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WEB MATERIAL 

Nonparametric multilevel LMM 

LMM assumes that subjects (here children) are independent. However, in our study children are 

nested within households and therefore the independence assumption is not fulfilled. 

Multilevel LMMs account for the hierarchical structure of the data by allowing the latent health 

states intercepts to vary across households. The random intercepts then allow for the probability 

of belonging to a particular latent health state )( , tti jCP =
 
to vary across households. Covariates 

or contextual effects (household characteristics) can then be added as level-2 covariates to 

explain the variation in those probabilities.  

 

More specifically, in our study, the level-1 LMM is defined by four latent health states at each 

time point and therefore a multinomial logistic regression model is used with J-1 random 

intercepts at each time point where J is equal to the number of latent health states (here four or 

three). One latent state is taken as a reference category (MPLUS uses the last latent health state 

as the reference category) and therefore the introduction of the random intercepts allows the log-

odds of belonging to a specific latent health state at each time point to vary across households. 

We follow here the nonparametric approach discussed by Henry and Muthen 2010 in which a 

second latent class model is specified at level 2; in this model a new between-level (level-2) 

categorical latent variable is denoted by Cb. A small number of level-2 latent classes capture the 

level-2 variability in the distribution of the level-1 latent health state membership probabilities. 

In this approach the normal distribution that is usually assumed for the random error of the 

intercept is replaced with the assumption of a multinomial distribution. Through this approach, 

clusters (i.e. households) are classified into a small number of types, rather than be placed on a 
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continuous scale (this would be the case if for instance household level random effects were 

considered as drawn from a normal distribution). This yields a nonparametric multilevel LMM in 

which there are not only latent categorical variables Ci with J latent health states of level-1 units 

but also latent classes of level-2 units sharing the same parameter values (i.e. the random means; 

that is the log-odds of membership in a particular level-1 latent health state).  

 

The probability now that individual i in level-2 unit b is a member of latent health state j at time t 

is a conditional probability and is given by: 

 

 

                              (W.1)                               

 

where γjtm = γjt + utm , and γjt  is the linear regression intercept for the log-odds of belonging to the 

j latent health state rather than the last latent health state and utm is the household random effect 

which comes from a discrete mixture distribution with m representing a specific mixture and 

capturing the between households variation in the log-odds. 
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Evaluation of the diagnostic accuracy of Polymerase Chain Reaction (PCR) , 

Trachomatous Inflammation-Follicular (TF), and Trachomatous Inflammation-Intense 

(TI) for C. trachomatis infection (technical details for derivation of measures in Table 5) 

In general, sensitivity (Sens) is the probability that an individual who is truly positive (denoted 

TP) has a positive screening result (denoted +). Specificity (Spec) is the probability that an 

individual who is truly negative (denoted TN) has a negative screening result (denoted -). The 

positive predictive value (PPV) is the probability that an individual with a positive screening 

result is truly positive. The negative predictive value (NPV) is the probability that an individual 

with a negative screening result is truly negative.  

 

Therefore, 

 

Sens=
)(

)(
TPP

TPP ∩+

         

                                                                                                                                   
(W.2)                               

 

where )( TPP ∩+  is the joint probability of having a positive screening result and being truly 

positive and )(TPP  is the probability of a randomly chosen member of the study population 

being screened to be truly positive.  

 

Spec=
)(

)(
TNP

TNP ∩−

 

                                                                                                                                       (W.3)                               
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Similarly )Pr( TN∩−  is the joint probability of having a negative screening result and being 

truly negative and )Pr(TN  is the probability of a randomly chosen member of the population 

being screened to be truly negative.  

PPV=
)()1()(

)(
TNPSpecTPPSens

TPPSens
×−+×

×

 

                                                                                                                                         (W.4)                               

NPV=
)()1()(

)(
TPPSensTNPSpec

TNPSpec
×−+×

×

                                    

                                                                                                                                         
(W.5)

              
 

For the current study we consider from the LMMs, the four latent health states as identified in 

Table 2 as follows: 

1) Not Infected & Non Diseased (denoted I-,D-) 

2) Infected & Non Diseased: (denoted I+,D-) 

3) Not Infected & Diseased: (denoted I-,D+) 

4) Infected & Diseased: (denoted I+,D+) 

Therefore for each time point and each diagnostic test, based on the formulas above we 

calculate as follows,
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Sensitivitypt for Infection = 

4,3,2,1;3,2,1,
)D(I+,P)D(I+,P
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                                                             (W.6) 

Specificitypt for Infection = 
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PPVpt for Infection = 
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NPVpt for Infection=  

4,3,2,1;3,2,1,
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                                                                                                                                                       (W.9) 

where, 
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)D,I|( −++pP , )D,I|( +++pP , )D,I|( +−−pP , )D, I|( −−−pP , in (S.6-S.9) are conditional probabilities and represent the item response 

probabilities ρ for the p diagnostic tests as estimated from the nonparametric multilevel LMMs contained in Table 2 in the main 

article.  

)D(I+,Pt − , )D(I+,Pt + , )D,(IPt +− , )D,(IPt −−  in (W.6-W.9), are the prevalences η of the latent health states J. The subscript t denotes 

that these quantities change at each time point of the studies as estimated from the nonparametric multilevel LMMs (these are 

illustrated in Figure 4).  After these calculations at each time point we take the average of each of these quantities. 

Computation of approximated standard errors for the measures of Sensitivity (W.6), Specificity (W.7), PPV (W.8) and NPV 

(W.9).  

We employ here the Delta method for computing approximated standard errors for the functions of those parameters given in W.6-

W.9. For the prevalence estimates only we used the conservative standard errors from the fixed effects models since it was not feasible 

to acquire those from the random effects models from the MPLUS output. 

We provide below the first derivatives of the measures given in W.6-W.9 with respect to the individual parameters they are functions 

of.  
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First derivatives of Sensitivity 

w.r.t )D,I|( −++pP :   3,2,1,
)]D(I+,P)D(I+,[P

)D(I+,P

tt

t
1 =

++−
−

= pS pt

 

w.r.t. )D,I|( +++pP :   3,2,1,
)]D(I+,P)D(I+,[P

)D(I+,P

tt

t
2 =

++−
+

= pS pt

 

w.r.t. )D(I+,Pt − : 3,2,1;4,3,2,1,
)]D(I+,P)D(I+,[P

)D(I+,P)]D,I|()D,I|([
2

tt

t
3 ==

++−

+×+++−−++
= pt

PP
S pp

pt  

w.r.t. )D(I+,Pt + : 3,2,1;4,3,2,1,
)]D(I+,P)D(I+,[P

)D(I+,P)]D,I|()D,I|([
2

tt

t
4 ==

++−

−×−++−+++
= pt

PP
S pp

pt  

First derivatives of Specificity 
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First derivatives of PPV 
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First derivatives of NPV 

w.r.t.  )DI+,|( −−pP  : 
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We provide below the steps for computing the standard errors for the Sensitivity measure for each item and time point. Let us define 

with ),...,( 4,1 ptptpt SSS = the row vector for item p at time t with elements the first derivatives of the Sensitivity measure with respect 

to the four parameters given in the row vector )]D,I(P),D,I(P),D,I|(P),D,I|([ ttp ++−++++−++= pPϑ .  

According to the Delta method:  T
ptptpt SCovSySensitivitVar )()( ϑ=

 

where p = 1,2,3 and t= 1,2,3,4. Similarly we obtain variances and their corresponding standard errors for the rest of the constructed 

measures (Specificity, PPV and NPV). We have calculated average values across time for all the measures (Sensitivity, Specificity, 
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PPV and NPV). Therefore the variance and standard errors of those averages are computed accordingly. In Table 4 in the main article 

we provide 95 % confidence intervals using standard errors of those averages accordingly. 
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WEB TABLE 1. Comparison of Alternative Latent Structures of the Single-Level LMMs 
 Tanzania Children (N=367) 

Item response probabilities are assumed to be constant over time 
Model J Transition 

matrices 
r LL BIC AIC Sample 

adjusted BIC 
1  2 4 15 -1284.1 2656.8 2598.2 2609.2 
2  2 2 11 -1290.3 2645.5 2602.6 2610.6 
3  3 4 35 -1224.1 2654.9 2518.2 2543.8 
4  3 2 23 -1242.6 2621.1 2531.3 2548.1 
5  4 4 63 THE BEST LOG-

LIKELIHOOD 
VALUE WAS NOT 

REPLICATEDa 

        NAb 

 

NA NA 

6  4 2 39 -1210.766 2651.8 2499.5 2528.1 
 

 Gambia Children (N= 587) 
Item response probabilities are assumed to be constant over time 

Model J Transition 
matrices 

r LL BIC AIC Sample 
adjusted BIC 

1  2 4 15 -1267.3 2630.3 2564.7 2582.7 
2  2 2 11 -1269.7 2609.6 2561.5 2574.7 
3  3 4 35 -1235.1 2693.2 2540.0 2582.0 
4  3 2 23 -1237.4 2621.4 2520.7 2548.3 
5  4 4 63 THE BEST LOG-

LIKELIHOOD 
VALUE WAS NOT 

REPLICATEDa 

        NAb 

 

NA NA 

6  4 2 39 -1207.552 2663.7 2493.1 2539.9 
 

Abbreviations: r, number of free parameters; LL, corresponding maximum log-likelihood; BIC, Bayesian Information 

Criterion; AIC, Akaike Information Criterion  

Model 1, 3, 5: transition probabilities τ vary during all intervals; Model 2, 4, 6: baseline and follow-up τ vary such that 

two transition probability matrices were fitted (one for 0-2 months and one common matrix for each subsequent 

transition period). 
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 Tanzania Children (N=367) 
Item response probabilities are allowed to vary over time 

Model 1A, 3A, 5A:  ρ and τ vary during all intervals; Model 2A, 4A, 6A: Baseline and follow-up τ vary such that two 

transition probability matrices were fitted (one for 0-2 months and one common matrix for each subsequent transition 

period). 

aBecause of the multimodal likelihood of LMMs, and perhaps to the large r’s and power in the analyzed data, the best 

log-likelihood value was not replicated. Consequently results of estimated parameters from this model cannot be 

trusted  

b Abbreviation NA, Not Available; as the best log-likelihood value was not replicated, results for BIC, AIC and 

sample adjusted BIC form this model cannot be trusted either 

Tables above report the LL, the number of latent health states k, parameters r, the BIC, AIC and 

sample adjusted BIC value for the LMMs that were obtained during the model selection. 

Model J Transition 
matrices 

r LL BIC AIC Sample 
adjusted BIC 

 1A  2 4 39 -1220.9 2672.1 2519.7 2548.4 
2A  2 2 17 -1253.4 2607.2 2540.8 2553.3 
3A  3 4 71 -1179.1 2777.5 2500.2 2552.2 
4A  3 2 32 -1219.4 2627.7 2502.7 2526.2 
5A  4 4 111 THE BEST LOG-

LIKELIHOOD 
VALUE WAS NOT 

REPLICATED 

NA NA NA 

6A  4 2 51 -1194.207 2689.6 2490.4 2527.8 

 Gambia Children (N= 587) 
Item response probabilities are allowed to vary over time 

Model J Transition 
matrices 

r LL BIC AIC Sample 
adjusted BIC 

1A  2 4 39 -1238.5 2725.6 2555.0 2601.8 
2A  2 2 17 -1256.1 2620.6 2546.2 2566.6 
3A  3 4 71 -1194.9 2842.5 2531.9 2617.1 
4A  3 2 32 -1221.2 2646.4 2506.4 2544.9 
5A  4 4 111 THE BEST LOG-

LIKELIHOOD 
VALUE WAS NOT 

REPLICATED 

NA NA NA 

6A  4 2 51 -1200.399 2725.9 2502.8 2564.2 
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Highlighted values in bold indicate the lowest obtained information criteria. The r is calculated by 

Pη: number of latent health state prevalences; Pρ number of item response probabilities and Pτ 

number of transition probabilities estimated. 

The formula for the sample adjusted BIC value is nearly identical to the formula for BIC with the 

difference that it replaces in the latter n with n* (where n* = (n + 2) / 24). Such information 

criteria are not fully yet understood in statistical literature and how they particularly function for 

LMMs.  We explored a number of LMMs and determined as the most appropriate the model that 

combined most of the following principles: reasonable goodness of fit, parsimony through 

minimum values for most of the information criteria listed above as well as more apparent 

biological plausibility of the phenomenon studied here.  

We decided to keep the item response probabilities identical across times, because the meaning of 

the latent health states also remains constant over time for these models.  Although for Tanzania 

BIC for Model 4, AIC for Model 6 and sample adjusted BIC for Model 6 were the smallest. The 

item response probabilities for Model 6 did not yield latent health states that were biologically 

interpretable. Thus, we selected Model 4 for further testing.  

For The Gambia, BIC was the smallest for Model 2; however AIC and sample adjusted BIC were 

the smallest for Model 6. Because Model 6 yielded biologically interpretable latent health states, 

we selected Model 6 for further testing. 
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WEB TABLE 2. Fit Criteria for Nonparametric Multilevel Latent Markov Model (LMM) Specification 

Tanzania Children (N=367) 

Model r m LL
 

BIC AIC Sample 
adjusted 

BIC 

p-value* 

7 22  -1097.3 2330.4 2240.6    2257.4  
8  40 2 -1043.0 2322.1 2185.2 2208.6 <0.001 

 

 
 
 
 
 
 
 
 
 

Remarks:  When nonparametric multilevel models were fitted to the 5 timepoints under study for both Tanzania and 

Gambia, warning messages were obtained about the standard errors of some of the model parameters that they may 

not be trustworthy most probably as an indication of model nonidentification. Therefore, all models presented in the 

above table were also restricted to the first 4 timepoints of the studies: baseline, 2, 6 and 12 months. Highlighted 

values in bold indicate the lowest obtained information criteria. 

Abbreviations: r, number of free parameters; m, number of between-level latent classes at the random coefficients 

part; LL, corresponding maximum log-likelihood; BIC, Bayesian Information Criterion; AIC, Akaike Information 

Criterion . 

Model 7: Fixed effects LMM with 3 and 4 latent health states for Tanzania and Gambia, respectively; There were two 

transition probability matrices in each case. Model 8: Nonparametric multilevel LMM model with 3 and 4 latent health 

states for Tanzania and Gambia, respectively and 2 between-level latent classes for both countries; *p-value compares 

the LL between Models 7 and 8; because for both datasets these are significant, the results all imply that Model 8 

provides significantly improved fit over Model 7.  

Web Table 1 reports the LL value, the number of parameters r and the information criteria for 

single-level and nonparametric multilevel LMM models. All results reported in main text are 

estimated from Model 8. Model 7 for Tanzania is the same structure as model 4 in Web Table 2, 

Gambia Children (N=587) 

Model r m LL
 

BIC AIC Sample 
adjusted 

BIC 

p-value* 

7 38  -1071.4 2391.5  2220.9 2267.7  
8 52 2 -976.6 2284.8 2057.3 2119.7 <0.001 
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except fitted to only data from 4 timepoints and of course for Gambia is the same structure as 

model 6 in Web Table 2 except fitted to only data from 4 time points.  The r is calculated as in 

single-level models by Pη: number of latent health state prevalences; Pρ number of item response 

probabilities and Pτ number of transition probabilities estimated. In technical terms of MPLUS and 

the nonparametric multilevel models fitted here, latent categorical variables Ci,t that represent the 

level-1 health states at each time point t were regressed on the new categorical latent variable Cb 

and thus the parameters estimated from these regressions are the additional parameters now 

contained in Web Table 1 if compared with fixed effects models in Web Table 2. 

 


