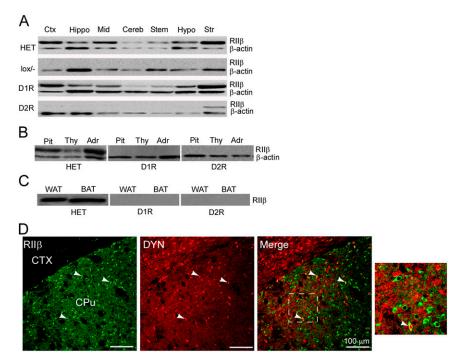

Supporting Information


Zheng et al. 10.1073/pnas.1219542110

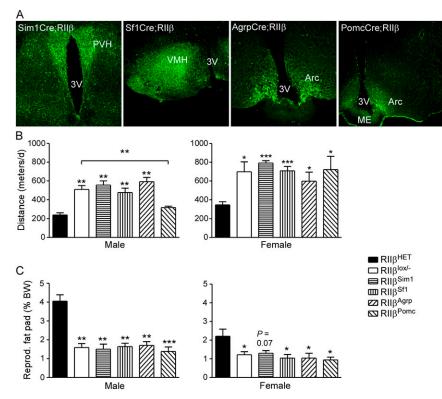

Fig. S1. Respiratory exchange ratio and additional fat-pad data on aP2-Cre/RII $\beta^{lox/-}$ mice. (*A*) Respiratory exchange ratio (RER) of WT and RII $\beta^{lox/lox}$ mice during light and dark phases was measured over 2 d and averaged. For both sexes, n = 8 for each genotype; values represent mean \pm SEM. **P < 0.01. (*B*) Weight of reproductive fat pads in heterozygote (HET) (n = 15 for male and 16 for female), RII $\beta^{lox/-}$ (n = 14 for male and 13 for female), and RII β^{aP2} (n = 9 for male and 8 for female) mice. Values represent mean \pm SEM ***P < 0.001 compared with HET.

Fig. S2. Specificity of D32-Cre–induced RII β expression and the effect on protein kinase A (PKA) activity in the striatum. (*A*–*C*) Immunoblots of RII β in different brain regions and periphery tissues, including brown adipose tissue (BAT), white adipose tissue (WAT), pituitary, thyroid, and adrenal glands of HET, RII $\beta^{\text{lox/-}}$, and RII β^{D32} mice. (*D*) Total PKA activity (in presence of 5 μ M cAMP) of striatal extracts from WT, HET, RII $\beta^{\text{lox/-}}$, and RII β^{D32} mice. **P* < 0.05, ****P* < 0.001.

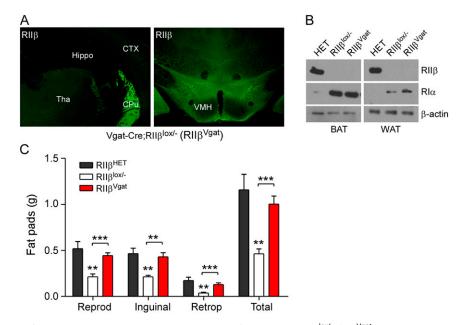


Fig. S3. Specificity of D1R-Cre– and D2R-Cre–induced RIIβ expression. (*A*–C) Immunoblots for RIIβ in different brain regions (*A*) and periphery tissues, including pituitary (Pit), thyroid (Thy), and adrenal (Adr) (*B*), and BAT and WAT (*C*) of HET, RIIβ^{lox/–}, RIIβ^{D1R}, and RIIβ^{D2R} mice. (*D*) Immunostaining of RIIβ and dynorphin in the dorsal striatum of RIIβ^{D2R} mice. Cells with double staining are indicated by arrowheads.

Fig. 54. Effects of selective RII β expression in paraventricular hypothalamus (PVH), ventromedial hypothalamus (VMH), agouti-related peptide (AgRP)/neuropeptide Y (NPY), or proopiomelanocortin (PMOC) neurons on locomotion and adiposity. (*A*) Immunostaining for RII β in single-minded 1 (Sim1)-Cre/RII $\beta^{lox/-}$, steroidogenic factor 1 (Sf1)-Cre/RII $\beta^{lox/-}$, Agrp-Cre/RII $\beta^{lox/-}$, and Pomc-Cre/RII $\beta^{lox/-}$ mice. 3V, third ventricle; Arc, arcuate; ME, median eminence. (*B*) Locomotor activity and (*C*) reproductive fat-pad weight of Sim1-Cre/RII $\beta^{lox/-}$, Sf1-Cre/RII $\beta^{lox/-}$, Agrp-Cre/RII $\beta^{lox/-}$, and Pomc-Cre/RII $\beta^{lox/-}$ mice compared with HET and RII $\beta^{lox/-}$ controls at 12–16 wk of age (n = 6-14 for each group). Error bars are shown as SEM. *P < 0.05, **P < 0.01, ***P < 0.001.

S A No

Fig. S5. (*A*) Immunostaining of RII β in posterior striatum and hypothalamus of Vgat-ires-Cre/RII $\beta^{lox/-}$ (RII β^{Vgat}) mice. CTX, cortex; Hippo, hippocampus, Tha, thalamus; VMH, ventromedial hypothalamus. (*B*) Western blots showed that RII β was not expressed in BAT and WAT of RII β^{Vgat} mice. Increased level of RI α protein was observed in both RII $\beta^{lox/-}$ and RII β^{Vgat} mice. (*C*) Major fat pads, including reproductive, inguinal, and retroperitoneal fat pads of 12-wk-old male HET, RII $\beta^{lox/-}$, and RII β^{Vgat} mice (*n* = 6 for each group). Data are expressed as mean ± SEM. ***P* < 0.01, ****P* < 0.001, unpaired *t* test compared with HET control or as indicated.

S A N O

<