
Trend	  Estimation	  by	  Piecewise	  Linear	  Regression	  Smoothing	  
In this section we describe the regression smoothing method used to detect the medium- 

and long-term trends in the self-reported UPDRS data. The method used is an adaptation of !! 

trend filtering [1], a technique that has shown to be useful in a range of smoothing problems. 

The following notation is used: the time since diagnosis for each patient is !!, ! = 1,2…!, 

where ! is the number of observations for each patient, and the combined total Part I and Part 

II UPDRS values is ! !! . The regression smoothing is achieved by minimizing the following 

functional with respect to the estimated trend  ! !! : 

! = !
!
! − ! !

! + ! D!! !         (1) 

Here, the notation . ! is the !!-norm. The parameter ! is the regularization constant. For 

each value of !, the output can be shown to consist of a series of straight lines joined together 

at their ends, ie it is a piecewise linear spline [1]. When ! = 0, the first term in the Eq. (1) 

dominates, so the output !(!!) is the same as the input !(!!). As ! increases, the output ! !!  

becomes progressively smoother. It can be shown that there is a maximum useful value of the 

regularization constant !!"#: if the regularization constant is equal to or larger than this, the 

output consists of a single, least squares straight line fit going through the data ! !! . 

The matrix !! is a second derivative matrix that takes into account the nonuniform time 

spacing of the UPDRS data points. It is a tridiagonal matrix encoding a second-order accurate 

finite difference approximation [2]: 

!!!
!!!
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!!!(!!!!)   
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where ℎ! = !! − !!!! is the local temporal difference. After minimization of Eq. (1) to obtain 

! !! , the error residual !(!!) = !(!!) − !(!!) is further analyzed. Because Eq. (1) is in the form 

of a quadratic program, it is a convex optimization problem for which a unique, globally optimal 

solution is guaranteed to exist. Special optimization algorithms have been developed for such 

functionals, here, we use an efficient version of the primal-dual interior-point algorithm [1]. 

The regularization constant ! determines the smoothness of the output !(!!), and so must 

be chosen appropriately. In this study we use cross-validation to choose this parameter [3]. This 

involves a uniformly random partition of the data for each patient into a training set (80% of the 

data) and a testing set (the remaining 20%). Eq. (1) is optimized on the training set, then the 

mean absolute test error is calculated: 

! ! = !
!

!(!!) − !(!!)!∈!        (3) 

where ! is the set of indexes, and !  is the number of data points, in the test partition. The 

test set values !(!!) are obtained by linear interpolation/extrapolation from the smooth output 

points !(!!) closest in time to the test time !!; this interpolation is justified by the piecewise 

linear nature of the smoothing operation. The optimal ! is the value that minimizes the test error 

! !  (note that this is generally unique to each patient). In order to find this optimal value, we 

sweep across a wide range of values of ! and calculate the curve ! ! . In order to reduce the 

effects of random partition sampling variation in this curve, we smooth the curve using kernel 

regression with Gaussian kernel of bandwidth set to 100. This makes it straightforward to find 

the optimal degree of smoothing for each patient. In this study, we sample 2500 values of the 

regularization constant over the range [0, 1000]. 

Gamma	  Generalized	  Linear	  Modeling	  of	  Residuals	  



In modeling the residuals of the piecewise linear regression smoothing described in section 

A.1 above, it is important to take into consideration the distribution of these residuals. It can be 

shown that minimizing Eq. (1) leads to residuals that are increasingly Laplacian, that is, they 

become Laplace distributed as ! increases [4,5]. From this, it follows that the absolute residuals 

!(!!) = !(!!) − !(!!)  are approximately exponentially distributed (because the Laplace 

distribution is a symmetric, two-sided exponential). We are interested in modeling systematic 

variations of the absolute residuals with respect to the time since diagnosis. The sufficient 

statistic for the exponential distribution is the mean. Therefore, regressing the mean of the 

absolute residuals on the time since diagnosis allows us to make predictions about the change 

in distribution of the residuals over the lifetime of the patient’s illness. 

Least-squares linear regression is the simplest approach, but this method assumes that the 

residuals are Gaussian distributed, which contradicts what we know about the residuals. 

However, we can perform linear regression using generalized linear modeling (GLM), which 

allows the residuals to come from the more general class of exponential family distributions [6]. 

This class includes the exponential and gamma distributions as special cases. It also allows a 

monotonic nonlinearity (known as the link function) as part of the regression. In this study, we 

use the natural logarithm link function because this is the canonical choice for the gamma 

distribution which includes the exponential distribution as a special case: 

ln ! = !! + !!!          (4) 

where ! refers to the mean of the absolute residuals !(!!) . Finding the values for the 

regression coefficients !!, !! that maximize the likelihood of the data given the coefficients, is a 

convex optimization problem solvable by iteratively reweighted least squares [6]. 
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