Supplementary Table 1. Primers used for PCR and qPCR

Primer	Accession	Fwd	Rev	Type of
Name	Number			PCR
Cre	NC_005856	GGCAGTAAAAACTATCCAGCAA	GTAAAGACCCCTAACGAATATTG	Standard PCR
LoxUcp2		ACCAGGGCTGTCTCCAAGCAGG	AGAGCTGTTCGAACACCAGGCCA	Standard PCR
Ucp2∆ exon3-4	NM_011671.3	GACACAGCCTTCTGCACTCCTGTGTT	GGCAGCTTTGAAGAACGAGAC	Standard PCR
в-Actin	NM_007393	CTGAATGGCCCAGGTCTGA	CCCTGGCTGCCTCAACAC	qPCR
Pepck	NM_011044	GTGAGGAAGTTCGTGGAAGG	TCTGCTCTTGGGTGATGATG	qPCR
G6pc	NM_008061	TCTGTCCCGGATCTACCTTG	GTAGAATCCAAGCGCGAAAC	qPCR
Fbp1	NM_019395	AGGAAGCACAAAGCCAAGTGAAGG	TGAGGATGAAGTGACCTTGGGCAT	qPCR
Gck	NM_010292	GAGATGGATGTGGTGGCAAT	ACCAGCTCCACATTCTGCAT	qPCR
Fasn	NM_007988	CTCTGATCAGTGGCCTCCTC	TGCTGCAGTTTGGTCTGAAC	qPCR
Sod1	NM_011434	GTGATTGGGATTGCGCAGTA	TGGTTTGAGGGTAGCAGATGAGT	qPCR
Sod2	NM_013671	TTAACGCGCAGATCATGCA	GGTGGCGTTGAGATTGTTCA	qPCR
Sod3	NM_011435	CATGCAATCTGCAGGGTACAA	AGAACCAAGCCGGTGATCTG	qPCR
Gpx1	NM_008160	CGCTTTCGTACCATCGACATC	GGGCCGCCTTAGGAGTTG	qPCR
Gpx2	NM_030677	ACCGATCCCAAGCTCATCAT	CAAAGTTCCAGGACACGTCTGA	qPCR
Gpx3	NM_008161	ACAATTGTCCCAGTGTGTGCAT	TGGACCATCCCTGGGTTTC	qPCR
Gpx4	NM_008162	CCCGATATGCTGAGTGTGGTT	CCTGCCTCCCAAACTGGTT	qPCR
Cat	NM_009804	TGAGAAGCCTAAGAACGCAATTC	CCCTTCGCAGCCATGTG	qPCR
Ho1	NM_010442	CCTCACTGGCAGGAAATCATC	CCTCGTGGAGACGCTTTACATA	qPCR
Ucp2	NM_011671.3	CAGCCAGCGCCCAGTACC	CAATGCGGACGGAGGCAAAGC	qPCR
UCP2	NM_003355	AGGGGCCCCGAGCCTTCTAC	GGCAGCCATGAGGGCTCGTT	qPCR
GCG	NM_002054	GGCAGCTGGCAACGTTCCCT	CTTGGGCACGCCTGGAGTCC	qPCR
АСТВ	NM_001101	TGAGCTGCGTGTGGCTCCC	AGGGATAGCACAGCCTGGATAGCA	qPCR

Supplementary Figure 1. Genotyping of mice and efficiency of recombination/deletion using Gcg-cre mice. A. Genotyping results using PCR to detect floxed UCP2 and cre expression in loxUCP2 and Gcg-cre mice. B. Immunostaining for glucagon protein (red) (mouse anti-glucagon, Sigma Cat#G2654) and eYFP (green) (rabbit anti-GFP, Invitrogen Cat#A11122; also detects eYFP) in islets from Gcg-cre-YFP mice. Co-localization is indicated by yellow and was observed in 72 ± 10% of glucagon positive cells. N=3.

Supplementary Figure 2. Phenotypical comparison of Gcg-cre and floxed UCP2 mice. 6-8 week old male Gcg-cre and floxed UCP2 mice were fasted overnight and then A. Blood glucose concentration and B. Plasma glucagon levels were measured. N= 9-23/genotype. C. Oral glucose tolerance test (OGTT) shows no difference in glucose tolerance between the two genotypes as the incremental area under the OGTT curve (iAUC) (inset) was similar. N= 7-9/genotype.

Supplementary Figure 3. No ectopic expression of cre in the brainstem or distal ileum. A. Gcg-cre-YFP mice were perfused with 4% PFA by cardiac perfusion, the brains removed, sectioned and stained with a GFP antibody that detects eYFP (Millipore Cat# 06-696) and co-stained with DAPI. Images were acquired with a fluorescent microscope. There was eYFP staining in the nucleus of the solitary tract (n=2). B-C. The distal ileum was removed from Gcg-cre-YFP (not shown) and UCP2AKO-YFP (shown) mice, fixed with 4% PFA, embedded in paraffin blocks, sectioned and stained with either (B) a GLP-1 antibody (Abcam Cat#22625) which showed scattered staining throughout as indicated with the arrows (inset is higher magnification) or (C) a GFP antibody (Invitrogen Cat# A10262) which did not show any specific eYFP staining (n=3).

Supplementary Figure 4. Corticosterone levels and 3-hydroxybutyrate were not different between Gcg-cre and UCP2AKO mice after a prolonged 24h fast but MCFA were significantly reduced in UCP2AKO mice. A. Corticosterone levels were measured in plasma before (Fed) and after a 24h fast (Fasting) using an RIA kit (MP Biomedicals, Canada). n = 7–8 mice in each group. B & C. A mass spectromic analysis of plasma metabolite levels was conducted on samples taken from fed and 24h fasted Gcg-cre (Cntrl) and UCP2AKO (KO) mice. B. The levels of 3-hydroxybutyrate was similarly increased in Gcg-cre and UCP2AKO mice upon fasting. C. Examples of 2 medium chain-length fatty acids (MCFA) (7:0 and 8:0) are shown that increased in Gcg-cre mice and decreased in UCP2AKO mice upon fasting (n=8 per genotype). Data are expressed as means \pm SEM; **P*<0.05 genotype/fed state interaction.

Supplementary Figure 5. Dispersed UCP2AKO alpha cells have higher ROS levels. Islets isolated from Gcg-cre-YFP and UCP2AKO-YFP mice were cultured overnight and then dispersed and plated into a 96 well View Plate (Perkin-Elmer, Ontario, Canada). The following day islet cells were incubated with or without genipin (50μ M) for 2h before being loaded with CellROX (2mM) and Hoechst (1mM) for 30min in complete media. The cells were then washed once with imaging buffer and then imaged on a Cellomics Array Scan (Thermo Fisher, Pittsburgh). Gcg-cre YFP+ cells = 1384; Gcg-cre YFP- cells = 7498; UCP2AKO YFP+ cells = 2150 UCP2AKO YFP- cells = 10, 092. **P<0.01.

Supplementary Figure 6. Alpha cell UCP2 deletion does not affect the expression of a series of antioxidant genes and insulin secretion was enhanced from Gcg-cre islets incubated with H_2O_2 . A. Islet expression of the antioxidant enzymes superoxide dismutase 1 (*Sod1*), *Sod3*, Glutathione peroxidase 1 (*Gpx1*), *Gpx2*, *Gpx3*, *Gpx4*, catalase (*Cat*) and the cytoprotective Heme oxygenase 1 (*Ho-1*) genes were quantified by real-time PCR and normalized to beta-actin. n = 4-6/genotype Data are means ± SEM. B-C. Fresh isolated mouse islets were pre-incubated ± 50 µM genipin (GEN) (B) or 16 µM H_2O_2 (C) for 1h in 11mM RPMI before being incubated with high glucose (HG:20mM) for 15 min and then HG or low glucose (LG:1mM) during a 1h static secretion assay. N = 6-11 mice/genotype. D. GSIS from human islets pre-incubated ± Genipin (50 µM) during a half hour static secretion assay. N=6-7. **P*<0.05.

Supplementary Figure 7. ATP sensitive K⁺ current was similar in UCP2AKO and Gcg-cre alpha cells and islet ATP content was unchanged. A. Whole cell recordings of K_{ATP} currents in YFP+ alpha cells. Average I/V curves were obtained by plotting the maximum current against the applied potential. Diazoxide (Diaz.:100 μ mol/l) application produced a large K_{ATP} current (N=14-16 cells) that was blocked by tolbutamide (Tolb.:250 μ mol/l) N=8-10 cells, 5 mice/genotype. B. ATP content was measured in mouse islets after a static secretion assay protocol (HG = high glucose KRB (20mM) and LG = low glucose KRB (1mM)). N=3 mice/genotype.

Supplementary Figure 8. Genipin and H_2O_2 reduce intracellular calcium but increase oscillations in Gcg-cre alpha cells. A-D Dispersed islets were pre-incubated with genipin (50µM) or H_2O_2 (16µM) for 1h in 11mM glucose RPMI. Cytosolic calcium uptake was measured in dispersed YFP+ alpha cells loaded with Fura2-AM in high glucose KRB (20mM). The effect of a switch to low glucose (1mM) and then the addition of HG + arginine (10mM) or KCl (30mM) were then determined. A family of 5 representative traces is shown per condition. N = 30-41 cells from 3 different mice/genotype. **E.** Quantification of oscillation frequency in YFP+ alpha cells in the presence of low glucose $\pm H_2O_2$ (16µM) or genipin (GEN) (50µM).

