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Figure S1.  Additional experiments showing Pol 1 recruitment on CFSs and in vitro DNA polymerization activity by purified DNA polymerases 8, v, and Klenow.
(A) ChIP analysis. ChIP was performed using anti-Pol m antibody or anti-rabbit IgG in U20S cells stably expressing Dead Pol n exposed to 0.2 yM aphidico-
lin for 24 h. Pol m enrichment was assessed by realtime qPCR amplification. Fold increase of chromatin immunoprecipitation (ChIP) over input DNA was cal-
culated as a ratio between Mock and Pol m for each replicate. Left panel represents Dead Pol m enrichment at the CFS FRA3B (this experiment was completed
twice, mean + SEM); right panel, which shows a representative experiment out of three repeats for FRA7H and FRA16D and two repeats for FRA3B, demon-
strates that Dead Pol m binds to FRA7H, FRAT6D, and FRA3B sequences. (B and C) Effect of replication accessory factors on Pol § synthesis. Primer extension
reactions were performed with 300 fmol human four-subunit Pol § with or without 400 fmol human PCNA and 50 fmol yeast RFC, 5 mM ATP, 50 mM Tris-HCl,
pH 7.0, 50 mM MgCl,, 2 mM DTT, 0.2 mg/ml BSA, 2% glycerol, 50 mM NaCl, and 250 pM dNTPs. Products were separated by denaturing gel electro-
phoresis. (B) Representative gel for primer extension reactions on FRA16D templates 1 and 2. CFS template region is outlined by black bars. Black triangles
represent 5-min and 15-min time points. Non-B DNA elements within CFS templates are outlined in brackets. Numbered lanes 1-4 represent reactions con-
taining: (1) Pol 8 only; (2) Pol 8 and PCNA; (3) Pol & and RFC; and (4) Pol & with both PCNA and RFC. Percent primer utilization for the 15-min time point
of each reaction is displayed below the gels, and was calculated as: [amount of reaction past the primer region] / [amount of reaction past the primer region
+ within the primer region] x 100. (C) Quantification of Pol & synthesis past the CFS template. Percent transit was calculated as [amount of product past the
CFS template] / [amount of product past the CFS template + within the CFS template] x 100. Percent transit for FRAT6D templates 1 and 2 was then normal-
ized to that on the control template, under identical reaction conditions. Although primer utilization by Pol & was greatly increased in the presence of both
RFC and PCNA, consistent with RFC loading of PCNA onto the DNA primer template, the Pol § percent transit past the CFS region remained dramatically de-
creased relative to the control template, and pausing at specific DNA elements was unchanged. (D-F) Polymerase fidelity through FRAT6D template 2. (D)
Representative denaturing gel electrophoresis showing Pol 8 synthesis products within FRA16D template 2, using the two reaction conditions of the fidelity ex-
periment (Pol & with PCNA, and Pol § with PCNA and RFC). Triangles indicate increasing reaction time: 15, 30, and 60 min. —, no polymerase control. +,
hybridization control. TACG, sequencing ladder. Arrows indicate positions of the BamHI restriction enzyme sites that were used to isolate DNA products syn-
thesized through the FRA16D sequence. Note that DNA products terminated within the FRATD sequence will not be analyzed by this approach. (E) Ob-
served mutations within exonuclease-deficient Klenow polymerase, human Pol v, and human four-subunit Pol § (with and without RFC-loaded PCNA) reaction
products. Values indicate the number of each type of mutational event identified within sequenced clones. (F) Mfold predicted hairpin structure formed within
the FRA16D template 2 inverted repeat sequence. Boxes indicate the regions deleted in two sequenced Pol m clones.
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Figure S2.  EdU incorporation in mitotic cells and analysis of FANCD2 monoubiquitination. (A) EdU incorporation in mitotic cells. Asynchronously growing
cells treated with 0.2 pM APH for 24 h were labeled with EdU for 45 min, fixed, and stained with a phospho-H3 (Ser10)-specific antibody. Representative
images are presented showing the presence of EdU signals on p-H3—-positive mitotic chromosomes. Bar, 10 pM. (B) FANCD2 monoubiquitination in aphidi-
colintreated Pol n—deficient cells. Western blot experiments of untreated and APH-treated mock-depleted (ShCtrl) or Pol n—depleted (ShPoln) U20S cells
and XP30RO cell (XPV) and XP3ORO cells stably complemented with the WT Pol n (XPV + Pol m), showing normal FANCD2 monoubiquitination after APH
treatment in Pol m—deficient cells. Vinculin serves as a loading control.
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Figure S3. Examples of wide-field microscopy images of the 53BP1 bodies, cyclin A and DAPI staining from the indicated cell lines, unireated or treated
with 0.2 pM aphidicolin. Image acquisition of multiple random fields were performed on a wide-field microscope (20x objective, model DMLA; Leica). Bar,
10 pM.
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Figure S4. Quantification of 53BP1 bodies in G1 nuclei from the indicated cell lines. (A) Effect of Pol v depletion: replica of the experiments shown in Fig.
3 c. The data shown are from a single representative experiment out of three repeats (n = 100). (B) Extracts from U20S mock-depleted (SiCtrl), ATR-depleted
(SIATR), or SMC2-depleted (SiSMC2) cells were analyzed by immunoblotting for the detection of ATR and SMC2 as well as MCM7 as loading control. The
data shown on histograms correspond to a single representative experiment out of three repeats (n = 300).
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Figure S5. Effects of Dead Pol n expression. (A) Additional experiments performed with independent cellular clones stably expressing Dead Pol n
(XPV+Dead Pol ), D652A-Dead Pol n (XPV+ Flag-D652A-Dead Pol m), APIP-Dead Pol n (XPV+Flag-APIP-Dead Pol m), and the D652A-APIP-Dead Pol n
(XPV+Flag-D652A-APIP-Dead Pol m) to demonstrate the requirement of PIP and UBZ domains of Dead Pol v for replication checkpoint activation. The detec-
tion of Pol m was performed with Pol n antibodies (Abcam) in extracts from XPV+ WT Poln, XPV+Dead Pol m, and XPV+Flag-D652A-Dead Pol v, whereas
the XPV+Flag-APIP-Dead Pol  and the XPV+Flag-D652A-APIP-Dead extracts were blotted with the FlagM2 antibody because the APIP mutants are not rec-
ognized by the Pol m antibody (Abcam). Extracts from XPV cells treated with UV (20 J/m?, 6 h) serves as positive control for Chk1 phosphorylation. Actin:
loading control. (B) U20S cells stably expressing FLAG-tagged wild-type or Dead Pol q used for the FISH experiments shown in Fig. 5 c were analyzed by
immunofluorescence to show that the expression levels of both proteins are similar (more than 90% of cells were positive). Images were obtained with a mi-
croscope (63x objective, model DMLA; Leica). Bar, 10 pM. (C) Apoptosis induction after Dead Pol m expression. Extracts from XPV cells, XPV cells stably
complemented with Pol  WT (XPV+ WT Poln), or the Dead form of Pol  (XPV + Poln Dead 1 and XPV+Poln Dead2) were fractionated and the soluble frac-
tions were analyzed by immunoblotting for the detection of Pol , P-Chk1(ser 345), Chk1, actin (as loading control), and caspase-3. Activation of caspase-3
requires proteolytic processing into two activated p17 and p12 fragments.
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