#### **Supplementary Information**

**Supplemental Table 1.** Gene targeting efficiency in mutants of nonessential genes. This table is presented as a separate Excel file.

Supplemental Table 2. Genes with altered expression patterns in  $fun30\Delta$  cells based on microarray analysis.

| genes upregulated in $fun30\Delta$ | genes downr | regulated in fi | $un30\Delta$ |           |
|------------------------------------|-------------|-----------------|--------------|-----------|
| YNR071C, YDR259C and YLR303W       | YAL019W     | (FUN30,         | internal     | control), |
|                                    | YHL048W,    | YDL22           | 27C,         | YIR042C,  |
|                                    | YNL289W,    | YOR36           | 7W,          | YDR123C,  |
|                                    | YHR216W,    | YPR200C, Y      | PR201W       | , YJL157C |

#### Supplemental Table 3. Yeast strains used in this study.

| Strain | Parental | Genotype                                     | Source     |
|--------|----------|----------------------------------------------|------------|
| name   | strain   |                                              |            |
| JKM139 |          | $MATa ho\Delta hml::ADE1 hmr::ADE1 ade1-100$ | 1          |
|        |          | <i>leu2-3,112 trp1::hisG lys5 ura3-52</i>    |            |
|        |          | ade3::GAL::HO                                |            |
| JKM179 |          | $MATalpha$ ho $\Delta$ hml::ADE1 hmr::ADE1   | 1          |
|        |          | ade1-100 leu2-3,112 trp1::hisG lys5 ura3-52  |            |
|        |          | ade3::GAL::HO                                |            |
| yGI198 | JKM139   | exo1::TRP1                                   | 2          |
| yGI200 | JKM139   | sgs1::KanMX                                  | 2          |
| yXC690 | JKM139   | fun30::NatMX                                 | This study |
| yXC720 | JKM139   | fun30-K603R (ATPase dead)                    | This study |
| yXC721 | JKM139   | fun30-helicase $\Delta$                      | This study |
| yXC722 | JKM139   | $fun30$ - $cueE\Delta$                       | This study |
| yXC920 | JKM139   | degron-Myc-Fun30 +pGAL-UBR1                  | This study |
| yXC798 | JKM139   | fun30::NatMX exo1::TRP1                      | This study |
| yXC777 | JKM139   | fun30::NATMX sgs1::KanMX                     | This study |
| yXC902 | JKM139   | sgs1::KanMX exo1::TRP1 fun30::NatMX          | This study |
| yXC656 | JKM139   | rsc2::KanMX                                  | This study |
| yXC633 | JKM139   | rsc2::KanMX fun30::NatMX                     | This study |
| yXC664 | JKM139   | chd1::KanMX                                  | This study |
| yXC668 | JKM139   | chd1::KanMX fun30::NatMX                     | This study |
| yXC665 | JKM139   | isw1::KanMX                                  | This study |
| yXC669 | JKM139   | isw1::KanMX fun30::NatMX                     | This study |
| yXC666 | JKM139   | swr1::KanMX                                  | This study |
| yXC670 | JKM139   | swr1::KanMX fun30::NatMX                     | This study |
| yXC663 | JKM139   | arp8::KanMX                                  | This study |
| yXC667 | JKM139   | arp8::KanMX fun30::NatMX                     | This study |

| yXC745        | JKM139 | rad54::KanMX                             | This study        |
|---------------|--------|------------------------------------------|-------------------|
| yXC746        | JKM139 | rad54::KanMX fun30::NatMX                | This study        |
| yXC780        | JKM139 | dot1::KanMX                              | This study        |
| yXC782        | JKM139 | dot1::KanMX fun30::NatMX                 | This study        |
| KHT34         | JKM179 | hta1/2-S129A                             | 3                 |
| yXC686        | JKM179 | hta1/2-S129A fun30::NatMX                | This study        |
| yXC108        | JKM139 | rad9::NatMX                              | This study        |
| yXC110        | JKM139 | rad9::NatMX sgs1::KanMX                  | This study        |
| yXC111        | JKM139 | rad9::NatMX exo1-TRP1                    | This study        |
| yXC112        | JKM139 | rad9::NatMX sgs1::KanMX exo1::TRP1       | This study        |
| yXC632        | JKM139 | fun30::KanMX rad9::NatMX                 | This study        |
| yXC778        | JKM139 | rad9::NatMX fun30::URA3 rsc2::KanMX      | This study        |
| yXC779        | JKM139 | rad9::NatMX fun30::URA3 arp8::KanMX      | This study        |
| yXC628        | JKM139 | cdc28-as1 Fun30-13xMyc-NatMX             | This study        |
| yXC909        | JKM139 | $fun30$ - $cueE\Delta$ -13 $xMyc$ -NatMX | This study        |
| yXC910        | JKM139 | $fun30$ -helicase $\Delta$ -13xMyc-NatMX | This study        |
| yXC911        | JKM139 | fun30-K603R-13xMyc-NatMX                 | This study        |
| yXC906        | JKM139 | Fun30-3xFLAG-KanMX Exo1-9xMyc-TRP1       | This study        |
| yXC907        | JKM139 | Fun30-13xMyc-NatMX Rfa1-3xFLAG-          | This study        |
| -             |        | KanMX                                    |                   |
| yXC923        | JKM139 | Fun30-3xFLAG-KanMX Dna2-9xMyc-TRP1       | This study        |
| yXC715        | JKM139 | mec1::KanMX sml1::TRP1 Fun30-13xMyc-     | This study        |
|               |        | KanMX                                    |                   |
| yXC699        | yZZ357 | sgs1::URA3 exo1::TRP1 Fun30-13xMyc-      | This study        |
|               |        | KanMX                                    |                   |
| yXC735        | JKM139 | cdc28-as1 mre11::KanMX Fun30-13xMyc-     | This study        |
|               |        | NatMX                                    |                   |
| yZZ203        | JKM139 | Sgs1-9xMyc-TRP1                          | This study        |
| yXC650        | JKM139 | fun30::NatMX Sgs1-9xMyc-TRP1             | This study        |
| yZZ042        | JKM139 | Exo1-9xMyc-TRP1                          | This study        |
| yXC649        | JKM139 | fun30::NatMX Exo1-9xMyc-TRP1             | This study        |
| yWH526        | JKM139 | cdc28-as1 Dna2-9xMyc                     | This study        |
| yXC635        | JKM139 | cdk1-as1 fun30::NatMX DNA2-9Myc-TRP1     | Ths study         |
| yXC640        | JKM139 | cdc28-as1 Mre11-13xMyc-KanMX             | This study        |
| yXC692        | JKM139 | cdc28-as1fun30::NatMX Mre11-13xMyc-      | This study        |
|               |        | KanMX                                    |                   |
| yXC843A       | JKM139 | Rad9-HA-KanMX                            |                   |
| yXC850A       | JKM139 | Rad9-HA-KanMX fun30::NatMX               |                   |
| yTT035        | JKM179 | FLAG-HHT1::LEU2                          | Tsukuda <i>et</i> |
|               |        |                                          | <i>al.</i> , 2005 |
| <u>yXC710</u> | JKM179 | fun30::NatMX FLAG-HHTT::LEU2             | This study        |
| yXC/42        | JKM179 | sgs1::NatMX exo1::TRP1 FLAG-             | This study        |
|               |        | HHII::LEU2                               | <b>T</b> . 7      |
| tGI354        |        | MATa-inc arg5,6::MATa-HPH                | Ira $et al.$ ,    |
|               |        | aaes::GAL::HO hmr::ADEI hml::ADEI        | 2003              |

|        |        | ura3-52                                         |            |
|--------|--------|-------------------------------------------------|------------|
| yXC631 | tGI354 | fun30::NatMX                                    | This study |
| yXC728 | tGI354 | fun30-K603R                                     | This study |
| yXC729 | tGI354 | fun30-helicase $\Delta$                         | This study |
| yXC730 | tGI354 | $fun30$ -cue $\Delta$                           | This study |
| yXC748 | tGI354 | arp8::KanMX                                     | This study |
| yXC750 | tGI354 | rsc2::KanMX                                     | Ths study  |
| yXC671 | tGI354 | swr1::NatMX                                     | This study |
| yXC749 | tGI354 | chd1::KanMX                                     | Ths study  |
| YMV80  |        | ho hml::ADE1 mata::hisG hmr::ADE1               | 4          |
|        |        | his4::NatMX-leu2 (XhoI to Asp718)               |            |
|        |        | <i>leu2::MATa ade3::GAL::HO ade1 lys5 ura3-</i> |            |
|        |        | <i>52 trp1</i>                                  |            |
| yXC714 | YMV80  | arp8::KanMX rad51::URA3                         | This study |
| yXC597 | YMV80  | fun30::NatMX rad51::URA3                        | This study |
| yXC754 | YMV80  | swr1::NatMX rad51::URA3                         | This study |
| yXC753 | YMV80  | rsc2::KanMX rad51::URA3                         | This study |
| yWH378 | YMV80  | rad51::URA3                                     | 2          |

#### **Supplemental references**

- <sup>1</sup> Lee, S. E. et al., Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. *Cell* **94** (3), 399 (1998).
- <sup>2</sup> Zhu, Z. et al., Sgs1 helicase and two nucleases dna2 and exo1 resect DNA doublestrand break ends. *Cell* **134** (6), 981 (2008).
- <sup>3</sup> Lee, K., Zhang, Y., and Lee, S. E., Saccharomyces cerevisiae ATM orthologue suppresses break-induced chromosome translocations. *Nature* **454** (7203), 543 (2008).
- <sup>4</sup> Vaze, M. et al., Recovery from checkpoint-mediated arrest after repair of a double- strand break requires srs2 helicase. *Mol Cell* **10** (2), 373 (2002).

#### Supplemental Figure Legends

### Supplemental Figure 1. Fun30 suppresses the crossover pathway during ectopic gene conversion.

Analysis of crossover frequency during ectopic recombination in wild-type cells and indicated mutants. **a**. Schematic representation of ectopic recombination assay; **b**. Southern blot analysis of DSB repair by ectopic recombination in wild type, *fun30* $\Delta$  cells

and *fun30* mutants deficient in the ATPase or helicase domain and a plot showing crossover frequencies at the 8 h timepoint; **c.** Southern blot analysis and quantification of crossover frequencies for wild-type and indicated mutants cells; **d.** The efficiency of repair by ectopic recombination in wild-type cells and indicated mutants. Plotted values are the mean values  $\pm$  SD from three independent experiments

#### Supplemental Figure 2. Fun30 plays an important role in both Sgs1- and Exo1dependent resection pathways.

**a.** Southern blot analysis and quantification of 5' strand resection at 5 kb from a DSB in wild-type cells and indicated mutants. Plotted values are the mean values  $\pm$  SD from three independent experiments. **b.** Southern blot analysis of 5' strand resection at the *MAT***a** locus in *sgs1 exo1 fun30* triple mutant cells. **c.** Analysis of DNA damage sensitivity. Cells of the indicated genotypes were 1:10 serially diluted and spotted onto YEPD or YEPD with camptothecin.

### Supplemental Figure 3. Deletion of the $FUN3\theta$ gene does not change the cellular level of resection proteins nor the general chromatin structure.

**a.** Western blot analysis of the indicated proteins in wild-type and *fun30* $\Delta$  cells.

**b.** Comparison of general chromatin structure in wild-type and  $fun30\Delta$  cells. Ethidium bromide and Southern blot analysis of DNA isolated from nuclei treated with Micrococcal nuclease for 0, 1, 4, 8, or 16 minutes. DNA was separated on a 1.4% agarose gel.

## Supplemental Figure 4. Fun30 co-immunoprecipitates with multiple resection enzymes upon DNA damage.

Endogenous Dna2, Exo1, RFA1 and Fun30 were tagged with either a multi Myc or a multi FLAG tag at their C-terminus. Cell extracts with or without Benzonase digestion were subjected to immunoprecipitation either with anti-Myc or anti-FLAG antibodies or with an appropriate antibody mock IgG as described in Supplemental methods. a-c. Western blot showing co-immunoprecipitation of Fun30 with RPA, Exo1 and Dna2, respectively. Bound proteins and input proteins were analyzed by immunoblotting with indicated antibodies. "\*" indicates full-length Fun30 protein. d. An agarose gel stained with ethidium bromide shows an effective digestion of genomic DNA by Benzonase treatment.

## Supplemental Figure 5. Analysis of expression and recruitment of *fun30* mutant proteins to a DSB.

**a.** Western blot showing protein levels from whole cell extracts for wild-type Fun30 and indicated mutant *fun30* proteins. **b.** ChIP analysis of the recruitment of wild-type Fun30 and indicated *fun30* mutant proteins to DSBs. Error bars represent SD from three independent experiments.

#### Supplemental Figure 6. Comparison of resection kinetics and histone H3 occupancy at DSBs.

Comparison of resection kinetics and histone occupancy at 1, 5 and 10 kb from the DSB in (a) wild-type cells, (b)  $fun30\Delta$  cells, and (c)  $sgs1\Delta$   $fun30\Delta$  cells. Resection was measured by Southern blotting and histone occupancy was followed by histone H3 ChIP at indicated time points. Error bars represent SD from three independent experiments. Because resection eliminates one of the two DNA strands at DSBs, histone H3 loss as measured by ChIP-qPCR corresponds to a decrease of H3 signal below 0.5 of the original value indicated with blue dashed line.

#### Supplemental Figure 7. INO80 and RSC chromatin remodeling complexes play redundant roles with Fun30 in resection close to DSBs.

**a**. Southern blot analysis and quantification of resection kinetics in wild-type and indicated mutant cells. Plotted values are the mean values  $\pm$  SD from three independent experiments. **b**. Southern blot analysis and quantification of resection kinetics in cells deficient in Arp8 or Arp8 and Sth1. Checkpoint activation was monitored by immunoblotting using an antibody against Rad53.

## Supplemental Figure 8. SWR1, CHD1 and ISW1 remodeling factors do not play significant roles in resection.

**a.** Southern blot analysis and quantification of resection kinetics in wild-type cells and indicated mutants. Plotted values are the mean values  $\pm$  SD from three independent experiments. **b-c.** Analysis of DNA damage sensitivity. Cells of the indicated genotypes were 1:10 serially diluted and spotted onto YEPD or YEPD with camptothecin or phleomycin.

## Supplemental Figure 9. Rad54 is epistatic to Fun30 with respect to DNA damage response.

**a.** Southern blot analysis and quantification of resection kinetics in wild-type cells and indicated mutants. Plotted values are the mean values  $\pm$  SD from three independent experiments. Analysis of DNA damage sensitivity. Cells of the indicated genotypes were 1:10 serially diluted and spotted onto YEPD or YEPD with camptothecin or phleomycin. **b.** A summary of resection defects for the tested single or double ATP-dependent nucleosome remodeling factor mutants.

### Supplemental Figure 10. Fun30 promotes resection within chromatin with methylated H3K79 and phosphorylated H2A S129.

**a.** Southern blot analysis in indicated mutants. Quantification is shown in Figure 4b-c. **b.** Southern blot analysis and quantification of resection kinetics in wild-type cells and indicated mutants. Plotted values are the mean values  $\pm$  SD from three independent experiments. **c.** Analysis of DNA damage sensitivity. Cells of the indicated genotypes were 1:10 serially diluted and spotted onto YEPD or YEPD with camptothecin.

Figure S1, Chen et al.







fold change in crossover uency among repair products



frequency





DNA loading control  $0 \ 1 \ 2 \ 4 \ 6 \ 8 \ 10 \ 12$ time after DSB (h) wild type fun30 $\Delta$ exo1 $\Delta$ 

b

sgs1 $\Delta$  exo1 $\Delta$  fun30 $\Delta$ 









# Figure S3, Chen et al.



b

| South | nern | b | lot |
|-------|------|---|-----|
|       |      |   |     |

| Agaro | se gel | M  | ATa   | Ę  | 5 kb  | 10 | kb    | 2  | 28 kb |
|-------|--------|----|-------|----|-------|----|-------|----|-------|
| WT    | fun30  | WT | fun30 | WT | fun30 | WT | fun30 | WT | fun30 |

01 2 4 8 16 01 2 4 8 16 01 2 4 8 16 01 2 4 8 16 01 2 4 8 16 01 2 4 8 16 01 2 4 8 16 01 2 4 8 16 01 2 4 8 16 (min)



# Figure S4, Chen et al.

| a. input                       | Fun30-13xMyc and Rfa1-3xFLAG Co-IP     |                                        |  |  |
|--------------------------------|----------------------------------------|----------------------------------------|--|--|
| + (Benzonase)<br>+ + + + (MMS) | anti-Myc IP                            | anti-FLAG IP                           |  |  |
| Fun30-13xMyc                   | + (Benzonase)<br>- + IgG - + IgG (MMS) | + (Benzonase)<br>- + IgG - + IgG (MMS) |  |  |
| Rfa1-3xFLAG                    | Rfa1-3xFLAG                            | Fun30-13xMyc                           |  |  |
| Loading contro                 | Fun30-13xMyc                           | Rfa1-3xFLAG                            |  |  |

b. input

Fun30-3xFLAG and Exo1-9xMyc Co-IP



# Figure S5, Chen et al.



Loading control





Figure S6, Chen et al.













## Figure S8, Chen et al.







stime after HO break induction (h)





## Figure S9, Chen et al.



b

![](_page_14_Figure_3.jpeg)

| ATP-dependent<br>nucleosome<br>remodeling factor | mutant tested             | resection phenotype                                                    |
|--------------------------------------------------|---------------------------|------------------------------------------------------------------------|
| INO80                                            | arp8, nhp10*              | very minor defect                                                      |
| SWR1                                             | swr1, htz1**              | comparable to wild type                                                |
| RSC                                              | rsc2, tetO7::STH1***      | defective initial resection                                            |
| ISW1                                             | isw1                      | comparable to wild type                                                |
| CHD1                                             | chd1                      | comparable to wild type                                                |
| Fun30                                            | fun30                     | defective extensive resection                                          |
| Rad54                                            | rad54                     | comparable to wild type                                                |
|                                                  | arp8 fun30, nhp10 fun30*  | extensive resection slightly more defective than in <i>fun30</i> cells |
|                                                  | swr1 fun30                | as in <i>fun30</i> cells                                               |
|                                                  | rsc2 fun30                | defective initial and extensive resection                              |
|                                                  | isw1 fun30                | as in <i>fun30</i> cells                                               |
|                                                  | chd1 fun30                | as in fun30 cells                                                      |
|                                                  | rad54 fun30               | as in fun30 cells                                                      |
|                                                  | arp8 fun30 tetO7::STH1*** | very severe defect in resection                                        |

## \* data not shown \*\* Htz1 is an H2AZ histone variant, exchanged for histone H2A by the SWR1, data not shown \*\*\* resection tested in the presence of doxycycline that shuts down STH1 expression

## Figure S10, Chen et al.

![](_page_15_Figure_1.jpeg)

![](_page_15_Figure_2.jpeg)

 $rad9\Delta fun30\Delta rsc2\Delta$ 

28 kb loading control

![](_page_15_Figure_6.jpeg)

8 10 12 0 1 2 4 6 8 10 12 time (h) 0 2 4 6 WT

b

![](_page_15_Figure_9.jpeg)

![](_page_15_Figure_10.jpeg)