where θ = 1/2 (the red dot situated

on the thick blue line). However, there comes a future time for which density is maximised for this treatment

(the black dot on the thick grey line). The red dots show the path of the treatments of minimal density as

time progresses: they start as combination therapies but eventually become monotherapies. The inset shows the

frequency of drug-resistance in the population at the same times (denoted ‘Frequency of DR types’ on the y axis),

illustrating that drug resistance sweeps fastest where synergy is greatest. In both diagrams, θ ranges from zero

(drug D) to one (drug E). (b) The densities of S and R are shown at different times, the thick blue line denoting

a treatment of short duration and a thick red line denoting a longer treatment. The black arrow denotes the loss

of S that occurs because of the drug as the treatment proceeds and it has the same length in both left and right

figures. However, the right-hand figure shows that the gain in density of R for that length of treatment more

than compensates for the loss of S due to the drug.

Here µ > 0 is the constant rate at which the drug-susceptible phenotype gains resistance and, to begin with,
we assume that there are no resistant bacteria in the population. We can use different optimality criteria to
understand how to deploy drugs in equation (4), the most natural one is to minimise population density, so we
denote the population density by

(5) ∆t(θ) = S(t) +R(t),

noting that the latter depends on θ implicitly.
The question we now ask is for what value of θ is ∆t(θ) minimised? We know by design that θ = 1/2 is the

value corresponding to the most synergistic treatment and that this value also minimises population density
for a short period of time. But what happens as time increases? Supplement fig. S1 answers this question.
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It shows that there comes a future point at which the most synergistic treatment ceases to be optimal and, in
fact, a short time later this drug combination becomes the worst treatment of all. Somewhere between these
two times, the monotherapies reduce population density below what can be achieved by combining the drugs.

The inclusion of multi-drug resistance thus complicates the picture. For example, it not true for (4) that the
optimal therapy hits the drug-susceptible bacteria as hard as possible. Rather, the optimal therapy takes two
forms: a near 50-50 combination consisting of both drugs at equal concentration for short treatments, but a
monotherapy of either drug is better for longer treatments.

2. Drug interaction profiles: synergy and antagonism

In order to test these theoretical predictions, the following section will describe a laboratory-based microcosm
in which different strains of E.coli K12 are challenged by the antibiotics erythromycin and doxycycline. However,
before we can understand the outcome of those experiments, we need to define some common terminology and
present basic data analysis tools we need to understand how different combinations of antibiotics interact.

In the remainder, we will assume that a population of bacteria is cultured in the presence of two antibiotics at
extracellular concentrations denoted by two variables, D and E; the latter are called basal drug concentrations.
Bacterial population density, for instance measured in units of optical density (OD or OD600nm) in a shaken
culturing device will depend on the concentrations of both these drugs. If t denotes time, density will be denoted
by the drug-dependent time-series B(t;D,E) and as cells are cultured for a fixed amount of time, T hours say,
it follows that 0 ≤ t ≤ T . In what follows, our fitness measure of a bacterial population will be the optical
density determined empirically from a lab-based experimental microcosm, but other measures of fitness could,
equally, be used.

A fair comparison of the efficacy of a drug combination necessitates that each basal drug concentration, D
and E, is normalised to achieve equal inhibitory effect over some period of time. We will therefore assume
that each single-drug monotherapy achieves a factor-r reduction in bacterial density relative to a drug-free
environment by the end of the experiment, thus

B(T ;D, 0) = B(T ; 0, E) = rB(T ; 0, 0).

As in practise we will normalise the basal drug concentrations to achieve 50% inhibition with respect to
the null antibiotic control in a growth assay lasting twenty-four hours, in the remainder we have in mind the
specific value r = 1/2. For convenience, we therefore denote by D50 the basal concentration of the first drug
and assume that

B(T ;D50, 0) =
1
2
B(T ; 0, 0).

Similarly, E50 is the concentration of the second drug, E, and it satisfies B(T ; 0, E50) = B(T ; 0, 0)/2 too.
Using D50 and E50 as basal drug concentrations, we introduce a drug combination parameter that allows us

to combine both drugs whilst maintaining a constant effective dosage. This parameter, denoted throughout by
θ, takes values between zero and one inclusive and it can be used to represent any drug combination along the
equidosage line (see supplement fig. S2). For each value of θ, the actual concentration of drug deployed to the
environment of the bacteria is then θ ·D50 µg/ml of drug D and (1− θ) · E50 µg/ml of drug E.

The basal concentrations will be fixed throughout, the only freedom permitted in terms of determining opti-
mal drug therapies will be through the parameter θ. Indeed, the value of θ that gives rise to the lowest bacterial
density will be deemed the optimal combination. Our definitions are designed to ensure a fair comparison
between different treatments, we are therefore not at liberty to deploy antibiotics at arbitrarily high dosages
and deem those better therapies.

The degree of interaction between drugs is usually defined in terms of the deviation from a neutral interaction,
derived either using Bliss independence or Loewe additivity (for an extensive discussion of this topic see [2]).
Here we will use the latter and define synergism based on the so-called interaction profile

i(θ) = B(T ; θD, (1− θ)E),

defined for 0 ≤ θ ≤ 1.

Definition 1 (the Loewe drug interaction profile: i(θ); synergy, antagonism and additivity). A drug interaction
is said to be synergistic if, for all θ between zero and one exclusive, the effect of the drugs combined is greater
than the sum of effects produced by each drug separately:

(6) i(θ) < θ · i(1) + (1− θ) · i(0).
4
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supplement fig. S2 – The drug interaction profile is related to a ‘checkerboard’ diagrams shown in (a) and

(c). In the latter, the concentration of both drugs is given on the x and y axes, bacterial growth inhibition (or

population density or some other fitness measure) is then plotted on the z axis. The contour of all concentrations

that reduce this measure by half is an isobole here denoted IC50 and figures (a) and (c) show two checkerboard

plots viewed from above. Basal concentrations of both drugs that achieve the same inhibitory effect in this

illustration are D50 and E50, θ then parameterises the equidosage line between these two values. The fitness

measure evaluated along this line is shown in (b) and (d) and we define the degree of interaction based on this

curve, this is i(θ). We say the interaction is synergistic when the drug proportion that minimises i(θ) satisfies

0 < θ < 1 as in (b), we denote the resulting value by θsyn. In (d) we observe θsyn = 0 or θsyn = 1, in this case the

drugs are said to be antagonistic as i(θ) is maximised by a drug combination.

It follows by construction that i(1) = i(0) = rB(T ; 0, 0) and so (6) asks that treatment efficacy is greatest when
drugs are combined. Note that inequality (6) is necessarily satisfied if i(θ) is a convex function of θ.

The most synergistic drug combination is denoted by the value θsyn, this is the drug proportion that satisfies

(7) i(θsyn) = min
0≤θ≤1

i(θ);

it must follow that 0 < θsyn < 1 for a synergistic interaction. The drug interaction is said to be antagonistic if
the reverse inequality applies in (6) and in this case θsyn = 0 or θsyn = 1; this will apply if i(θ) is a concave
function of θ. Under these assumptions the drug interaction is said to be additive if i(θ) is a constant and
therefore independent of θ.

Definition 1 is quite standard but the following discussion is not commonly undertaken when antibiotic
interactions are discussed: bacterial inhibition due to drugs is measured over a time interval of total length T

hours. We therefore introduce time, T , explicitly into the interaction profile and write the latter as a time-
dependent interaction i(θ, T ). The time-dependent optimal combination, θopt(T ), is then the drug proportion
that satisfies

(8) i(θopt(T ), T ) = min
0≤θ≤1

i(θ, T )

and it follows by definition that θopt(T ) and θsyn are equal for small values of T .
5



From the dimensionless interaction profile

id(θ, T ) = −r +
B(T ; θD, (1− θ)E)

B(T ; 0, 0)
,

we define the following degree of interaction at T hours, I(T ), a value given by the mean of drug interactions
over all possible drug combinations:

(9) I(T ) =
∫ 1

0

id(θ, T )dθ.

There are different definitions of drug synergism in the literature and Definition 1 is given using Loewe
additivity as its starting point. In order to provide consistency of results across different possible definitions of
drug interaction, we will also use the following synergy measure defined in terms of Bliss independence [2].

Definition 2 (the Bliss interaction profile: ib(θ, T )). The time-dependent Bliss interaction profile is given by

(10) ib(θ;T ) =
B(T ; θD, 0)
B(24; 0, 0)

· B(T ; 0, (1− θ)E)
B(T ; 0, 0)

− B(T ; θD, (1− θ)E)
B(T ; 0, 0)

;

positive values of ib(θ;T ) correspond to a synergistic interaction while negative values correspond to antagonism.

3. Experimental evolution in a two-drug environment: methods

Now the basic numerical tools needed to define and analyse drug interactions have been detailed, we continue
with a description of an evolutionary experiment in which a bacterium is challenged by drugs that interact
synergistically. The experimental methods are based on those of a previous study [5], detailed as follows.

The following serial dilution protocol was implemented. A shaken microtiter plate with liquid minimal
growth medium is inoculated with a small density of bacteria. In addition to the limiting carbon source and
other nutrients needed for growth, each well in the plate contains a combination of antibiotics with basal
concentrations D and E at a proportion determined by the parameter θ. Cells are cultured for T = 24 hours
after which a small and fixed volume is taken from each well and transferred to a second plate which contains
fresh liquid growth medium and the same combination of antibiotics. The repetition of this process defines a
serial transfer experiment. It is essential to note that the supplied concentrations of extracellular resources and
drugs and each drug proportion, defined as θ above, are identical in every transfer. This allows us to study the
adaptation of a bacterial population in a fixed drug environment.

3.1. Materials. E. coli K12 (MC4100) (from the Coli Genetic Stock Center: http://cgsc2.biology.yale.

edu/Strain.php?ID=9973) was used and inoculation cultures were started from the same single colony for all
the experiments described below.

Experimental populations were cultured in M9 medium with the following concentrations: Part A: 350
g/LK2HPO4, 100 g/LKH2HPO4; Part B: 29.4 g/L Trisodium citrate, 50 g/L(NH4)2SO4, 5 g/LMgSO4.
Parts A and B were 50x stock solutions in deionized water, sterilised by autoclaving. For M9 minimal medium
they were diluted in water accordingly with 0.2% glucose and 0.1% casamino acid added as nutrients.

The antibiotics used are erythromycin (Sigma-Aldrich, Product #856193) and doxycycline (Sigma-Aldrich,
product #D9891). Liquid stocks were prepared from powder stocks at 50mg/ml in ethanol for erythromycin
and at 5mg/ml in deionized water for doxycycline (afterwards filter sterilised) and frozen at -20◦C. All dilutions
were prepared in M9 growth medium and then stored in the fridge at approx. 4-8◦C.

3.2. Experimental protocol. Experiments were conducted in 384-well plates with 100µl liquid volume.
Growth medium and antibiotics were distributed over the plates fully randomised by a pipetting robot (Tecan
Freedom Evo) to exclude gradient effects (for typical randomisation patterns, see supplement fig. S3). Plates
were inoculated and transferred with a 384-well replicator. Experiments were conducted at 30◦C, density
measurements were taken in a shaken plate reader (Tecan Genios).

The full protocol consisted of three sets of experiments:

(Ex. 1) Single-drug dose-response experiments to calibrate equal inhibitory effects.
Preliminary experiments were performed to determine dose-response relationships for erythromycin and doxy-
cycline, both are shown in supplement fig. S11. This data determines the MIC and the IC50 for both drugs.

(Ex. 2) Five day serial dilution experiment with different multidrug combination treatments.
6
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supplement fig. S3 – In order to exclude gradient effects, treatments across the 384-well plates were randomised

using a pipetting robot (Tecan Freedom Evo). This figure illustrates typical randomisation patterns for different

concentrations of (left) doxycycline and (right) erythromycin for 16 drug proportions in the equidosage line. White

squares correspond to empty-well controls and yellow squares to null-antibiotic controls.

Basal concentrations of both drugs were chosen from the preliminary experiment to achieve 50% inhibition at
24h (E50 = 9µg/ml for erythromycin and D50 = 0.15µg/ml for doxycycline). This experiment then consisted
of serial dilutions for each of the following sixteen drug combinations:(

0
15
D50 +

15
15
E50,

1
15
D50 +

14
15
E50, ...,

15
15
D50 +

0
15
E50

)
.

Supplement fig. S4 illustrates the optical densities of a population of E.coli cultured at each of these drug
combinations. In addition to these treatments, the following three controls were included: (1) M9 growth
medium without antibiotics and without inoculation to serve as a reference for the density measurements, (2)
M9 growth medium without antibiotics but with inoculation to serve as the uninhibited growth reference and
(3) M9 growth medium with E50 and D50 to provide a lower-bound control on bacterial growth. All treatments
and controls were replicated nineteen times and pipetted into one plate.

Each one of the five prepared microtiter plates was stored at 4◦C until the day of their respective usage. So, in
order to control for degradation of the drugs, a sixth ‘checking’ plate was prepared at the same time and stored
with the other five plates throughout the duration of the five day experiment. At the end of the experiment this
plate was inoculated with an overnight culture of the original colony and measured for 24h. Both on day one
and when using the checking plate, doxycycline and erythromycin caused a significant reduction of the AUC
(all 4 tests: Wilcoxon signed rank test, W = 361, N = 19, p < 0.0001). This is consistent with maintenance of
the efficacy of the drugs for the entire five-day protocol.

An additional test was performed to determine whether resistance was the product of epigenetic adaptation
alone. Ten samples each of the initially most synergistic drug treatment and the control treatment without
drug were obtained from the end of the evolutionary experiment and cultured in M9 growth medium without
antibiotics for 24h. Afterwards, the resulting populations were all subjected to the initially most synergistic
drug combination for another 24h. Consistent with a likely genetic basis to drug-resistance adaptation, samples
from the short-term synergistic treatment still displayed a higher AUC when compared to the no antibiotic
control treatment (Wilcoxon signed rank test, W = 92, N = 10, p < 0.001).

(Ex. 3) Checkerboards and Isobolograms: standard drug-resistance assays.
Checkerboards were obtained by measuring the optical density at 24h of a grid composed of sixteen concentra-
tions of each drug. Each one of the 256 drug combinations of our grid was replicated 11 times and pipetted onto
8 plates. Six wells with M9 growth medium but without inoculation were also included in a random distribution
on each plate to serve as a contamination control and as density reference. Plates were kept in an incubator on
shakers and density measurements taken every 45min for 24h.

The purpose of this experiment was to obtain two isobolograms: the first one was inoculated with the
original isogenic population of susceptible bacteria while the second was inoculated with a sample from the
highly synergistic combination (4.8µg/ml erythromycin and 0.08µg/ml doxycycline) obtained at the beginning
of the fifth day of Ex. 2.
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supplement fig. S4 – (The U-shaped smile in data.) Optical densities as a function of time for one

24-hour season under different drug treatments characterised by the parameter 0 ≤ θ ≤ 1. The box in the far left

illustrates the optical density of bacteria growing in erythromycin monotherapy (E = 9µg/ml), the box at the

right corresponds to doxycycline monotherapy (D = 0.15µg/ml), while every other box represents a multidrug

combination treatment given by the pair (θD, (1 − θ)E). The red dots indicated at the same time on each day

show that bacterial density at that time is minimised when θ ≈ 0.5. As a result, we say that erythromycin and

doxycycline have a synergistic interaction; note how this red curve has the characteristically near-convex ‘U-shape’

associated with synergy.

4. Experimental evolution in a two-drug environment

Remark 1. In the following, the terms ‘day’ and ‘season’ will be used synonymously for ‘transfer’ in our
batch-transfer protocol (Ex. 2 described above).

4.1. Trade-off between rate of adaptation and degree of synergy. Now the serial dilution protocol
‘Ex. 2’ has been detailed, we can define a non-genetic measure of adaptation to treatment that uses the data
it produces. Let N denote the number of transfers (ie. days) in a serial dilution experiment with each transfer
denoted by the index j ∈ {1, N +1}. The density of bacteria at time t in a given well at transfer j is denoted by
Bj(t;D,E). If 0 < η � 1 is a dilution parameter denoting the volume fraction of the dilution taken at the end
of each day, then the act of performing this daily transfer can be described mathematical by the expression:

(11) Bj(0;D,E) = η ·Bj−1(24;D,E).

A concept we make use of, closely related in spirit to one proposed in [5], is the rate of adaptation that we
can now define. This quantity, illustrated in supplement fig. S5, measures how quickly resistance phenotypes
spread within a population in a serial transfer experiment. Formally, the measure is defined as follows.

Definition 3 (Rate of adaptation). Denote by Yj(θ) the total increase in bacterial density observed during
transfer j:

(12) Yj(θ) = Bj(24; θD, (1− θ)E)−Bj(0; θD, (1− θ)E).

For an experiment of N transfers we obtain a series {Y1, Y2, ..., YN+1} and so define the total yield improvement
∆Y (θ) = YN+1(θ)− Y1(θ). The time of adaptation, tadapt, is the interpolated time at which the bacterial yield
improvement of the population reached half its maximum value. We say that the rate of adaptation of this
bacterial population to this environment is

(13) ω(θ) =
∆Y (θ)

2 · tadapt
.

For an illustration, see supplement fig. S5; also see [5] for a related phenotypic measure of adaptation.

Supplement fig. S6 shows the rate of adaptation as a function of the different degrees of synergy for each
of the nineteen replicates of each combination treatment implemented in our experimental protocol. There are
two important features of note: single-drug treatments (plotted as blue and green dots) are clustered in a region
with low synergism, while multidrug combination treatments (plotted with red dots) present a high degree of
synergism. Furthermore the figure shows a clear trade off: interactions with higher degrees of synergism possess
higher rates of adaptation; this result is entirely analogous to one obtained earlier for different drug pairs [5].
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supplement fig. S5 – (a) An illustration of a schematic three-season experiment with an increase in bacterial

yield at the end of each transfer represented by the variable Yj(θ). (b) The rate of adaptation is defined in terms

of the yield improvement, ∆Y (θ), and the time to achieve half its maximum difference, tadapt as stated in (13).

(a) (b)

supplement fig. S6 – A correlation between rate of adaptation and degree of synergy determined using (a)

Loewe additivity (Definition 1 with r = 0.72) and (b) Bliss independence (Definition 2). Independently of the

definition of synergism used, multidrug combinations possess greater synergy and a higher rate of adaptation than

treatments biased towards one drug with their necessarily lower degree of synergy (red dots represent near 50-50

combinations, blue dots represent doxycycline monotherapy and green dots erythromycin monotherapy).

4.2. A measure of antibiotic efficacy: AUC inhibition. The following measure of antibiotic efficacy takes
into account the total bacterial density observed during a defined time interval in the presence and absence of
drugs.

Definition 4 (AUC inhibition). Area under the curve inhibition at the end of day j is a measure of the fitness
of bacteria relative to drug-free growth and expressed as a number between zero and one:

(14) A(j;D,E) = 1−
∫ 24

0
Bj(t;D,E)dt∫ 24

0
Bj(t; 0, 0)dt

.

Hence A(j;D,E) = 0 when drugs have no effect and A(j;D,E) = 1 when the antibiotic combination has
completely inhibited growth.

This measure is illustrated in supplement fig. S7.

4.3. Smile-frown transition in the data. The purpose of this section is to show that the smile-frown
transition predicted by the logistic model (4) and depicted in supplement fig. S1 is found in the empirical
dataset when E.coli K12(MC4100) is cultured in the presence of erythromycin and doxycycline using protocol
Ex. 2.
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supplement fig. S7 – The area under the curve measure of inhibition (AUC inhibition) on day j is determined

by integrating the total observed bacterial density throughout the duration of the season (represented with a

grey area and denoted AUC) relative to the total observed bacterial density during the same time interval in an

experiment with no antibiotics (area under the dotted line and denoted AUC0). In symbols, inhibition is given

by A = 1−AUC/AUC0.
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supplement fig. S8 – (Loss of the synergistic smile) Each pane shows a quadratic fit to optical density

data at times 12h, 18h, 24h (in blue) and 24h later at 36h, 42h and 48h (in red). The earlier times are consistent

with a test for synergism, the later are consistent with antagonism; the test and p values are given in the text in

section 4.3. The figure legends show unadjusted R2, the fitted value of α and its estimated standard error where

the quadratic αθ2 + βθ + γ is fitted to data; as usual, θ ∈ [0, 1] represents drug proportion on the x-axis.

The properties of synergy and antagonism as stated in Definition 1 are difficult concepts to apply directly
to data as the variation inherent in any empirical observation of bacterial growth will mean that convexity
or concavity of the population density data are unlikely to hold in practise. So, as to test for convexity or
concavity in observed data, we fitted a quadratic q(θ) = αθ2 +βθ+ γ to those densities for at least six different
times during the first 48 hours of growth and examined the sign of the coefficient α (see supplement fig. S8).
Motivated by the Definition 1 we take the convex case where α > 0 as an indicator of synergy and the concave
case where α < 0 is an indicator of antagonism; a t-test is used for the significance of this sign condition.

Supplement fig. S8 illustrates the results obtained when applying this test. It shows that at 12h, 18h and
24h, the test is consistent with synergism with approximate p values for the positivity of α of 4.69 · 10−8,
2.476 · 10−7 and 2.475 · 10−4 respectively. Twenty four hours later, at 36h, 42h and 48h the test is consistent
with antagonism with respective p values 9.33 · 10−3, 2.529 · 10−4 and 1.25 · 10−2. The R2 values of each fit are
given in the figure legend. Thus, we conclude that the smile-frown transition occurs in the data before 48h of
growth have ellapsed, consistent with the model (4).

4.4. A corollary of the smile-frown transition: when a monotherapy is optimal. Equation (4) made
a second prediction, not only is the smile-frown transition seen but it predicted that this transition is the result
of the optimal therapy shifting from one timepoint to another. Moreover, at certain critical times the optimal
therapy is predicted to move quite abruptly from being a combination therapy at early times to a monotherapy
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supplement fig. S9 – The decline in inhibitory effect for each of the sixteen treatments, where three have

been highlighted: green is the erythromycin monotherapy, blue is the doxycycline monotherapy and red is the

maximally synergistic combination (as measured over 24h). A point arises around day two where the loss of

inhibition is so rapid for the most synergistic treatment that it no longer provides the optimal therapy in this

measure and a monotherapy is preferable.

at later times. This is illustrated in supplement fig. S1 and, as can be seen in supplement fig. S9, this prediction
is also borne out by data.

Supplement fig. S9 shows that the inhibition of growth due to the most synergistic combination treatments
rapidly declines, so much so that within a day the erythromycin monotherapy provides greater inhibition, so
too the doxycycline monotherapy but the latter difference is less clear in the figure.

5. Analysis: whole genome sequencing

5.1. Genetic adaptation in evolved populations of E. coli K12 (MC4100). To identify the genetic
mechanism that accounts for the smile-frown transition that occurred during the evolution experiments, we
sequenced the genomes of ten evolved populations of each single drug treatment (the one where E = 9µg/ml
and the other where D = 0.15µg/ml) and of the combination treatment with the largest synergy effect on day
one (where E = 4.8µg/ml and D = 0.07µg/ml). To ensure the genetic changes we identify are correlated with
adaptation to antibacterial treatment, we also sequenced ten control populations that evolved under experi-
mental conditions but were not exposed to any antibiotics. Finally, we re-sequenced the ancestral population
to mitigate against possible inaccuracies or changes between our starting strain and published E. coli MC4100
genomes.

5.2. DNA extraction and sequencing. To obtain DNA, subsamples of bacterial cultures of day 4 (protocol
Ex. 2) were taken by scratching the surface of frozen material with a pipette tip. The tip was used to inoculate
20 ml of M9 growth medium containing the respective antibiotic concentrations these replicates had encountered
in the serial dilution experiment. The cultures were grown for 24h at 30◦C, thus re-running day five of the
experiment. Additionally, an LB overnight culture of the original agar plate colony (used for inoculation on the
first day) was prepared for sequencing.

DNA was extracted using the DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) according to the man-
ufacturer’s instructions for Gram-negative bacteria. The 41 samples were processed into genomic paired-end
Illumina sequencing libraries according to standard methods [6]. Sequences were obtained for the ancestral cul-
ture and for all replicates of the control, doxycycline and combination treatments. We only obtained sequences
for six replicates of the erythromycin single drug treatment.

5.3. Data analysis.

Error Correction and Quality Filtering. All reads were error corrected using Quake 0.3.0 [7] using a kmer
size of 15. Adapter sequences (AGATCGGAAGAGCACACGTC and AGATCGGAAGAGCGTCGTGT) were
stripped using SeqPrep (https://github.com/jstjohn/SeqPrep). Reads were then quality trimmed from
both ends, to exclude any bases of Phred quality score lower than 26 using DynamicTrim.pl from the SolexaQA
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package 1.10 [8]. To exclude short and orphan reads and to maintain pairing of reads between the two fastq
files, reads shorter than 40 were filtered out using LengthSort.pl from the same package.

Mapping Onto Reference. Reads of all samples were mapped to the published E. coli K12 (MC4100) reference
genome [9], which is available for download at ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Escherichia_

coli_BW2952_uid59391/ (version NC 012759.1, accessed January 2012). The reference sequence was saved in
the fasta format and indexed using the index subroutine of bwa 0.6.1 [10]. Subsequently, reads were aligned
to the reference using the bwa sampe module for paired end reads. Reads were also mapped with GSNAP. A
GMAP/GSNAP database with kmer size 15 was created and reads were mapped with GSNAP [11] with an
expected paired-end length of 300, allowing 50bp deviation of the expected paired-end length. Using samtools
[12], the sam files resulting from both mappers were sorted to genomic position and filtered to include only
reads mapped in a proper pair and aligned with a mapping quality greater than or equal to twenty. The sorted
bam files were indexed and basic statistics were calculated using the flagstat option in samtools. Per-base
coverage was calculated using genomeCoverageBed in Bedtools [13]. Coverage was further analysed in R and
Bioconductor using the HilbertVis and ShortRead packages.

Analysis of Structural Variation and SNPs. To call single nucleotide polymorphisms (SNPs), duplicate reads
were removed using the MarkDuplicates code of Picardtools (available at www.picard.sourceforge.net).
SNPs were called with SNVer 0.4.0 [14] and with VarScan 2.0 [15]. SNVer uses a frequentist approach to test
whether a polymorphic genomic locus represents a rare variant present above a minor allele frequency (MAF)
treshhold. In our analysis the MAF was set to 0.05 and SNPs were only kept if they were supported by more
than two reads. VarScan uses a heuristic/statistic method to call SNPs based on read depth, base quality,
significance and variant frequency. In this analysis all detected variants with a minimal coverage of 50 were
kept. The filtered SNPs were finally annotated using the published annotation file for E. coli K12 (MC4100)
(ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_BW2952_uid59391/NC_012759.gff )
and a Perl script.

Structural variants were detected using Breakdancer [16], CNVnator [17] and Pindel [18]. Breakdancer
detects structural variants based on anomalous location and/or orientation of read pairs. Using the break-
dancer max algorithm, all sorted bam alignment files were screened for indels, deletions, insertions, inversions
and intrachromosomal rearrangements. Deletions, insertions and intrachromosomal rearrangements were kept
if they received a score larger than 35 and were supported by at least 5 reads; for inversions, a quality score
of 30 was considered sufficient. The Pindel pattern-growth algorithm detects breakpoints of large deletions
and medium sized insertions by identifying paired reads for which only one of the reads can be mapped to
the reference. It then attempts to break the unmapped read into two and map both shorter fragments to the
reference. If successful, the breakpoints of deletions or insertions can thus be determined. CNVnator utilises
statistical analyses of read mapping density (i.e., coverage) within different bins along the genome to discover
copy number variants of any size. After calibration, a bin size of 100 was chosen for all CNVnator analyses.

5.4. Summary of results. All SNP and structural variation analyses were first performed on the ancestor.
This strain had 59 deletions (among which one large 49.2 Kb deletion) and 18 SNPs compared to the published
reference (cited above). In the control treatment six SNPs, four deletions and one inversion were found in four
genes. These likely represent adaptations to the growth conditions and were therefore filtered from the results
for the other treatments. The doxycycline samples showed 11 SNPs and five 1-12bp deletions in five genes
specific to the treatment (Table S1), whereas the analysis of the erythromycin replicates yielded three unique
SNPs and 4 unique deletions in two genes (Table S1). In the combination treatment only one sample showed
unique SNPs in two genes. Additionally to SNPs, the analysis detected a 315Kb duplication between genome
positions 274201 and 589900 (supplement fig. S10). This duplication was found in 90% of all combination
replicates, but also in 30% of the doxycycline and 30% of the erythromycin treatments.

Genetic basis of adaptation. The above genomic analyses have yielded evidence for genetic adaptation to drug
treatment. Populations adapted differently to single drug treatments than combination treatment but generally
followed the same evolutionary routes across independent biological replicates within a treatment.

In the doxycycline treatment, 60% of the replicate populations became resistant through SNPs (Table S1)
and/or 1-14bp deletions in the marR negative regulator of the marRAB operon ([19, 20], for a review of mar,
see [21]). The Multiple Antibiotic Resistance (mar) locus mediates resistance to tetracyclins, chloramphenicol,
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Gene Number of polymorphic sites Frequency in replicates Annotation

Doxycycline

marR 7 0.5 Repressor of marRAB operon (latter

involved in activation of antibiotic re-

sistance and oxidative stress genes)

mdaB 1 0.1 NADPH quinone reductase

agaS 1 0.1 tagatose-6-phosphate ketose / aldose

isomerase

ascF 1 0.1 phosphotransferase system IIC com-

ponents (carbohydrate transport)

eco 1 0.1 serine protease inhibitor

Erythromycin

acrR 1 0.2 acrRAB regulator (antibiotic trans-

porter operon)

ycbZ 2 0.6 ATP-dependent protease posttrans-

lational modificatiom

Combination

rcnA 1 0.1 membrane protein conferring nickel

and cobalt resistance

evgS 1 0.1 hybrid sensory histidine kinase in

two-component regulatory system

Table S1 – Overview of single nucleotide polymorphisms in the genomes of E. coli that evolved five days

with erythromycin, doxycycline or a combination of both. The number of polymorphic sites indicates how many

independent nucleotide positions in the gene carry a SNP in at least one replicate. The frequency reflects the

number of replicates where a polymorphism in the gene was found. The table only shows SNPs unique to the

three treatments.

penicillins, cephalosporins, nalidixic acid and rifampicin through an energy-dependent efflux system [22]. Specif-
ically, MarA transcriptionally activates at least 60 genes [23, 24, 25] that affect outer membrane permeability,
antibiotic efflux and the reducing potential of the cell. Mutations that render the negative regulator MarR
inactive have been found scattered across the gene and resulted in an increased efflux of antibiotics (see the
overview in [26] and references therein). This mar -related mechanism is well-described as a genetic adaptation
conferring resistance to tetracyclins.

In the erythromycin treatment, most replicates had a SNP or deletion in the ycbZ gene involved in transla-
tional modification (ycbZ is a putative protease). One replicate population obtained a mutation in acrR, the
negative regulator of the acrAB multidrug efflux system. The acrAB locus is known to be one of the most
important broad substrate efflux pumps in E. coli [27, 20, 28]. Deletion of this operon leads to hypersensitivity
to antibiotics, detergents and dyes [29, 20], indeed Mazzariol and coworkers [30] showed that high-level resistant
clinical isolates of E. coli over-expressed acrA.

In 90% of the populations in the combination treatment, but also in 30% of the erythromycin and 30%
of the doxycycline treatments, a 315 Kb duplication was found (see supplement fig. S10). The duplication
was observed significantly more for the combination treatment than in the erythromycin (Fisher’s exact test,
P=0.035) and the doxycycline (Fisher’s exact test, P=0.019) treatments. All 14 replicates where a duplication
was detected were consistently between positions 274201 and 589900. This genomic region contains 293 genes,
among which eleven known antibiotic resistance genes, 32 transporter genes and 31 transposon-related genes
(Appendix B).

Three multidrug efflux systems and an antibiotic degradation system are encoded in the duplicated region
(again, see Appendix B). Nicoloff et al. showed [31] that a multi-drug resistant isolate of E. coli gained antibiotic
resistance through a 149 Kb duplication of a region including the acrAB locus. Artificial reduction of the copy
number of acrAB lead to loss of the resistant phenotype but introduction of the duplicated region into a
strain lacking the acrAB locus did not lead to sufficient AcrAB copy number to reach resistance. The role of
spontaneous tandem duplications containing acrAB was later confirmed in several other E. coli strains [32].

The consistent parallel evolution towards a 315 Kb duplication here in all but one replicate of the combination
treatments strongly suggests, therefore, that genetic amplification of multi-drug efflux pumps such as acrAB is
the likely adaptation that confers the multi-drug resistance phenotype.
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supplement fig. S10 – Coverage plots for the genomic region between positions 274,201bp and 589,900bp

showing the duplication detected by CNVnator and breakdancer, an increase in coverage suggestive of a dupli-

cation of that region. It shows no duplications were detected in the absence of drugs but more duplications of

the region were detected in replicates of the combination therapy than in monotherapies. These are indicated by

the reddest regions. The arrows are colour-coded and highlight SNPs in different treatments, the thickness of the

arrow denotes how many replicates that SNP was found in.

6. Analysis: a mathematical model consistent with data

The remainder of this document seeks to establish whether gene duplication of efflux genes underpins the
genetic basis of the smile-frown transition. To this end, we now turn to mathematical models to ask whether
the loss or gain of efflux genes in a model can produce the loss, or gain, of the transition.

6.1. A core growth inhibition model: capturing dose-response curves. Bacteriostatic antibiotics sup-
press bacterial growth by inhibiting DNA replication, RNA transcription or by interfering with protein synthesis
and other aspects of cellular metabolism and physiology. For instance, both drugs in our experimental system
target different subunits in the ribosome: erythromycin binds to the 50S ribosomal subunit and doxycycline to
the 30S ribosomal subunit. Although they have different specific targets their mode of action is superficially
similar, both suppressing cell growth by inhibiting protein translation.

The core growth-inhibition model presented in this section will use this observation to support the following
modelling assumption: antibiotics act by inhibiting the production of an essential metabolite and therefore
reduce flux through a pathway, thus reducing growth rate. While this is a vast over-simplification of the true
cellular biology, this assumption will at least provide us with some broad insights into how two bacteriostatic
antibiotics interact when they inhibit growth.

Cells were cultured in an environment in which glucose is limiting. We therefore assume for modelling
purposes that the rate of cell growth is simultaneously proportional to the rate of translation and to the uptake
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rate of glucose at extracellular concentration S. If we also assume that the antibiotic molecule has no effect on
the uptake of the limiting resource, the growth rate G of a cell in which the extracellular concentration of a
drug is D may then be written in the form G(S,D) = constant × u(S) × γ(D). Here the constant represents
cell yield per unit resource, glucose, u(S) is the uptake rate of glucose and γ(D) is a dimensionless growth
inhibition function. We now assume that u(S) is a standard Monod function,

u(S) =
Vmax S

K + S
,(15)

where Vmax is maximal resource uptake rate and K a half-saturation constant.
The decrease in growth rate due to the presence of antibiotic will be described by an inhibition function of

the form

(16) γ(D) =
1

1 + κdD
,

for some parameter κd ≥ 0 that can is a phenotype of each cell. Note that κd is a single-cell measure of
antibiotic efficacy in the sense that if D50 is the antibiotic concentration required to halve the translation rate
then D50 = 1/κd. As a result, we assume that the per-cell, per-unit time growth rate of each bacterial type is
determined both by the resource availability, S, and by the concentration of the antibiotic, D, and a resource
conversion parameter, c, as follows:

G(S,D) = c · u(S) γ(D).(17)

Our experimental microcosm, the shaken 384-well plates described in section 3, can have a relatively high
concentration of bacteria per unit of volume. However, as the plates are shaken continually and vigorously,
we will assume that the bacteria diffuse in the liquid medium in such a way that it is possible to describe
antibiotic and carbon uptake using models based on the mass action law, as described by the following system
of differential equations:

(18)
d

dt
B = G(S,D) ·B, d

dt
S = −u(S) ·B, d

dt
D = −dD ·B,

suitably augmented with initial conditions (B(0), S(0), D(0)). Here B represents the density of bacteria in the
growth medium and d represents the rate of uptake of antibiotic molecules from the environment due to their
binding to bacterial cells.
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supplement fig. S11 – Dose-response curves of E. coli K12(MC4100) exposed to different concentrations of

(a) erythromycin and (b) doxycycline. Circles represent data and lines are model simulations (ie. equations (18)

with parameters as described in Appendix A; vertical lines are s.e.).

Many simplifying assumptions were used to formulate equation (18). So, in order to validate this core
growth-inhibition model, we performed numerical simulations with parameter values described in Table S3 and
compared the model with data obtained by culturing E. coli for 24h under glucose limitation and subject to
increasing concentrations of erythromycin and doxycycline. As can be seen in supplement fig. S11, the model
was able to capture quantitative features of the dose-response curve to both drugs. Following the experiments,
the model used a glucose value of S(0) = 2000µg/ml and the value of D(0) can be read from the x-axis of
supplement fig. S11 where ‘D’ in this model represents both drugs, doxycycline and erythromycin, in either
case.
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6.2. Modelling synergistic drug interactions. Having successfully captured single-drug dose-response pro-
files using a core mathematical model, we now return to the situation where two antibiotics are present in the
environment at concentrations D and E. A natural extension of the model presented in the previous section
may be obtained by supposing that growth inhibition can be described by a dimensionless function that depends
on the concentrations of both drugs, γ(D,E).

In a general sense, γ(D,E) must be a function satisfying

γ(0, 0) = 1, γ(D,E) ≥ 0, γ(D, 0) = γd(D) and γ(0, E) = γe(E),

where γd(D) and γe(E) are growth inhibition functions that characterise the use of each antibiotic separately.
Motivated by the action of doxycycline and erythromycin, we assume that the drugs have non-overlapping
targets on a single enzyme and that we can model their interaction as a simplification of a model of mutually
non-exclusive competitive inhibitors. As a result, the combined effect of the drugs D and E are assumed to
have the following functional form

(19) γ(D,E) =
1

1 + κdD + κeE + κmDE
,

where κd, κe and κm are constant and strictly positive.
To see that the function γ(D,E) so-defined yields a synergistic interaction in the sense defined in inequality

(6), let θ lie between 0 and 1 and suppose that D0 and E0 have been chosen so that γ(D0, 0) = γ(0, E0). From
this we deduce that κdD0 = κeE0 must hold. Differentiating γ(θD0, (1− θ)E0) with respect to θ gives

∂

∂θ
γ(θD0, (1− θ)E0) =− (1/γ(θD0, (1− θ)E0))2 · (κdD0 − κeE0 + (1− 2θ)κmD0E0)

=− (1− 2θ) (1/γ(θD0, (1− θ)E0))2
κmD0E0

which changes from negative to positive values when passing through θ = 1/2. Hence the function γ(θD0, (1−
θ)E0) is monotonic decreasing for θ in (0, 1/2) and monotonic increasing in (1/2, 1) with maxima at both
boundaries, θ = 0 and θ = 1. Furthermore, a short calculation shows that

∂2

∂θ2
γ(θE0, (1− θ)E0) = 2κmD0E0γ(θD0, (1− θ)E0)−2

(
(1− 2θ) · γ−1 · ∂

∂θ
γ + 1

)
.

As (1 − 2θ) · ∂∂θγ is positive, we deduce that ∂2

∂θ2 γ > 0 and so γ(θD0, (1 − θ)E0) is convex as a function of θ.
The function γ(θD0, (1− θ)E0) therefore satisfies the synergy property required for inhibition functions set out
in Definition 1 (ie. the required convexity property holds), justifying our claim of synergy for γ.

We can now give a mathematical form for bacterial growth rate, G, in terms of the concentration of available
limiting resource and the concentration of both antibiotics in the environment. This is a standard Michaelis-
Menten term multiplied by the growth inhibition coefficient defined in (19):

G(S,D,E) = c · u(S) · γ(D,E).(20)

As for one-drug models presented earlier, c denotes a resource conversion rate and u(S) is the resource uptake
function defined in (15). If we now write B(t) for the density of an isogenic population of bacteria growing
under resource limitation and under the effect of the antibiotics, at concentrations D(t) and E(t), then the
equation governing the dynamics the bacterial density can be written thus:

(21)
d

dt
B = G(S,D,E) ·B, d

dt
S = −u(S) ·B, d

dt
D = −dD ·B, d

dt
E = −eE ·B,

with initial conditions x(0) = (B(0), S(0), D(0), E(0)). Here the affinity constants, d and e, are mass action
constants that represent the binding and uptake rates of the antibiotic molecules to the bacterial cells.

Using the parameter values described in Table S3, the model defined by (21) is seen in supplement fig. S12
to be consistent with an empirically-determined bacterial inhibition dataset obtained by culturing the bacteria
at different drug proportions for 24-hours. This figure establishes that monotherapies produce an AUC measure
of 50%, whereas a 50-50 combination therapy of both drugs produces a reduction in AUC growth of nearly
90%. This also establishes that the interaction of the drugs is synergistic when measured over a twenty-four
hour period.
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supplement fig. S12 – Area under the curve inhibition of E. coli K12 (MC4100) cultured for 24h under

glucose limitation and different proportions of erythromycin and doxycycline. Solid lines are simulations of the

mathematical model (21) with parameter values defined in Table S3, vertical bars are one s.e..

6.3. A mathematical model structure to mimic the experimental protocol. Suppose that B(t) =
(B1(t), . . . , Bn(t)) is a vector containing the density of n bacterial genotypes supported by the model at time
t; the meaning of the different bacterial genotypes will be defined carefully in due course. The first entry of
this vector represents the density of a wild-type bacterium in the experimental device and as the initial stage of
the experiment is to inoculate the first flask with an isogenic population consisting only of wild-type bacteria
at density B0, we assume that B(0) = (B0, 0, ...0). The value B0 is approximately 104 − 105 cells per ml in
practise.

If the experimental protocol invokes N flask-to-flask transfers, each represented by an index j ∈ {1, N + 1},
then the density of each bacterial genotype at transfer j is determined by the terminal densities from the
previous day. If the duration of each transfer is T hours and in practise T = 24h, then the density of each
bacterial genotype within the j-th day will be written Bj(t) for 0 ≤ t ≤ T . As a consequence of the nature of
the experimental protocol, in particular (11), the initial condition within each transfer will satisfy the condition
Bj(0) = η ·Bj−1(T ), where 0 < η < 1 is a dilution parameter.

Let us represent the state of the experimental system by the variable xj(t) = (Bj(t), S(t), D(t), E(t)), where
D and E are the concentrations of erythromycin and doxycycline and S is the limiting resource, glucose.
A general, mathematical structure representing a population of E.coli competing in a single resource-limited
environment and subject to the inhibiting effect of two bacteriostatic antibiotics can be written as follows:

(22a)
d

dt
xj = F(xj)

(where F is a model-specific mapping detailed below) with initial conditions

(22b) xj(0) = (η ·Bj−1(T ), S0, θD0, (1− θ)E0)

within each season where x1(0) = (B(0), S0, θD0, (1 − θ)E0). Here D0 and E0 are basal concentration of the
two antibiotics and S0 is the initial concentration of the limiting resource within each season. There remains
to specify the nature of the function F .

Remark 2. The time series xj(t) depend implicitly on θ through the definition of the initial condition within
each transfer (although F does not itself depend on θ directly). To emphasise this dependence later in the article,
we will use the notation xj(t; θ).

6.4. A drug efflux model. To complete the construction of a the model, we assume that a protein is syn-
thesised that interacts physically with the drug. This protein could in principle have several functions, the one
we assume here is a passive efflux mechanism whereby the small antibiotic molecule is transported into the
extracellular environment by one or more of these proteins. We could, with a small number of modifications,
assume the protein is instead an enzyme that hydrolyses the antibiotic into a number of products that are
harmless to the cell. Howver, we choose drug efflux for definiteness motivated by the fact that acrAB was found
within the duplicated chromosomal region as highlighted by the above genomic analysis.
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That part of our mathematical model which represents the dynamics within one season is defined as follows
(this defines the function F above):

d

dt
b1 = G(S,D1, E1)b1 − δ(b1 − (1 + ∆)b2),(23a)

d

dt
bj = G(S,Dj , Ej)bj − δ((2 + ∆)bj − bj−1 − (1 + ∆)bj+1),(23b)

d

dt
bn = G(S,Dn, En)bn − δ((1 + ∆)bn − bn−1),(23c)

d

dt
S = − V S

K + S

n∑
j=1

bj ,(23d)

d

dt
Dext = −dDDext −

n∑
j=1

bj

(
ϕd(Dext −Dj)−

vdpj
kd + pj

Dj

)
,(23e)

d

dt
Dj = −dDDj + bj

(
ϕd(Dext −Dj)−

vdpj
kd + pj

Dj

)
,(23f)

d

dt
Eext = −dEEext −

n∑
j=1

bj

(
ϕe(Eext − Ej)−

vepj
ke + pj

Ej

)
,(23g)

d

dt
Ej = −dEEj + bj

(
ϕe(Eext − Ej)−

vepj
ke + pj

Ej

)
,(23h)

where j = 2, ..., n− 1.
The model in (23) is designed to capture the densities of bacteria that carry j copies of a gene coding a

protein that transports drug from the cell, we denote this density by bj . Using t for time, the variable S is the
concentration of a limiting carbon source, glucose, Dext and Eext are extracellular concentrations of each drug
and Dj and Ej are the intracellular drug concentrations for each subpopulation. The drugs are assumed to
degrade at an exponential rate determined by dD and dE . The variable pj encodes the number of efflux proteins
expressed from a cell with j − 1 copies of the efflux gene, provided j ≥ 2, we then impose the conditions p1 = 0
and p2 > 0. This means that cells with one gene copy must first express it before the drugs can be pumped
from the cell, thereafter that gene may be amplified.

We assume a functional form for pj that is monotone increasing and bounded in j, controlled by a dimen-
sionless constant g (the Michaelis-Menten function pj = (j − 1)/(1 + g(j − 1))). Thus pj is also dimensionless
and the quantity pj/(ke + pj) is the probability of finding a pump in the state where it momentarily is bound
to drug. The rationale for this is that the polymerase transcription complex, assumed limited in number, has
to compete for each gene copy, thus providing a limit on the number of efflux genes that can be simultaneously
expressed. Thus the cell phenotype for which j = 1 has the gene for drug efflux, but does not express it.

The process of up-regulation of efflux genes and both increases and decreases in the copy number of the efflux
genes are assumed to occur randomly as a Poisson process at a certain rate δ per cell per hour (the probability
of expression and amplification of the gene per cell per unit time are assumed, for simplicity, to be the same).

The remaining variables in (23) have the following meaning: ϕe, ϕd are antibiotic diffusion rates across the
cell membrane, ve, vd are maximal antibiotic efflux rates and ke, kd are half-saturation constants associated
with efflux pump-antibiotic molecule binding; V and K are maximal uptake rate and half-saturation constants
associated with Michaelis-Menten uptake of the single carbon source, glucose S; G(S,D,E) is the per hour
growth rate of each cell detailed above; δ is the rate of amplification of the efflux gene and δ(1 + ∆), a value
necessarily greater than δ, is the rate of decay of the efflux protein expressed by this gene. Finally, therefore,
n− 1 is the maximum copy number of the gene.

To complete the statement of the model, we set n = 3 to represent three different cell phenotypes: an
unexpressed pump gene, a single expressed pump gene and one additional copy of that gene where both copies
are fully expressed. (In supplement fig. S13 these cell types are referred to in the figure legend as ‘no pump’,
‘pump’ and ‘gene copy’, respectively.) Finally, at the end of each 24-hour season a sample of the current
population is transferred to fresh medium where the next season of growth occurs. A sample of around 1%
of the bacterial population was therefore taken and transferred to a fresh environment. The intracellular drug
concentrations (per cell) were maintained in this transfer but the extracellular environment was reset to provide
the growth and environmental dynamics seen in supplement fig. S13. This was repeated for five days (120h
total growth) to respect the experimental protocol.
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supplement fig. S13 – One simulation of the drug efflux model over five days (seasons of 24h) totalling 120h

for a drug combination given by θ = 6/14 corresponding to D = 0.06µg/ml and E = 5.4µg/ml. (a) The densities

of each phenotype (red, blue and grey areas) sum to form the total population density that is compared with

mean observed optical density data (dotted black line). In simulations, the pump and its gene copy are selected

for in the growth phase, but are selected against in stationary phase. (b) The drug and sugar concentrations

sweep downwards from their highest values at the start of each new season where the bacterial densities and

extracellular environments have been reset to their initial (t = 0) values.

Dynamics from the first two days’ simulation of both the model and of the data have been sampled to
produce supplement fig. S14. This figure shows that the drug efflux model and the data are quantitatively
consistent and, according to the model, we do indeed find that the interaction profile between erythromycin
and doxycycline has morphed from a synergistic to antagonistic form within a matter of hours.

For completeness we provide supplement fig. S15 which shows that while the transition from a synergistic
to antagonistic interaction profile occurs on the second day of the experiment, thereafter the profile continues
to be one of progressively weaker antagonism.

6.5. Theoretical prediction: synergy is stabilised if the efflux pump is suppressed. Each cell genotype
in (23a-c) has the same absolute fitness, G(S,D,E), with its synergistic dependence on D and E, each cell also
has the same uptake rate of limiting resource. What differs between the cell types is the concentration of drug
within each cell due to the number of pumps the cell produces. From our assumptions, it follows that there are
no fitness costs of being drug-resistant in this model, the production of the efflux protein is assumed to carry
no cost either in terms of growth rate or growth yield.

As the expression and amplification of the efflux pump genes can be prevented in (23) by setting δ = 0, after
effecting such a change it follows that (23) can only support one cell phenotype (under our assumptions) whose
growth is described completely by the function G(S,D1, E1). As this function is, by its very design, known to
synergise with respect to the two drugs because G(S, θD1, (1 − θ)E1) is convex as a function of θ, it follows
that the drug interaction predicted by equation (23) must be synergistic for all times. We deduce that it is the
superposition of different resistant sub-populations that eventually emerge if δ > 0 that combine to produce
the loss of synergy seen in data as illustrated in supplement fig. S14.

As a further illustration, we reproduced the bottom-left pane of supplement fig. S14 but after setting δ = 0
(with all the other parameters as stated in Table S4). When we made this one change, the difference in the
modelled drug interactions between twelve and thirty six hours can be seen in supplement fig. S16. Note in
particular how the drug synergy persists to later times after effecting this change. Such an artificial suppression
of the efflux pump, akin to a loss of function mutation in the pump gene, ensures that the designed drug synergy
is a stable property of the model that leads to a continual decline in population size as the treatment proceeds.
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supplement fig. S14 – The transition from a synergistic to antagonistic drug interaction profile can be seen

in optical density data illustrated here at different times 24h apart. The outcome of the model (unbroken lines)

is superimposed upon the mean observed data (broken lines and squares; bars indicate s.e.). Until 18h the model

indicates a convex interaction profile consistent with synergy (blue), beyond 30h the model combination therapies

have a near-concave profile consistent with antagonism (red).
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supplement fig. S15 – The smile-frown transition from day one to day two is proceeded by an antagonistic

profile until the end of day five, with the strength of the antagonism decaying each day, as this figure shows (at

hour 18 each day). The parameter value associated with the α test is provided in each figure window.

7. Validating the theory: testing the smile-frown experiment with an acrAB knockout

Our analysis of the mathematical model has thus provided a clear prediction: in the absence of key drug
resistance genes, the ‘smile’ we associate with drug synergy will be stabilised as shown in supplement fig. S16.
The purpose of this section is to test this.

7.1. Additional experimental details. Since a large duplication was found significantly more often for the
combination rather than any of the other treatments, at least one of the duplicated genes may account for
the smile-frown transition. One of the candidates is the acrAB operon which is responsible for expression of
the acrAB-tolC multidrug efflux pump. We ran a second serial dilution experiment, namely Ex. 2, in which
we compared the strain E. coli AG100 with the corresponding deletion mutant for the acrAB operon (E. coli
(∆acr)). Otherwise, media and drugs were exactly as Ex. 2.

Having resolved a large duplication present in significantly more of the replicated treatments where a drug
combination treatments was implemented when compared to the single drug treatments, the genomics indicated
that the acrAB-tolC multidrug efflux system was likely to play a significant role in the smile-frown transition.
We thus chose to treat this as a candidate mechanism and ran another serial dilution experiment, namely Ex. 2,

20



ERY  50%−50%  DOX

0

0.1

0.2

0.3

0.4

0.5

12 hours

O
D

6
0
0

drug combination θ  (0 ≤ θ ≤ 1)

36 hours

 

 
day 1 model

data 1 OD data

day 2 model

data 2 OD data

supplement fig. S16 – A theoretical model with just one drug-susceptible phenotype in which the efflux

mechanism has been suppressed in the model (we set δ = 0): drug synergy is maintained by this model at all

times (shown here as unbroken, smooth lines at 12h and 36h). The observed population densities are also shown

(with standard error bars) for comparison.

this time comparing E. coli K12 (AG100) [22] with E. coli K12 (AG100A)(∆acr) [28], where the latter is
derived from the former by deletion of the acrAB operon. Otherwise, media and drugs were exactly as found
in the previous serial dilution experiment described above, Ex. 2.

The same controls were also used. Calibration experiments (see Ex. 1) and the serial dilution experiment
itself were inoculated with cultures prepared from the same colony on an agar plate, respectively. Deviating
from Ex. 2, we now implemented five experimental concentration combinations for each of the two strains, these
were:

( 0
4D50 + 4

4E50,
1
4D50 + 3

4E50,
2
4D50 + 2

4E50,
3
4D50 + 1

4E50,
4
4D50 + 0

4E50).

For both strains and both drugs, IC50 values were calibrated as the concentrations giving 50% OD600nm inhi-
bition measured at 24h (see Table S2).

E50 in µg/ml D50 in µg/ml

AG100 7 0.16
AG100A 0.33 0.037

Table S2 – IC50 values determined for E. coli K12 strains AG100 and AG100A(∆acr).

For this serial dilution experiment, each treatment (including controls) was replicated 6 times and the trans-
fers were implemented for three days using one 96 well plate per day (we combined both strains into one run
on a single plate). Optical density (OD600nm) was measured every 7.5 minutes, with a FLUOstar Omega plate
reader controlling the temperature at 30◦C and shaking the plate linearly at 300 rpm between measurements.

An additional microtiter plate was refrigerated alongside the other plates used throughout the duration of
the serial dilution experiment. This was assayed with an inoculation culture from the original agar plate colony
after the serial dilution experiment had finished to control for degradation of the drugs. No difference in growth
between the first day of the experiment and the control experiment was found, we conclude that the drugs in
the growth medium had not degraded during this part of the experiment.

7.2. Outcome: synergy is maintained for longer with the pump knockout. The results of this exper-
iment are summarised in supplement fig. S17 and supplement fig. S18. These figures are completely consistent
with what was anticipated from the predictions of the mathematical analysis: in the presence of the acrAB-tolC
efflux system, the smile-frown transition is seen in strain AG100 but the AG100A(∆acr) it is lost. In particular,
supplement fig. S18 shows that the loss of the acrAB-tolC pump ensures that erythromycin and doxycycline
are still synergistic for the pump knockout strain AG100A(∆acr) even by day three of the protocol.

Supplement fig. S19 shows that synergy is lost by day four because the densities are now maximal in one
of the combination treatments. However, the α-test does not show significant antagonism and so we cannot
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supplement fig. S17 – A repetition of the test for synergy applied in supplement figs. S8 based on a quadratic

fit (and a t-test) to density data as a function of θ. Here (a) shows that strain AG100 undergoes the smile-frown

transition using experimental protocol Ex. 2, reporting synergy on day one (red line quadratic fit, red circles data;

t-test at 18h, df = 27, t ≈ 14.84, p < 10−13) and antagonism on day two (blue line quadratic fit, blue points data;

t-test at 18h df = 27, t ≈ −7.45, p < 10−7). The data in (b) shows that the same experimental protocol provides

no evidence for a change in drug interaction over 48h when the strain AG100A(∆acr) is used: the smile-frown

transition does not occur (circles are data, vertical bars are one s.e., lines are a quadratic fit).
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supplement fig. S18 – (a) The analogous experimental protocol and data to supplement fig. S17 for strain

AG100A(∆acr) and now extended to day three. All four figures taken at four different times on this day are

consistent with synergy (p < {0.0003, 10−4, 10−5, 10−6, 0.0006} for each figure separately (α in figure legend,

df = 27, t ≈ {4.17, 4.74, 5.45, 4.89})) with no evidence of antagonism by the end of day three (rightmost figure).

(b) The analogous figure to (a) above, but for the wild-type AG100 strain: antagonism is maintained on day three

(p < {10−5, 10−5, 10−6, 10−6} for each figure separately with df = 27, t ≈ {−5.5,−6.12,−6.38,−6.38}).
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claim that the smile-frown transition has occurred for this knockout strain, even though one of the combination
therapies has now lead to the highest population density of all the treatments trialled.
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supplement fig. S19 – The α-test applied to day four data shows no statistically significant evidence of a

synergistic or antagonistic interaction. However, the density of the population is maximised for a combination

treatment, as can be seen in the middle pane at 18h.

7.3. Dose-dependence: higher doses amplify the smile-frown transition. In order to understand
whether the smile-frown transition might be lost at different dosages or different strengths of synergy, we
altered the model in equation (4) by redefining the interaction function a(θ) to be

(24) a(θ) = 1 + λ · θ(1− θ).

This coincides with the previous definition when λ = 1 and allows us to use λ as a parameter to alter the
strength of synergy in this model. When we reproduce supplement fig. S1 for a ranges of λ values, we obtain
supplement fig. S20 below. This indicates that the transition becomes more pronounced as the dose parameter
λ increases.
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supplement fig. S20 – (a) When four different values of λ are used in the definition of a in (24) and this is

implemented in the model defined by (4), the resulting computation indicates that larger values of this parameter

produce a more pronounced smile-frown transition. (b) The analogy of this model prediction is observed in the

experimental protocol executed at four dosages of increasingly inhibitory effect: IC40, IC80, IC90 and IC95 that

are defined in the text. Each of these four datasets is consistent with the loss of synergy before the end of the

second day of treatment.

In order to test this prediction we executed the evolutionary protocol at four different dosages using strain
AG100, dosages that reduced growth relative to a zero-drug control by 40%, 80%, 90% and 95% (when measured
at 18h on day one). As supplement fig. S21 shows, a correlation between dose, the strength of synergy and
the strength of later antagonism can be seen in the empirical dataset. Indeed, when we plot the day one and
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day two empirical drug interactions supplement fig. S21 shows a strongly negative correlation between the
two. Moreover, supplement fig. S22 shows, in addition, that the smile-frown transition occurs earlier in the
treatment as the dose is increased.
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supplement fig. S21 – The experimental protocol executed at four dosages of increasingly inhibitory effect,

IC40, IC80, IC90 and IC95, shows that the drug interaction on day one (18h) is negatively correlated with the

interaction on day two (42h).
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supplement fig. S22 – The value of −α from the α-test is shown on the y-axis (with s.e. plotted as dashed

lines) and this indicates that the smile-frown transition occurs earlier as the antibiotic dose is increased.
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7.4. Colony forming units (CFUs) as a density measure. In order to verify that optical density (at
600nm) also measures live cell densities we verified the existence of a linear correlation between OD600nm

and population density measured in CFUs. The resulting data is shown in supplement fig. S23(a) where the
correlation is evident. As a result, when we sought to test the existence of a smile-frown transition in density
units of CFUs, this was also observed within a period of two days, as can be seen in supplement fig. S23(b)
which shows density in CFUs measured at 18h on day one and 42h on day two. The drug concentration was
chosen so that a 50-50 combination therapy would achieve 95% growth inhibition when measured at 18h relative
to a no-drug control culture.

(a) (b)

supplement fig. S23 – (a) Optical density (x-axis) is linearly correlated with population density as measured

by colony forming units (‘Cells/mL’ on the y-axis). (b) As a result, we observe the existence of the smile-frown

transition when measuring population densities in units of CFUs, here for three drug proportion parameters,

θ = 0, 1/2 and 1. In both cases we used basal drug concentrations so that 95% inhibition was achieved for the

50-50 combination treatment.

8. Optimal drug combinations are not constant: an analysis

Motivated by the result that both observed data and different mathematical models of drug deployment
exhibit a change in optimal drug combination over time, we now seek mathematical results to understand
the generality of this phenomenon. So, consider the following abstraction of a very large class of antibiotic-
deployment models:

(25)
d

dt
x = T · F(x, D,E)

where x(t), for 0 ≤ t ≤ 1, is the state of the system encoding all the dynamical variables needed to described
the dynamics of the system (we shall assume there is a finite number of such variables, call it n and so x ∈ Rn).
This can be seen as a re-definition of equation (22a) but whereby the variable T that defines the length of each
season in the experiment has been made explicit in (25) through a re-scaling of the time variable in (22a). We
have also made basal concentrations of antibiotic explicit, D and E, for convenience below. Equation (25) is too
general a mathematical problem with which to study drug combinations without imposing further structure, so
we do that now.

The function F is assumed to be infinitely differentiable and we shall assume that there is a constant C(D,E)
such that

(26) lim sup
T→∞

sup
0≤t≤1

‖x(t)‖ ≤ C(D,E),

where ‖ · ‖ denotes any finite-dimensional norm. Equation (26) is a dissipative condition that is commonly
satisfied by physical systems for which a law of conservation of energy or biomass can be formulated. This
bound states that solutions of (25) are eventually attracted to some ball that is independent of initial conditions
but which may depend on other systemic parameters.
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Suppose D is a constant that represents the extracellular input concentration of drug ‘D’ to the system and
E is the analogous quantity for the other drug. Let us suppose without the loss of any generality that maximal
concentrations of both drugs have been normalised to achieve equal effect, so that 0 ≤ D ≤ 1 and 0 ≤ E ≤ 1
and unity here represents the numerical value of that concentration.

As we have done throughout this manuscript, the general model class represented by equation (25) assumes
that there are three dynamical systems that represent multiple drug use: d

dtx = T · F(x, 0, 0) in the complete
absence of drug use d

dtx = T · F(x, D0, 0) arises when we use D only and at concentration D0, and d
dtx =

T · F(x, 0, E0) is the analogous system but for drug ‘E’. Given this formulation, we can now simulate the use
of a fixed combination of both drugs with the equation

(27)
d

dt
x = T · F(x, θD0, (1− θ)E0).

The optimal drug combination is found by observing x(·) over some period of time, T , and determining
the drug combination that minimises this observation. Thus, we use the dimensionless parameter θ ∈ [0, 1] to
represent the relative drug fraction and define the drug interaction profile at time T :

(28a) J(T, θ) =
∫ 1

0

(w,x(t; θ, T ))dt

where

(28b)
d

dt
x = T · F(x, θD0, (1− θ)E0) and x(0) = x0.

We now seek the optimal drug combination, this is the number θopt(T ) that satisfies

(28c) J(T, θopt(T )) = min{J(T, θ) : 0 ≤ θ ≤ 1}.

The vector w that appears in the definition of J above is a weight vector whose entries sum to unity that
attributes different weights to the components of x.

The following restriction is not, in fact, used anywhere in the analysis below, but the idea that E and D

represent growth-reducing drugs could be expressed, for example, by the abstract conditions that(
w,

∂

∂D
F(x, D,E)

)
≤ 0 and

(
w,

∂

∂E
F(x, D,E)

)
≤ 0

whenever E ≥ 0 and D ≥ 0. This pair of conditions means that growth rate is reduced in the components of
w that contribute to the optimality condition whenever drug is increased in concentration.

8.1. Mathematical definition of synergy. Given this formulation, we now define exactly what we mean by
synergy in mathematical terms.

Definition 5 (mathematical synergy). First define the ‘interaction function’

a(θ) = (w,F(x0, θD0, (1− θ)E0)

and then to ensure the basal drug concentrations, D0 and E0, are calibrated to have equal inhibitory effect, we
assume that a(0) = a(1). Strict drug synergy is said to hold in (27) when a is convex: a′′(θ) > 0 for all
θ ∈ (0, 1) .

We define the most synergistic combination, θsyn ∈ (0, 1), to be the value of θ for which the minimum of a(θ)
occurs.

For completeness, we include the following definition.

Definition 6 (mathematical antagonism). Suppose that the basal drug concentrations D0 and E0 are calibrated
to equal inhibitory effect: a(0) = a(1). Strict drug antagonism is then said to hold in (27) when the function
a(θ) is concave: a′′(θ) < 0 for all θ ∈ (0, 1).
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8.2. Generically, the optimal combination changes through time. We now assume that the drugs are
‘mathematically distinct’, in the sense for example of having different modes of action or having different binding
pockets on the same protein target. This allows us to quite reasonably impose inequalities on the structure of
F that will hold in a generic sense. For instance, let us define the following, somewhat obscure, function whose
meaning will become clear below,

(29) b(θ) = (w, dxF(x0, θD0, (1− θ)E0)[F(x0, θD0, (1− θ)E0)]).

and assume the non-degeneracy condition that b(θsyn) 6= 0. The physical interpretation of this condition is not
obvious, but it is the mathematical nature of this condition that allows us to prove that θopt(T ) is not constant
in T , even for very small T , as follows.

Theorem 1. Assuming strict drug synergy is satisfied in (27) and that condition (29) holds, then there is a
Taylor expansion

θopt(T ) = θsyn −

divergence rate: ρ︷ ︸︸ ︷(
b′(θsyn)

6a′′(θsyn)

)
T +O(T 2).

Therefore θopt(T ) is approximately equal to optimal synergy for small T , but is not a constant function of T in
general and the rate of divergence of these two quantities depends on the convexity of the interaction function,
a(θ).

Proof. (sketch) As a result of (26), for each T > 0, the interval of existence of solutions of the differential equation
(25) can be extended to the interval [0, 1]. Hence, (27) can be written as the zeros of a well-defined and smooth
mapping, G(x; θ, T ) = 0, where F : C1

0×[0, 1]×[0,∞)→ C0. Here, C1
0 is the space of continuously differentiable

functions, x(t), defined on the closed unit interval [0, 1] taking values in Rn such that x(0) = x0 where C0 is
the analogous space of continuous functions; both spaces are assumed to be supplied with appropriate C1 and
C0 norms to make them Banach spaces. Explicitly, the nonlinear mapping G is given by

G(x; θ, T ) = − d

dt
x + T · F(x, θD0, (1− θ)E0).

We can trivially solve equation G(x; θ, T ) = 0 by setting T = 0 because G(x0; θ, 0) ≡ 0 where x0 ∈ C1
0

is the constant function and θ ∈ [0, 1] is arbitrary. Now note that the partial x-derivative of G satisfies
dxG(x0; θ, 0) = d

dt . As the differential operator d
dt is a bounded linear isomorphism from C1

0 to C0, we can apply
the implicit function theorem (see [33] for a formulation appropriate to our needs) to locally solve G(x; θ, T ) = 0
for x as a function of (θ, T ). Using (26) and the compactness of the interval [0, 1], the resulting function x(θ, T )
can be extended smoothly using the implicit function theorem so that its domain encompasses all values of θ
from 0 to 1, [0, 1] × [0, T0) say for some T0 > 0. Being a smooth function, the resulting function may then be
expanded in powers of T as F was assumed to be infinitely differentiable. Hence,

x(t; θ, T ) = X0(t; θ) + T ·X1(t; θ) + T 2 ·X2(t; θ) +O(T 3),

where the dependence of the expansion on the variable θ will be suppressed in the following for brevity.
From equation (25),

d

dt
X0 + T

d

dt
X1 + T 2 d

dt
X2 +O(T 3) = T · F

(
X0 + TX1 + T 2X2 +O(T 3), θD0, (1− θ)E0

)
and we can also expand the latter in powers of T . Comparing powers of T in this expansion gives:
O(T 0): d

dtX0 = 0, X0(0) = x0,
O(T 1): d

dtX1 = F(x0, θD0, (1− θ)E0), X1(0) = 0 and
O(T 2): d

dtX2 = Fx(x0, θD0, (1− θ)E0)[X1(t)], X2(0) = 0
whence

x(t; θ, T ) = x0 + tT · F0(θ) +
t2T 2

4
C0(θ)[F0(θ)] +O(T 3)
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where F0(θ) = F(x0, θD0, (1− θ)E0) and C0(θ) = Fx(x0, θD0, (1− θ)E0). As a result,

J(θ, T ) =
∫ 1

0

(
w,x0 + tT · F0 +

t2T 2

4
C0[F0] +O(T 3)

)
dt

= (w,x0) +
T

2
(w,F0(θ)) +

T 2

12
(w, C0(θ)[F0(θ)]) +O(T 3)

= (w,x0) +
T

2
a(θ) +

T 2

12
b(θ) +O(T 3)

= (w,x0) +
T

2

(
a(θ) +

T

6
b(θ) +O(T 2)

)
.(30)

We define j(θ, T ) = a(θ) + T
6 b(θ) +O(T 2) so that J(θ, T ) = (w,x0) + T

2 j(θ, T ).
From the strict drug synergy property, the minimum of j(θ, 0) occurs when θ = θsyn ∈ (0, 1). Moreover, at

the minimum of j, there results ∂j
∂θ (θ, T ) = 0, provided T is small enough. Since ∂2j

∂θ2 (θsyn, 0) = a′′(θsyn) < 0
which is a non-zero quantity by the assumption of strict drug synergy, we may solve ∂j

∂θ (θ, T ) = 0 for θ as a
function of T by applying the implicit function theorem. At this solution θ = θopt(T ), say, and it follows by
definition that θopt(0) = θsyn. Hence, because ∂j

∂θ (θopt(T ), T ) ≡ 0,

a′(θopt(T )) +
T

6
b′(θopt(T )) +O(T 2) ≡ 0

and, differentiating with respect to T , we establish

(θopt)′(T )
(
a′′(θopt(T )) +

T

6
b′′(θopt(T ))

)
+ b′(θopt(T ))/6 +O(T ) ≡ 0.

The result follows on setting T = 0 and expanding θopt(T ) as a power series because (θopt)′(0)a′′(θsyn) +
b′(θsyn)/6 = 0. �

Remark 3. We end with the following observations.

(1) The expansion of the drug interaction profile, J(θ, T ), in (30) might be described as having the structure

(w,x0)︷ ︸︸ ︷
initial population size +

Ta(θ)︷ ︸︸ ︷
short-term synergy +

T 2b(θ)︷ ︸︸ ︷
fastest adaptation +

O(T 3)︷ ︸︸ ︷
slower adaptation .

(2) Do note that while this analysis is sufficient to show that optimal combinations based on short-term
synergy are not likely to be stable to changes in population structure, the argument does not show that
synergy is necessarily lost and replaced with an antagonistic drug interaction profile. Whether or not
the smile-frown transition occurs is a system-specific property in the sense that it depends on the nature
of b(θ), in particular whether or not it is a concave function, and how large T becomes over the course
of the experiment.

(3) Note that the rate of divergence between synergy and the optimal therapy, ρ, in the statement of Theorem
1 depends explicitly on the drug synergy measure a′′(θ).

9. Final comment: single cell synergy and population synergy

It is stated in [34] that studies of drug interactions do not account for population heterogeneities:

‘Much of drug interaction theory ... rests upon the assumption that the drug combination is
acting upon a single, antibiotic-susceptible population of cells.’

The present study indicates clear reasons why the study of growth inhibition of homogeneous populations of
bacteria has the potential to provide misleading information in terms of how drugs interact for treatments of
prolonged durations, meaning more than one day.

To be more precise, consider the growth inhibition function G(S,D,E) in the model defined by equation
(23). We have assumed that the interaction function

i(θ) = G(S, θD0, (1− θ)E0)

takes its minimum at a value of θ strictly between 0 and 1 for all possible dosages D0 and E0, thus representing
synergy. Now, as a result, one could argue that any population of cells for which the growth rate of every
subpopulation is described by a function of this synergistic form must also exhibit synergy when measuring
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population densities, after all the growth rate reduction for each cell exhibits synergy. This seems almost
obvious.

However, the results of this paper demonstrate that it is wrong to make this inference. The reason for this,
at least in our modelling framework, is the nonlinearity of the system that results from accounting for the loss
of essential metabolites, like carbon, from the environment as the cells grow. Only if carbon is not limiting,
S =∞ say, can this inference work. If it is limiting, our work shows this intuition can fail.
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Appendix A. Parameter values

Parameter values for core inhibition model of section 6.1 are given in Table S4. Parameter values for the
drug efflux model of section 6.4 are given in Table S4. Simulations were conducted in Matlab using ode15s or
in Python using a BDF method implemented in odeint from the Scipy.integrate package.

Parameter Description Value

S(0) Glucose supply 2000µg/ml

D(0) Basal concentration of drug D 0.15µg/ml

E(0) Basal concentration of drug E 9µg/ml

Vmax Maximal uptake rate 2.6× 10−6µg/cell/h

K Bacterial half-saturation constant 0.0527µg/ml

c Resource conversion 1.851× 104 cell/µg

d Drug D binding rate 1.469× 10−9 µg/cell

e Drug E binding rate 1.44× 10−9 µg/cell

η Dilution parameter ∼ 1% of volume

Table S3 – Parameter values used for the simulations of the model presented in section 6.1.

Parameter Description Value

S0 Glucose supply 2000µg/ml

D0 Basal concentration of drug D 0.15µg/ml

E0 Basal concentration of drug E 9µg/ml

Vmax Maximal uptake rate 1139.6µg/OD600nm/h

K Bacterial half-saturation constant 0.53882µg/ml

c Resource conversion 0.000315 OD600nm/µg

κe, κd, κm Drug inhibition parameters 0.2ml/µg, 300ml/µg, 4000[ml/µg]2

ve, ke Efflux parameters for drug E 3987.3ml/OD600nm/h, 19.681 (dimensionless)

vd, kd Efflux parameters for drug D 3999.1ml/OD600nm/h, 0.8 (dimensionless)

ϕe, ϕd Diffusion equilibration 93.068ml/OD600nm/h, 0.041346ml/OD600nm/h

δ,∆ Gene copy rate, pump decay coefficient 0.0025 per gene/h, 18 (dimensionless)

g pump gene transcription coefficient 0.5 (dimensionless)

dD, dE drug decay parameters in the interval [ 1
24 ln(0.8), 0] per day

107 cells/ml (CFUs/ml) cell density measure 0.13 (±0.02) OD600nm

Table S4 – Model parameters used in the numerical simulations discussed in section 6.4
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Appendix B. Genes annotated in the duplicated region

start position end position gene annotation

Antibiotic binding and resistance genes

297113 298270 ampH beta-lactam binding protein AmpH

370854 372626 mdlA putative multidrug transporter membrane/ATP-binding components

3383237 386386 acrB multidrug efflux system protein

360871 363225 lon DNA-binding ATP-dependent protease La

386409 387602 acrA multidrug efflux system

387744 388391 acrR regulates the acrAB operon which is involved in susceptibility to dephalothin and

cephaloridineDNA-binding transcriptional repressor AcrR

72619 374400 mdlB putative multidrug transporter membrane/ATP-binding components

405459 406679 fsr putative fosmidomycin efflux system

470298 470630 emrE member of the small MDR (multidrug resistance) family of transporters; in Escherichia coli this

protein provides resistance against a number of positively charged compounds including ethidium

bromide and erythromycin; proton-dependent secondary transporter which exchanges protons for

compound translocationmultidrug efflux protein

564735 565946 dacA penicillin-binding protein 5; removes C-terminal D-alanyl residues from sugar-peptide cell wall

precursorsD-alanyl-D-alanine carboxypeptidase

567184 568296 mrdB cell wall shape-determining protein

568299 570200 mrdA penicillin-binding protein 2

Transporter genes

22969 324342 proY cryptic permease that may be involved in the transport of proline across the inner membrane

277442 278653 mhpT putative 3-hydroxyphenylpropionic transporter

287215 288177 tauA with TauB and TauC responsible for taurine uptake

288190 288957 tauB Part of the ABC transporter complex tauABC

288954 289781 tauC taurine transporter subunit

289778 290629 tauD taurine metabolism

298622 299842 sbmA involved in uptake of microcin J25

313280 314464 araJ member of the major facilitator superfamily (MFS) of transporters; unknown function; may be

associated with transport or processing of arabinose polymersMFS transport protein AraJ

329630 331477 secD part of the preprotein secretory system; when complexed with proteins SecF and YajC, SecDFyajC

stimulates the proton motive force-driven protein translocation, and appears to be required for the

release of mature proteins from the extracytoplasmic side of the membranepreprotein translocase

subunit SecD

331488 332459 secF forms a complex with SecD and YajC; SecDFyajC stimulates the proton motive force-driven protein

translocation

3354053 355528 ampG peptidoglycan recycling; member of major facilitator superfamily MFS; inner membrane protein-

muropeptide transporter

47285 348649 yajR putative transporter

367595 369295 ybaE putative transporter subunit: periplasmic-binding component of ABC superfamily

374949 376235 amtB ammonium transporter

378431 378544 ffs 4.5S sRNA component of Signal Recognition Particle (SRP); co-translational protein translocation

into and possibly through membranes

403545 405221 ybaL member of the CPA-2 family of antiporters

410858 413362 copA copper exporting ATPase

414559 415851 ybaT putative transporter

417902 418579 ybbL putative ABC transporter ATP-binding protein YbbL

421716 422402 ybbA putative ABC transporter ATP-binding protein YbbA

495311 496753 cusS sensor kinase CusS

496743 497426 cusR response regulator in two-component regulatory system with CusS

497583 498956 cusC with CusA, CusB and CusF is part of a cation efflux system that mediates resistance to copper

and silvercopper/silver efflux system outer membrane protein CusC

499114 499446 cusF copper-binding protein

499462 500685 cusB with CusA, CusC and CusF is part of a cation efflux system that mediates resistance to copper

and silvercopper/silver efflux system membrane fusion protein CusB

500697 503840 cusA copper/silver efflux system, membrane component

503942 505318 pheP phenylalanine transporter

586513 587238 gltL glutamate and aspartate transporter subunit

587238 587912 gltK glutamate and aspartate transporter subunit

587912 588652 gltJ glutamate and aspartate transporter subunit

588822 589730 gltI glutamate and aspartate transporter subunit

556566 557951 dcuC responsible for the transport of C4-dicarboxylates during anaerobic growthC4-dicarboxylate trans-

porter DcuC

Transposons and integrases

273324 274340 insH IS5 transposase and trans-activator

293722 294588 insF IS3 element protein InsF

294585 294893 insE IS3 element protein InsE

283334 283699 insC IS2 OrfAB forms an overlapping reading frame with orfB to form fusion protein OrfAB due to

ribosomal frameshifting

283657 284562 insD IS2 OrfB

425244 429524 rhsD rhsD element protein

466798 467961 intD DLP12 prophage; putative integrase

468816 469124 insE IS3 element protein InsE

469121 469987 insF IS3 element protein InsF

470885 472411 ybcK DLP12 prophage; putative recombinase

472876 473427 ybcL DLP12 prophage; similar to PEBP/RK1P protein family in eukaryotes that inhibits MEK phos-

phorylation by Raf-1; crystal structure suggests similar properties but exact function is unknown-

putative kinase inhibitor

473437 474234 ybcM DLP12 prophage; putative DNA-binding transcriptional regulator
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474449 474904 ybcN DLP12 prophagehypothetical protein

474904 475074 ninE DLP12 prophage; conserved protein similar to phage 82 and lambda proteinsprophage protein

NinE

475067 475357 ybcO DLP12 prophage protein

475354 475716 rusA DLP12 prophage; Holliday junction resolvaseendodeoxyribonuclease RUS

475713 475853 ylcG DLP12 prophage protein

475939 476322 quuD DLP12 prophage; putative antitermination protein

476720 477736 insH IS5 transposase and trans-activator

479381 479596 essD DLP12 prophage; putative phage lysis protein

479596 480093 arrD DLP12 prophage; putative lysozyme

480090 480551 rzpD DLP12 prophage; putative murein endopeptidase

480310 480492 rzoD DLP12 prophage; putative lipoprotein

480583 480876 borD DLP12 prophage; putative lipoprotein

481167 481577 ybcV DLP12 prophage protein

481863 482069 ybcW DLP12 prophage protein

482234 482428 ylcI hypothetical protein

482817 483362 nohB DLP12 prophage; DNA packaging protein

485664 486413 appY DLP12 prophage; DNA-binding transcriptional activator

510048 511160 insL IS186/IS421 transposase

589980 590996 insH IS5 transposase and trans-activator

Metabolism related genes

274524 274907 mhpD 2-keto-4-pentenoate hydratase

274904 275854 mhpF catalyzes formation of acetyl-CoA from acetalaldehydeacetaldehyde dehydrogenase

275851 276864 mhpE catalyzes formation of pyruvate and acetaldehyde from 4-hydroxy-2-ketovaleric acid, degradation

of phenylpropionate4-hydroxy-2-ketovalerate aldolase

278755 279294 yaiL nucleoprotein-polynucleotide-associated enzyme

279518 280351 frmB putative esterase

280445 281554 frmA alcohol dehydrogenase

284722 285918 yaiP putative glucosyltransferase

290736 291710 hemB catalyzes formation of porphobilinogen from 5-aminolevulinatedelta-aminolevulinic acid dehy-

dratase

301812 302906 ddl D-alanine–D-alanine ligase

3305686 306801 adrA catalyzes the conversion of 2 GTP into c-di-GMP

306818 307627 proC catalyzes the formation of L-proline from pyrroline-5-carboxylatepyrroline-5-carboxylate reductase

303730 305145 phoA alkaline phosphatase

312127 313035 mak catalyzes phosphorylation of fructose; cytosolic enzymefructokinase

3324498 326315 malZ maltodextrin glucosidase

326320 326901 acpH Converts holo-ACP to apo-ACP by hydrolytic cleavage of the phosphopantetheine prosthetic group

from ACPacyl carrier protein phosphodiesterase

326994 328064 queA Synthesizes oQ from preQ1 in a single S-adenosylmethionine-requiring stepS-adenosylmethionine–

tRNA ribosyltransferase-isomerase

328120 329247 tgt Exchanges the guanine residue with 7-aminomethyl-7-deazaguanine in tRNAs with GU(N) anti-

codons (tRNA-Asp, -Asn, -His and -Tyr)queuine tRNA-ribosyltransferase

329270 329602 yajC member of preprotein translocase; forms a heterotrimer with SecD and SecF; links the

SecD/SecF/YajC/YidC complex with the SecY/SecE/SecG complexpreprotein translocase sub-

unit YajC

3335438 336541 ribD riboflavin biosynthesis protein

336630 337100 ribH RibE; 6,7-diimethyl-8-ribityllumazine synthase; DMRL synthase; lumazine synthase; beta subunit

of riboflavin synthase;

337120 337539 nusB Regulates rRNA biosynthesis by transcriptional antiterminationtranscription antitermination pro-

tein NusB

337617 338594 thiL catalyzes the formation of thiamine diphosphate from thiamine phosphate ant ATPthiamine

monophosphate kinase

338572 339090 pgpA hydrolyzes phosphatidylglycerophosphate to produce phosphatidylglycerol and phosphatephos-

phatidylglycerophosphatase A

339144 340118 yajO 2-carboxybenzaldehyde reductase

340298 342160 dxs catalyzes the formation of 1-deoxy-D-xylulose 5-phosphate from pyruvate and D-glyceraldehyde

3-phosphate1-deoxy-D-xylulose-5-phosphate synthase

342185 343084 ispA geranyltranstransferase

343084 343326 xseB catalyzes the bidirectional exonucleolytic cleavage of DNAexodeoxyribonuclease VII small subunit

343532 344980 thiI Required for the synthesis of the thiazole moietythiamine biosynthesis protein ThiI

345034 345624 yajL DJ-1 family protein

345587 346498 panE ketopantoate reductase

0357116 358414 tig Tig; RopA; peptidyl-prolyl cis/trans isomerase

358660 359283 clpP hydrolyzes proteins to small peptides; with the ATPase subunits ClpA or ClpX, ClpP degrades

specific substratesATP-dependent Clp protease proteolytic subunit

359409 360683 clpX binds and unfolds substrates as part of the ClpXP proteaseATP-dependent protease ATP-binding

subunit ClpX

363434 363706 hupB histone-like DNA-binding proteintranscriptional regulator HU subunit beta

363898 365769 ppiD peptidyl-prolyl cis-trans isomerase

8388 308912 aroL type II enzyme similar to type I but differentially regulated and with a lower Km; catalyzes the

formation of shikimate 3-phosphate from shikimate in aromatic amino acid biosynthesisshikimate

kinase

366835 367530 queC quenosine biosynthesis

369395 370213 cof thiamin pyrimidine pyrophosphate hydrolase

376284 377144 tesB acyl-CoA thioesterase II

3393395 393946 apt catalyzes a salvage reaction resulting in the formation of AMP

377965 378354 ybaZ putative methyltransferase

374581 374919 glnK indirectly regulates nitrogen metabolism

381350 381901 maa maltose O-acetyltransferase

394075 396006 dnaX catalyzes the DNA-template-directed extension of the 3’-end of a DNA strand;
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399158 399802 adk essential enzyme that recycles AMP in active cells

400038 401000 hemH protoheme ferro-lyase

400997 401956 aes acetyl esterase

402108 403412 gsk inosine/guanosine kinase

406897 408549 ushA catalyzes the degradation of periplasmic UDP-glucose to uridine, glucose-1-phosphate and inor-

ganic phosphate

4420323 421132 ybbO short chain dehydrogenase

421122 421748 tesA multifunctional acyl-CoA thioesterase I/protease I/lysophospholipase L1

432115 433209 ybbB catalyzes the selenophosphate-dependent transfer of selenium from selenophosphate for conversion

of 2-thiouridine to 2-selenouridine at the wobble position in tRNAtRNA 2-selenouridine synthase

434434 434916 allA catalyzes the formation of glyoxylate from (S)-ureidoglycolateureidoglycolate hydrolase

413624 414556 ybaS catalyzes the formation of glutamate from glutamineglutaminase

435899 437680 gcl catalyzes the formation of 2-hydroxy-3-oxopropanoate (tartronate semialdehyde) from two

molecules of glyoxylateglyoxylate carboligase

437693 438469 hyi hydroxypyruvate isomerase

438569 439447 glxR tartronate semialdehyde reductase, NADH-dependent

439616 441070 ybbW allantoin permease

441130 442491 allB Plays a crucial role on both purine and pyrimidine metabolismallantoinase

442548 443849 ybbY putative purine permease YbbY

4446040 447275 allC allantoate amidohydrolase and N-carbamoyl-L-amino acid amidohydrolase are very similar; the

allantoate amidohydrolase from Escherichia coli forms a dimer and binds zinc ions for catalytic

activity and catalyzes the conversion of allantoate to (S)-ureidoglycolate and ammonia; carbamoyl

amidohydrolase from Bacillus sp. converts N-carbamoyl amino acids to amino acids, ammonia,

and carbon dioxideallantoate amidohydrolase

447297 448346 allD ureidoglycolate dehydrogenase

43871 445016 glxK glycerate kinase

452422 453315 ybcF carbamate kinase

453510 454577 purK With PurE catalyzes the conversion of aminoimidazole ribonucleotide to carboxyaminoimidazole ri-

bonucleotide in the de novo purine nucleotide biosynthetic pathwayphosphoribosylaminoimidazole

carboxylase ATPase subunit

454574 455083 purE N5-carboxyaminoimidazole ribonucleotide mutase

455201 455923 lpxH catalyzes the formation of 2,3=diacylglucosamine 1-phosphate from UDP-

2,3=diacylglucosamineUDP-2,3-diacylglucosamine hydrolase

455926 456420 ppiB peptidyl-prolyl cis-trans isomerase B

456594 457979 cysS catalyzes a two-step reaction; charges a cysteine by linking its carboxyl group to the alpha-

phosphate of ATP then transfers the aminoacyl-adenylate to its tRNAcysteinyl-tRNA synthetase

458858 459724 folD catalyzes the formation of 5,10-methenyltetrahydrofolate from 5,10-methylenetetrahydrofolate and

subsequent formation of 10-formyltetrahydrofolate from 5,10-methenyltetrahydrofolatebifunctional

5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase

506754 507407 nfsB catalyzes the reduction of nitroaromatic compounds such as nitrofurazone, quinones and the anti-

tumor agent CB1954; NAD(P)H-dependent; oxygen insensitivedihydropteridine reductase

508248 509366 ybdK ATP-dependent; carboxylate-amine ligase with weak glutamate–cysteine ligase

activitycarboxylate-amine ligase

511442 512071 entD phosphopantetheinyltransferase component of enterobactin synthase multienzyme complex

512237 514477 fepA outer membrane receptor of ferric enterobactin and colicins B and D

514798 515922 fes enterobactin/ferric enterobactin esterase

515925 516143 ybdZ hypothetical protein

516140 520021 entF with EntB, EntD, and EntE forms the multienzyme complex enterobactin synthase

520237 521370 fepE part of the ferric enterobactin transport system

521367 522182 fepC with FepBDE is involved in the transport of ferric enterobactiniron-enterobactin transporter ATP-

binding protein

522179 523171 fepG with FepBCD is involved in the transport of ferric enterobactiniron-enterobactin transporter per-

mease

523168 524172 fepD with FepBCG is involved in the transport of ferric enterobactiniron-enterobactin transporter mem-

brane protein

524283 525533 entS protein p43; inner membrane protein that exports enterobactin to the periplasmic space; member

of the major facilitator superfamily (MFS) of transportersenterobactin exporter EntS

525537 526493 fepB with FepCDG is involved in the transport of ferric enterobactiniron-enterobactin transporter

periplasmic binding protein

526868 528043 entC isochorismate synthase 1

528053 529663 entE bifunctional 2,3-dihydroxybenzoate-AMP ligase/S-dihydroxybenzoyltransferase

529677 530534 entB isochorismatase

530534 531280 entA catalyzes the formation of 2,3-dihydroxybenzoate from 2,3-dihydro-2,3-dihydroxybenzoate; in-

volved in the biosynthesis of siderophores, enterobactin, bacillibactin or vibriobactin2,3-

dihydroxybenzoate-2,3-dehydrogenase

531877 533982 cstA carbon starvation protein

534372 535460 ybdH member of the iron-containing alcohol dehydrogenase family; unknown functionhypothetical pro-

tein

535569 536729 ybdL catalyzes the transfer of an amino moietyputative aminotransferase

539810 540556 dsbG Involved in disulfide bond formationdisulfide isomerase/thiol-disulfide oxidase

540928 541491 ahpC with AhpF catalyzes the conversion of alkyl hydroperoxides to their corresponding alcohols; AhpC

reduced the hydroperoxide substratealkyl hydroperoxide reductase subunit C

541736 543301 ahpF alkyl hydroperoxide reductase, F52a subunit, FAD/NAD(P)-binding

544071 545309 ybdR putative oxidoreductase, Zn-dependent and NAD(P)-binding

545540 545950 rnk Regulates the synthesis of nucleoside triphosphates for nucleic acid synthesis, CTP for lipid syn-

thesis, and GTP for protein elongationnucleoside diphosphate kinase regulator

546180 546986 rna ribonuclease I

547100 548563 citT citrate:succinate antiporter

548614 549492 citG catalyzes the formation of 2’-(5”-triphosphoribosyl)-3’-dephospho-CoA from ATP and 3-

dephospho-CoAtriphosphoribosyl-dephospho-CoA synthase
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549467 550018 citX 2’-(5”-phosphoribosyl)-3’-dephospho-CoA transferase; holo-citrate lyase synthase; CitG forms

the prosthetic group precursor 2’-(5”-triphosphoribosyl)-3’-dephospho-CoA which is then trans-

ferred to apo-ACP by CitX to produce holo-ACP and pyrophosphate2-(5”-triphosphoribosyl)-3’-

dephosphocoenzyme-A synthase

550022 551554 citF citrate lyase, citrate-ACP transferase (alpha) subunit

551565 552473 citE citrate lyase, citryl-ACP lyase (beta) subunit

552470 552766 citD acyl carrier protein; with CitE and CitF catalyzes the formation of oxaloacetate from citratecitrate

lyase subunit gamma

552781 553839 citC citrate lyase synthetase

558540 559100 pagP catalyzes the transfer of palmitate to lipid Apalmitoyl transferase

561234 562199 lipA catalyzes the radical-mediated insertion of two sulfur atoms into an acyl carrier protein (ACP)

bound to an octanoyl group to produce a lipoyl grouplipoyl synthase

562408 563361 ybeF putative DNA-binding transcriptional regulator

563620 564261 lipB lipoyl/octanoyltransferase

585460 586395 rihA Hydrolyzes with equal efficiency cytidine or uridine to ribose and cytosine or uracil, respectively;

pyrimidine-specificribonucleoside hydrolase 1

Other genes

281589 281864 frmR formaldehyde-induced negative regulator of the frmRAB operonregulator protein FrmR

282052 282825 yaiO hypothetical protein

286042 286599 yaiS hypothetical protein

296444 297112 yaiV putative DNA-binding transcriptional regulator

299855 300949 yaiW putative DNA-binding transcriptional regulator

301008 301316 yaiY putative inner membrane protein

301576 301788 yaiZ putative inner membrane protein

303369 303629 iraP hypothetical protein

305264 305584 psiF hypothetical protein

3308962 309153 yaiA hypothetical protein

309411 310088 aroM hypothetical protein

310160 310444 yaiE hypothetical protein

307747 308205 yaiI hypothetical protein

31091 312002 rdgC Required for efficient pilin antigenic variationrecombination associated protein

317733 318935 sbcD with SbcC cleaves DNA hairpin structure, also has 5’ single-strand endonuclease activityexonucle-

ase subunit SbcD

319125 319814 phoB two component response regulator for the phosphate regulon; PhoR phosphorylates PhoBtran-

scriptional regulator PhoB

319872 321167 phoR membrane-associated histidine protein kinase, part of the two-component phosphate regulatory

system phoR/phoBphosphate regulon sensor protein

321574 322893 brnQ putative branched chain amino acid transporter (LIV-II)

31332588 332935 yajD hypothetical protein

3314590 317736 sbcC with SbcD cleaves DNA hairpin structures; also has 5’ single-strand endonuclease activityexonu-

clease subunit SbcC

333112 333996 tsx nucleoside channel phage T6/colicin K receptor

334295 334834 yajI hypothetical protein

334985 335434 nrdR transcriptional regulator NrdR

3365920 366291 ybaV hypothetical protein

3349700 350029 cyoD cytochrome o ubiquinol oxidase subunit IV

3378655 379008 ybaA hypothetical protein

346666 347157 yajQ putative nucleotide binding property based on structural studies of Haemophilus influenzae crys-

tallized protein in PDB Accession Number 1IN0 and NMR studies of Escherichia coli YajQ; the

YajQ protein from Pseudomonas synringae appears to play a role in activation of bateriophage

phi6 segment L transcriptionputative nucleotide-binding protein

348798 349688 cyoE converts protoheme IX and farnesyl diphosphate to heme Oprotoheme IX farnesyltransferase

350029 350643 cyoC cytochrome o ubiquinol oxidase subunit III

350633 352624 cyoB cytochrome o ubiquinol oxidase subunit I

352646 353593 cyoA cytochrome o ubiquinol oxidase subunit II

366385 366783 ybaW hypothetical protein

355572 356150 yajG hypothetical protein

356455 356772 bolA positive transcriptional regulator of morphogenetic pathway; controlling several genes involved in

oxidative stress, acid stress, heat shock, osmotic shock, and carbon-starvation stresstranscriptional

regulator BolA

370366 370824 ybaO putative DNA-binding transcriptional regulator

377362 377934 ybaY putative outer membrane lipoprotein

379050 380600 ylaB hypothetical protein

380764 381234 ylaC putative inner membrane protein

382073 382291 hha with Hns involved in transcriptional regulation of hemolysin

382317 382691 ybaJ hypothetical protein

388519 391881 kefA small mechanosensitive ion channel (MscS) that opens in response to stretch forces in the membrane

lipid bilayer; maintains cell turgor through accumulation and release of potassium; large protein

class of MscSpotassium efflux protein KefA

392093 392254 ybaM hypothetical protein

392268 392795 priC PriC; protein involved in DNA replication; part of the primosome, a protein complex required to

restart stalled replication forks;

392865 393242 ybaN hypothetical protein

396059 396388 ybaB hypothetical protein

396388 396993 recR involved in a recombinational process of DNA repair, independent of the recBC complexrecombi-

nation protein RecR

397103 398977 htpG molecular chaperoneheat shock protein 90

408586 409065 ybaK hypothetical protein

409187 409268 sroB Novel sRNA, function unknown

409269 410063 ybaP hypothetical protein

410201 410542 ybaQ putative DNA-binding transcriptional regulator
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415976 416383 cueR activator of copper-responsive regulon genes, DNA-binding transcriptional regulator CueR

416384 416842 ybbJ hypothetical protein

4418566 419345 ybbM putative inner membrane protein

419408 420262 ybbN putative thioredoxin domain-containing protein

1422399 424813 ybbP putative inner membrane protein

429564 429932 ybbC hypothetical protein

416839 417756 qmcA putative protease, membrane anchored

433278 434204 allS activator of the allDC-ylbA operon involved in allantoin utilizationDNA-binding transcriptional

activator AllS

434994 435809 allR regulates operons involved in the utilization of allantoinDNA-binding transcriptional repressor AllR

445244 446029 ylbA hypothetical protein

448663 450330 fdrA multicopy suppressor of dominant negative ftsH mutationsmembrane protein FdrA

451610 452425 ylbF hypothetical protein

458015 458536 ybcI hypothetical protein

458644 458856 ybcJ hypothetical protein

460195 460737 sfmA putative fimbrial-like adhesin protein

460957 461649 sfmC pilin chaperone, periplasmic

461680 464283 sfmD putative outer membrane export usher protein

464319 465302 sfmH putative fimbrial-like adhesin protein

465313 465828 sfmF putative fimbrial protein

465831 466463 fimZ activates the production of the major fimbrae protein FimAtranscriptional regulator FimZ

466706 466782 argU tRNA-Arg

474351 474452 ylcH hypothetical protein

486663 487616 ompT outer membrane protease; involved in virulence in many organisms; OmpT; IcsP; SopA; Pla; PgtE;

omptin; in Escherichia coli OmpT can degrade antimicrobial peptides;

488040 488084 pauD Xaa-tRNA

488130 488891 envY DNA-binding transcriptional activator of porin biosynthesis

489074 489964 ybcH hypothetical protein

489965 492937 nfrA bacteriophage N4 receptor, outer membrane subunit

492924 495161 nfrB bacteriophage N4 adsorption protein B

505399 506646 ybdG putative mechanosensitive channel

507501 507869 ybdF hypothetical protein

507934 508182 ybdJ putative inner membrane protein

509819 509971 hokE toxic polypeptide, small

—- 531283 531696 ybdB hypothetical protein

534165 534362 ybdD hypothetical protein

536730 537359 ybdM hypothetical protein

537332 538552 ybdN hypothetical protein

538699 539601 ybdO putative DNA-binding transcriptional regulator

543422 543850 uspG universal stress protein UP12

554218 555876 dpiB sensory histidine kinase in two-component regulatory system with citB

555845 556525 dpiA regulates the expression of citAB in citrate fermentationtwo-component response regulator DpiA

559275 559484 cspE member of the CspA family;

559538 559921 crcB may be involved in chromosome condensation

560930 561133 tatE TatE; similar to TatA and found in some proteobacteria; part of system that translocates proteins

with a conserved twin arginine motif across the inner membrane

564362 564625 ybeD hypothetical protein

566085 567173 rlpA rare lipoprotein A

570231 570698 ybeA SPOUT methyltransferase family protein; crystal structure shows homodimer; in Escherichia coli

this protein methylates pseudouridine at position 1915 of the 23S ribosomal RNArRNA large

subunit methyltransferase

570702 571019 ybeB hypothetical protein

571279 571890 cobC putative alpha-ribazole-5’-P phosphatase

571914 572555 nadD transfers an adenyl group from ATP to NaMN to form nicotinic acid adenine dinucleotide (NaAD)

572557 573588 holA required for the assembly and function of the DNAX complex which is required for the assembly

of the beta subunit onto primed DNADNA polymerase III subunit delta

573588 574169 rlpB rare lipoprotein B; involved in the assembly of LPS in the outer membraneLPS-assembly lipoprotein

RlpB

574184 576766 leuS leucine–tRNA ligase

577001 577483 ybeL hypothetical protein

577553 578530 ybeQ hypothetical protein

578694 579401 ybeR hypothetical protein

579398 580825 djlB putative chaperone

580835 581389 ybeT hypothetical protein

581491 582198 ybeU putative tRNA ligase

582195 583646 djlC Hsc56 co-chaperone of HscC

583706 585376 hscC Hsp70 family chaperone Hsc62, binds to RpoD and inhibits transcription
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