Is macrocycle a synonym for kinetic inertness in Gd(III) complexes? Effect of coordinating and non-coordinating substituents on inertness and relaxivity of Gd(III) chelates with DO3A-like ligands.

Miloslav Polasek and Peter Caravan*

The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Suite 2301, Charlestown, MA 02129.

Content:

Page S2	Table S1 . Parameters obtained from fits of variable temperature ¹⁷ O				
-	transversal relaxivity measurements of water in presence of Gd chelates.				
Page S3	Figures S1. LC-MS of L1, [Gd(L1)] and [Eu(L1)].				
Page S4	Figures S2. LC-MS of L2, [Gd(L2)] and [Eu(L2)].				
Page S5	Figures S3. LC-MS of L3, [Gd(L3)] and [Eu(L3)].				
Page S6	Figures S4. LC-MS of L4, [Gd(L4)] and [Eu(L4)].				
Page S7	Figures S5. LC-MS of L5, [Gd(L5)] and [Eu(L5)].				
Page S8	Figures S6. LC-MS of L6, [Gd(L6)] and [Eu(L6)].				
Page S9	Figure S7. Time-dependent luminescence of Eu complexes of ligands L1 – L3				
	measured in H_2O and D_2O .				
Page S10	Figure S8. Time-dependent luminescence of Eu complexes of ligands L4 and				
	L5 measured in H_2O and D_2O .				
Page S11	Figure S9. Relative change in relaxation rates of 1 mM solutions of [Gd(L1)],				
	[Gd(L2)], $[Gd(L3)]$ and $[Gd(DO3A)]$ in 50 mM HEPES buffer pH = 7.4 as a				
	function of added bicarbonate and lactate.				
Page S12	Figure S10 . ¹ H NMR spectrum of [Eu(L1)] in D ₂ O at 25 °C.				
	Figure S11 . ¹ H NMR spectrum of [Eu(L2)] in D ₂ O at 25 °C.				
Page S13	Figure S12 . ¹ H NMR spectrum of [Eu(L3)] in D ₂ O at 25 °C.				
Page S14	Figure S13 . ¹ H NMR spectrum of [Eu(L4)] in D ₂ O at 25 °C.				
	Figure S14 . ¹ H NMR spectrum of [Eu(L5)] in D ₂ O at 25 °C.				
Page S15	List of HPLC methods.				

Table S1. Parameters obtained from fits of variable temperature ¹⁷O transverse relaxivity measurements of water in presence of Gd chelates. Data was fit to a 4-parameter model as described previously (Caravan et al. *Inorg. Chem.* **2007**, *46*, 6632-6639). The ¹⁷O hyperfine coupling constant was assumed to be 3.8 x 10⁶ rad/s (Powell et al. *J. Am. Chem. Soc.* **1996**, *118*, 9333-9346).

Compound	τ _M ³¹⁰ [ns]	T _{1e} ³¹⁰ [ns]	ΔH [‡] [kJ]	E _v [kJ]
[Gd(L1)(H ₂ O)]	2190 ± 170	117 ± 110	34.1 ± 1.9	-13.3 ± 13.6
[Gd(L2)(H ₂ O)]	3500 ± 90	ND	30.5 ± 0.9	ND
[Gd(L3)(H ₂ O)]	12.7 ± 3.8	90 ± 180	27.7 ± 4.3	5.8 ± 33.4

ND = not determined. Water exchange was in the slow exchange region over the temperature range studied, i.e. T_{1e} did not contribute to the O-17 T_2 . The data were fit to a 2 parameter model (τ_M^{310} and ΔH^{\ddagger}).

Figure S1. LC-MS chromatograms showing UV absorbance (220 nm) and extracted masses for $[M+H]^+$ ions.

- A) ligand L1, analytical method G.
- B) chelate [Gd(**L1**)], analytical method G.
- C) chelate [Eu(L1)], analytical method G.

Figure S2. LC-MS chromatograms showing UV absorbance (220 nm) and extracted masses for [M+H]⁺ ions.

- A) ligand L2, analytical method G.
- B) chelate [Gd(L2)], analytical method G.
- C) chelate [Eu(L2)], analytical method G.

Figure S3. LC-MS chromatograms showing UV absorbance (220 nm) and extracted masses for $[M+H]^+$ ions.

- A) ligand L3, analytical method H.
- B) chelate [Gd(L3)], analytical method I.
- C) chelate [Eu(L3)], analytical method G.

Figure S4. LC-MS chromatograms showing UV absorbance (220 nm) and extracted masses for $[M+H]^+$ ions.

- A) ligand L4, analytical method J.
- B) chelate [Gd(L4)], analytical method K.
- C) chelate [Eu(L4)], analytical method K.

Figure S5. LC-MS chromatograms showing UV absorbance (220 nm) and extracted masses for [M+H]⁺ ions.

- A) ligand L5, analytical method J.
- B) chelate [Gd(L5)], analytical method K.
- C) chelate [Eu(L5)], analytical method K.

Figure S6. LC-MS chromatograms showing UV absorbance (220 nm) and extracted masses for [M+H]⁺ ions.

- A) ligand L6, analytical method J.
- B) chelate [Gd(L6)], analytical method K.
- C) chelate [Eu(L6)], analytical method K.

Figure S7. Time-dependent luminescence of Eu complexes of ligands L1 - L3 measured in H₂O and D₂O. Solid line represents monoexponential fit of the data.

Figure S8. Time-dependent luminescence of Eu complexes of ligands L4 and L5 measured in H_2O and D_2O . Solid line represents monoexponential fit of the data.

Figure S9. Relative change in relaxation rates of 1 mM solutions of gadolinium complexes in 50 mM HEPES buffer pH = 7.4 as a function of added bicarbonate or lactate.

Figure S11. ¹H NMR spectra of [Eu(L2)] in D₂O at 25 °C.

Figure S12. ¹H NMR spectra of [Eu(L3)] in D₂O at 25 °C.

Figure S14. ¹H NMR spectra of [Eu(**L5**)] in D₂O at 25 °C.

List of HPLC methods:

Preparative:

(A) Preparative column Kromasil C18 20 x 250 mm, solvent A = $H_2O + 0.1\%$ TFA, solvent B = MeCN + 0.1% TFA. Gradient (% B): 5 for 2 min., 5 – 20 in 1 min., 20 – 80 in 12 min., 80 – 100 in 1 min., 100 for 4 min., 100 – 5 in 1 min., 5 for 4 min. Flow rate 20 mL/min. Detection at 220 nm.

(B) Preparative column Phenomenex Luna C5 20 x 250 mm, solvent A = H_2O + 0.1% TFA, solvent B = MeCN + 0.1% TFA. Gradient (% B): 5 for 2 min., 5 – 40 in 1 min., 40 – 80 in 12 min., 80 – 100 in 1 min., 100 for 4 min., 100 – 5 in 1 min., 5 for 4 min. Flow rate 20 mL/min. Detection at 220 nm.

(C) Preparative column Kromasil C18 20 x 250 mm, solvent A = $H_2O + 0.1\%$ TFA, solvent B = MeCN + 0.1% TFA. Gradient (% B): 5 for 1 min., 5 – 50 in 1 min., 50 – 80 in 8 min., 80 – 100 in 0.5 min., 100 for 1.5 min., 100 – 5 in 1 min., 5 for 4 min. Flow rate 20 mL/min. Detection at 220 nm.

(D) Same as (A) except for the main gradient being 30 – 60 in 12 min.

(E) Preparative column Kromasil C18 20 x 250 mm, solvent A = H_2O + 0.1% TFA, solvent B = MeCN + 0.1% TFA. Gradient (% B): 5 for 1 min., 5 – 50 in 1 min., 50 – 80 in 10 min., 80 – 100 in 1 min., 100 for 3 min., 100 – 5 in 0.5 min., 5 for 4.5 min. Flow rate 20 mL/min. Detection at 220 nm.

(F) Preparative column Kromasil C18 20 x 250 mm, isocratic 2% MeCN in H_2O for 10 min. Flow rate 20 mL/min. Detection at 220 nm.

Analytical:

(G) Analytical column Kromasil C18 4.6 x 250 mm, solvent A = 10 mM ammonium acetate pH = 7, solvent B = MeCN / 10 mM ammonium acetate (90:10). Isocratic 2% B for 15 min. Flow rate 0.8 mL/min.

(H) Analytical column Restek C18 Ultraaqueous 4.6 x 250 mm, solvent A = H_2O + 0.1% formic acid, solvent B = MeCN + 0.1% formic acid. Isocratic 2% B for 15 min. Flow rate 0.8 mL/min.

(I) Same as method G with analytical column Restek C18 Ultraaqueous 4.6 x 250 mm.

(J) Analytical column Luna C8(2) 2 x 100 mm, solvent A = H_2O + 0.1% formic acid, solvent B = MeCN + 0.1% formic acid. Gradient (% B): 5 for 2 min., 5 – 95 in 9 min., 95 for 1 min., 95 – 5 in 0.5 min., 5 for 2.5 min. Flow rate 0.8 mL/min.

(K) Analytical column Luna C8(2) 2 x 100 mm, solvent A = 10 mM ammonium acetate pH = 7, solvent B = MeCN / 10 mM ammonium acetate (90:10). Gradient (% B): 5 for 2 min., 5 – 95 in 9 min., 95 for 1 min., 95 – 5 in 0.5 min., 5 for 2.5 min. Flow rate 0.8 mL/min.