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Appendix A: Time evolution and states population

In this study, the time evolution is chosen to be en-
tirely dictated by the Hamiltonian Ĥ, and thus, it is
non-dissipative: after releasing the walls, the total en-
ergy of the system is constant and is given by

E0 = 〈Ψ0|Ĥ|Ψ0〉 ≈
∑

Eα<EF

Eα, (A1)

where we considered the approximation 〈Ψ0|Ĥ|Ψ0〉 ≈
〈Ψ0|Ĥ0|Ψ0〉, which is valid for Vhole sufficiently abrupt.
For example, in the situation illustrated in Fig. 4,
the energy released after removing the walls is about
J/3. Therefore, in our calculations, the many-body state
|Ψ(t)〉 never reaches the ground state |ΨGS〉 of the final

Hamiltonian Ĥ, with energy

EGS = 〈ΨGS|Ĥ|ΨGS〉. (A2)

This final ground state, which differs from the initially
prepared ground state |Ψ0〉 in Eq. (4), is expressed as

|ΨGS〉 =

Npart∏
λ=1

â†λ|∅〉, (A3)

where â†λ creates a particle in the single-particle state
|φλ〉, with energy ελ < ελ+1. Here, Npart =

∑
Eα<EF

is the total number of particles in the system, which is
supposed to be constant (see Figs. Aa-b). In our non-
dissipative framework, the probability Pλ(t) of finding a
particle in the eigenstate |φλ〉 is constant and inferior to
one, as it is simply given by

Pλ(t) = 〈Ψ(t)|â†λâλ|Ψ(t)〉 =
∑

Eα<EF

|〈φλ|χα〉|2 = cst < 1,

6= 〈ΨGS|â†λâλ|ΨGS〉 = 1 if λ ≤ Npart (otherwise 0).
(A4)

The populations Pλ are illustrated as a histogram in Fig.
Ac, for the case Φ = 1/5 and EF = −1.5J . We find that
when the Fermi energy is initially set within the first bulk

gap, the population of high-energy dispersive bulk bands
is highly limited during the evolution, which guarantees
a clear spatial separation of the bulk and edge signal in
this “topological quasi-flat band” configuration. The effi-
ciency with which the initial edge modes χe project to the
final edge modes φe is further shown in Fig. B, indicating
the success of our scheme. For the situation illustrated
in Figs. A-B, we find that the number of populated edge
states Pedge =

∑
λ∈edge states Pλ ≈ 30 ≈ Nedge/2, where

Nedge ≈ 64 is the number of populated edge states be-
fore removing the walls (see main text). This result is in
agreement with the fact that the edge delimited by the
bat contains n0edge ≈ 2×nedge sites, where nedge ≈ 2πr0/a
is the number of sites delimited by the external circular
confinement.

In the main text, we discuss the non-dissipative evolu-
tion of the atomic cloud after releasing the walls Vhole, ne-
glecting thermalization processes. However, it is instruc-
tive to estimate the energy loss that would be required
to reach the ground state |ΨGS〉, namely δE = E0 − EGS.
We propose to evaluate this energy difference for a con-
figuration which is particularly relevant for our work (see
main text), namely, a system exhibiting large initial holes
and a flat (dispersionless) lowest bulk band. In the fol-
lowing, we set the energy of the lowest bulk band equal
to zero. The energy difference δE will generally be large
in this “large hole/flat band” situation, since many bulk
states become available in the lowest energy band after
removing the walls, namely EGS ∼ 0 [see Figs. Aa-b and
below]. For this configuration, which is particularly suit-
able for visualizing the edge states encircling the holes,
the energy difference is thus approximatively given by

δE ≈
∑

occupied edge states e

Ee, (A5)

where we considered the Fermi energy to be located inside
the first bulk gap [see Fig. Aa-b]. For large holes η =
nhole/nsites � 0, the final filling factor ν � 1/q such
that the lowest bulk band will only be partially occupied
when reaching the ground state |ΨGS〉, and thus EGS ∼
0. From a rough geometric argument, we expect about
Nedge ∼ πRF (2 +

√
η)/a(q − 1) available edge states in



2

the lowest bulk gap of the initial system. Approximating
the edge-state branch as being linear inside the whole gap
∆, we find

δE ∼ ∆π

q − 1
(RF /a)(1 + 0.5

√
η), (A6)

which corresponds to an energy difference δE ∼
1.5(RF /a)J in the case Φ = 1/5 and η = 1/

√
2 (see main

text). In a typical experiment, RF ∼ 100a, which would
require an important energy loss δE ∼ 150J to reach
the ground state |ΨGS〉. We verified that the estimated
energy difference δE in Eq. (A6) is in good agreement
with a direct numerical evaluation of Eq. (A5), for the

system illustrated in Fig. 4 (i.e., Φ = 1/5, η ≈ 1/
√

2
and EF = −1.5J). As illustrated in Fig. Ab, the ground
state |ΨGS〉 generally consists in a partially occupied bulk
band, which indicates that the edge states will no longer
be populated if the system relaxes to the ground state
|ΨGS〉. Therefore, our scheme requires that the system
remains in an excited state during the time evolution,
namely, that dissipation should be limited.
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FIG. A: Ground states and single-particle states pop-
ulation. Comparing a, the groundstate |Ψ0〉 of the initially
prepared system (with holes) and b, the groundstate |ΨGS〉
of the final system (without holes). Filled and empty blue
(red) dots represent the occupied and unoccupied bulk (edge)
states, respectively, with occupation number = 1. Note that
the total number of particles, Npart =

∑
Eα<EF

, is constant.

c The population P of the states |φλ〉, as a function of their
energy ελ, as established by the Fermi energy EF = −1.5J for
the case illustrated in Fig. 4 (i.e., Φ = 1/5, γ =∞, r0 = 27a
and η ≈ 0.7). The energies corresponding to bulk states are
emphasized by purple shaded regions, see Fig. 2b.
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FIG. B: Wave-function overlaps between initial and fi-
nal states. a, The overlap |〈χα|φλ〉|2 between the eigenstates
of the initial (χα) and final (φλ) Hamiltonians, represented as
a function of their energies. The parameters are the same as
in Fig. A. Note that the edge states are found in the bulk gap,
namely, within the range E ≈ [−2.9J,−1.3J ]. b, Cut through
the plot in Fig. a, for a specific initial edge state with energy
Ee = −2J . The initial edge modes effectively project to the
final edge modes, highly limiting the population of high en-
ergy (dispersive) bulk states. The energies corresponding to
bulk states are emphasized by purple shaded regions in a and
b.

Appendix B: The opposite-flux method for
dispersive bulk bands

In this Section, we discuss how the difference δρ(x, t) =
ρ(x, t; +Φ) − ρ(x, t;−Φ), obtained from two successive
measurements with opposite magnetic fluxes, is related
to the edge states contributions ρedge(x, t;±Φ). We show
in Fig. Ca, the evolution of δρ(x, t) for the dispersive case
Φ = 1/3, which clearly indicates that the contributions
from the bulk ρbulk(x, t; +Φ) ≈ ρbulk(x, t;−Φ) vanish
from the signal at all times t = 7− 70~/J . Accordingly,
δρ(x, t) ≈ ρedge(x, t; +Φ)−ρedge(x, t;−Φ). To clarify the
evolution of this signal, which has non-vanishing values
in the vicinity of the Fermi radius RF , we show the chiral
evolution of the edge states contribution ρedge(x, t;±Φ)
in Figs. Cb-c. At small times, the overlap between
the two contributions ρedge(x, t;±Φ) decreases in time,
leading to a progressive broadening of the signal δρ(x, t)
along the 1D circular edge. Then, after reaching a ro-
tation of θ ≈ π/4, the overlap increases, and eventu-
ally leads to a vanishing of the signal δρ(x, t) ≈ 0 when
the edge states have undergone a rotation of π/2, where
ρedge(x, t; +Φ) ≈ ρedge(x, t;−Φ). In Fig. C, this happens
at time t∗ ≈ 49~/J , indicating that the edge states angu-

lar velocity is θ̇ ≈ 0.03J/~ for RF = 27a. The opposite-
flux method therefore offers a general technique for em-
phasizing the existence of chiral edge states in dispersive
systems, and also, for evaluating their characteristic an-
gular velocity.

We verified that a slight difference in the filling,
EF(Φ+ = +1/3) ≈ EF(Φ− = −1/3) ± 0.1J , or varia-
tions in the flux, Φ+ = 1/3 and Φ− ≈ −Φ+ ± 0.01, does
not significantly affect the signal δρ(x, t) shown in Fig.
C a, highlighting the robustness of this method against
possible experimental imperfections.
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FIG. C: The opposite-flux method for dispersive sys-
tems. a, Evolution of the difference δρ = ρ(x, t; Φ =
+1/3) − ρ(x, t; Φ = −1/3), for the same configuration as in
Figure 3. b, Evolution of the initially populated edge states
ρedge(x, t) for Φ = +1/3, and c, for Φ = −1/3. The vanishing
of the signal δρ(x) ≈ 0 corresponds to a rotation of π/2. This
happens at time t∗ ≈ 49~/J , indicating that the edge state

angular velocity is θ̇ ∼ 0.03J/~ for RF = 27a.

Appendix C: The edge-filter method for dispersive
bulk bands

Another strategy consists in allowing the edge states
to propagate at t > 0, while forbidding the bulk states to
penetrate the regions initially occupied by the holes. This
can be achieved by suddenly lowering the additional po-
tential walls Vhole to some intermediate value V t>0

hole 6= 0,
instead of removing them completely at t = 0. This
“edge-filter” scheme is illustrated in Fig. Da, for the dis-
persive case Φ = 1/3. By suddenly lowering the walls
potential to the value V t>0

hole ≈ W , where W is the width
of the lowest bulk band, we limit the undesired filling of
the holes by the bulk states at times t > 0. In contrast,
the populated edge states with energy εe > V t>0

hole + εmin,
where εmin is the minimum of the bulk band, are allowed
to propagate around the holes without being spoiled by
the bulk. The resulting time evolution of the density
ρ(x, t), presented in Fig. Db, shows a clear propaga-
tion of the edge states around the holes. Experimentally,
this method offers an efficient method to isolate the edge
states contribution from the spoiling bulk background,
but it necessitates a very precise control over the poten-
tial strength Vhole.

Appendix D: Sensitivity to imperfect filling

Our general scheme is based on the possibility of
preparing a QH atomic state, which can be achieved by
generating a magnetic flux Φ in the lattice and filling
the lowest bulk band completely. In other words, one
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FIG. D: The edge-filter method for dispersive sys-
tems. a, Energy spectrum E(k) as a function of the quasi-
momentum k for Φ = 1/3. Also shown are the typical Fermi
energy and the final walls potential strength V t>0

hole ≈ W ,
where W is the width of the lowest bulk band. b, Evolution
of the spatial density ρ(x, t) for Φ = 1/3, EF = −0.85J , and
infinitely abrupt confinement/walls. At t = 0, the strength
of the walls potential is suddenly reduced to V t>0

hole = 0.5J .
Note that most of the bulk states are excluded from the holes
during the evolution, yielding a clear edge-state signal, to be
compared with Fig. 3 a.

has to tune the total number of particles Npart in such a
way that the Fermi energy EF lies within the lowest bulk
gap. According to the topological nature of the lowest
bulk band, one is then guaranteed that topological edge
states are populated. In practice, the total number of
particles (and the corresponding Fermi energy EF) can
be tuned with a great precision in cold-atom experiments.
However, it is instructive to test the robustness of our
method against inexact filling effects, in particular, for
the dispersionless case Φ = 1/5. We remind that in this
configuration, the clear separation of the bulk and edge
states contributions to the density relies on the fact that
the bulk states are dispersionless (they are described by
a quasi-flat band). Here, we show that this picture holds
even when the second (dispersive) bulk band is dramati-
cally filled, see Fig. E. From this result, we find that the
high-energy bulk states contribute in a non-chiral manner
to the density evolution, see Fig. E, and that their dis-
persive motion is slow compared to the edge states prop-
agation along the circular boundary. In particular, this
shows that the chiral picture drawn by the density ρ(x, t),
and which will be imaged in an experiment, can unam-
biguously be attributed to the populated edge states. We
conclude that the edge-state signal obtained for the in-
teresting case Φ = 1/5 remains clear and detectable, as
long as sufficiently many edge states are initially pop-
ulated. In particular, this indicates that our scheme is
robust at finite temperature T > 0, as long as it remains
small compared to the gap’s width ∆, in order to insure
a sufficiently large edge-state population.
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FIG. E: Sensitivity to imperfect filling in the flat-band
configuration. a, Energy spectrum E(k) as a function of the
quasi-momentum k for Φ = 1/5, indicating the “dramatic”
Fermi level EF = −J used in b, as well as the characteristics
of the occupied states. b, Evolution of the spatial density
ρ(x, t) for EF = −J and infinitely abrupt confinement/walls.
Note the non-chiral behavior of the dispersive bulk states, to
be compared with Fig. 4 a.

Appendix E: The holes geometry and size effects

Our setup illustrated in Fig. 1 features two large re-
pulsive potentials, which create the initial bat geometry.
These holes are chosen to be created by infinitely abrupt
walls Vhole, which are delimited by the two ellipses

(x± r0/2)2 + (y/
√

2)2 = r20/4,

where the coordinates (x, y) = 0 at the center of the
trap. This choice is motivated by the fact that these walls
coincide (up to first order) with the external circular wall
Vconf(r) of radius r0, in the vicinity of the poles located
at (±r0)1x. Note that in the following of this discussion,
we consider that Vconf(r) ∝ (r/r0)γ with γ =∞.

The geometry produced by these potentials is particu-
larly suitable to emphasize the edge states motion at time
t > 0, as they encircle the regions initially surrounded by
the elliptical walls. However, in this exotic geometry, the
large holes correspond to a massive distortion of the stan-
dard circular system. It is thus interesting to study the
validity of our method, as we progressively reduce the
size of the holes. Here, we demonstrate that our scheme
still shows a clear manifestation of the edge states, even
in the limit where the walls Vhole only represent a small
perturbation of the system, in the vicinity of its circular
boundary. To analyze this, we propose to calculate the
time evolution of the density ρ(x, t) after removing the
elliptical walls delimited by the more general equations(

x± (b− 1) r0/b
)2

+
(
y/
√
b
)2

= (r0/b)
2, (E1)

which can be made arbitrarily small (b � 1), while
maintaining the smooth contact with Vconf(r) at the
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FIG. F: Effects of the holes size. The spatial density
ρ(x, t) for Φ = 1/5, EF = −1.5J , r0 = 27a and γ = ∞. The
holes are described by Eq. (E1) and correspond to a, b = 4,
b, b = 8, and c, b = 16. Note that the chiral motion of the
edge states is still visible, even in the limit of tiny perturbative
walls Vhole.

poles. The results are shown in Fig. F for the flat-band
configuration previously studied in Fig. 4 (for b = 2),
but with smaller initial holes b = 4, 8, 16. This picture
emphasizes the fact that our scheme still allows to detect
the chiral motion of the edge states, in the limit of small
perturbative walls Vhole. However, we stress that it is
crucial to prohibit any broadening of the edge state
signal in the perturbative regime b � 2, which neces-
sarily requires the use of an extremely abrupt external
potential Vconf with γ ∼ ∞. Moreover, considering
smaller holes also demands to further reduce the bulk
dispersion, which can be achieved by considering the
quasi-flat-band configuration Φ = 1/5, see Fig. F, or by
exploiting the “opposite-flux” or “edge-filter” methods.

Another relevant configuration is obtained by replac-
ing the constraining potentials Vhole by a spacious wall
Vedge that initially confines the entire atomic cloud to a
small region located in the vicinity of the circular edge
delimited by Vconf(r), see Fig. G. After releasing the wall
Vedge at time t = 0, the edge states propagate along the
circular edge delimited by Vconf(r), while the bulk states
evolve towards the center of the trap. This strategy,
which largely improves the edge/bulk ratio, is particu-
larly efficient for dispersionless systems (e.g. Φ = 1/5).
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FIG. G: Preparing the atomic cloud close to the edge.
The spatial density ρ(x, t) for Φ = 1/5, EF = −1.5J , r0 = 32a
and γ = ∞. The system is initially confined close to the
circular edge at r = r0 by an abrupt potential wall Vedge.
After releasing the wall Vedge, the edge states propagate along
the circular edge delimited by Vconf(r), highlighted in the top-
left picture by a blue dotted circle.

Appendix F: Time evolution of a trivial insulating
phase

The chiral motion of the edge states shown in Figs.
3 and 4 is a signature of the non-trivial Chern number
ν = −1 (see main text). As illustrated in Fig. 5, re-
versing the sign of the magnetic flux Φ → −Φ leads to
an opposite chirality, in agreement with the fact that the
Chern number also changes its sign under the transforma-

tion. Here, we further demonstrate that the edge-states
motion, visible in the time-evolving density ρ(x, t), can
be unambiguously attributed to the non-triviality of the
Chern number. We consider the same system, but in
a configuration characterized by a trivial Chern number
ν = 0. This configuration is produced in the following
way: (i) We set the flux to the value Φ = 1/2, which leads
to a gapless bulk energy spectrum displaying two Dirac
cones. (ii) We add a staggered potential along both spa-
tial directions, with alternating on-site energies ±Vstag,
which opens a bulk gap around E = 0. This gap is triv-
ial in the sense that the lowest band is associated with a
zero Chern number ν = 0, and therefore, edge states are
unexpected in this configuration. We represent in Fig.
H the time-evolving density, obtained by initially setting
the Fermi energy within the trivial gap. This figure H,
which is to be compared with Fig. 3, shows (i) the non-
chiral dynamics of the bulk states initially occupying the
lowest band, and (ii) the absence of chiral edge states.
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FIG. H: Time evolution of a trivial insulating phase.
The spatial density ρ(x, t) for Φ = 1/2, r0 = 27a and γ =∞.
The Fermi energy EF = 0 is set within a trivial bulk gap (ν =
0), opened by a staggered potential of strength Vstag = J .
Chiral edge states are absent in the time-evolving density, in
agreement with the triviality of the Chern number ν = 0.
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